sequence_expand_op.h 7.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15

#pragma once
D
dzhwinter 已提交
16
#include <numeric>  // std::iota
W
wanghaoshuang 已提交
17

D
dzhwinter 已提交
18 19
#include <glog/logging.h>
#include <sstream>
Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
D
dzhwinter 已提交
22
#include "paddle/fluid/operators/math/math_function.h"
W
wanghaoshuang 已提交
23 24 25 26 27

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
D
dzhwinter 已提交
28 29 30
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
W
wanghaoshuang 已提交
31

D
dzhwinter 已提交
32 33
template <typename DeviceContext, typename T>
struct SequenceExpandFunctor {
D
dzhwinter 已提交
34 35 36 37 38
  void operator()(
      const DeviceContext& ctx, const LoDTensor& x,
      const framework::Vector<size_t>& x_lod,   /*expand source lod*/
      const framework::Vector<size_t>& ref_lod, /*expand referenced lod*/
      LoDTensor* out);
D
dzhwinter 已提交
39 40
};

D
dzhwinter 已提交
41 42
template <typename DeviceContext, typename T>
struct SequenceExpandGradFunctor {
D
dzhwinter 已提交
43 44 45 46 47
  void operator()(
      const DeviceContext& ctx, const LoDTensor& dout,
      const framework::Vector<size_t>& x_lod,   /*expand source lod*/
      const framework::Vector<size_t>& ref_lod, /*expand referenced lod*/
      LoDTensor* dx);
D
dzhwinter 已提交
48
};
D
dzhwinter 已提交
49 50

template <typename T>
D
dzhwinter 已提交
51
struct SequenceExpandFunctor<platform::CPUDeviceContext, T> {
D
dzhwinter 已提交
52 53 54 55 56
  void operator()(
      const platform::CPUDeviceContext& context, const LoDTensor& x,
      const framework::Vector<size_t>& x_lod,   /*expand source lod*/
      const framework::Vector<size_t>& ref_lod, /*expand referenced lod*/
      LoDTensor* out) {
D
dzhwinter 已提交
57 58
    int out_offset = 0;
    auto& eigen_place = *context.eigen_device();
D
dzhwinter 已提交
59 60
    for (size_t i = 1; i < ref_lod.size(); ++i) {
      int repeat_num = ref_lod[i] - ref_lod[i - 1];
D
dzhwinter 已提交
61 62 63 64
      int x_start = x_lod[i - 1];
      int x_end = x_lod[i];
      int x_seq_len = x_end - x_start;
      if (repeat_num > 0) {
D
dzhwinter 已提交
65
        auto x_sub_tensor = x.Slice(x_start, x_end);
D
dzhwinter 已提交
66 67
        x_sub_tensor.Resize({1, x_sub_tensor.numel()});
        int out_start = out_offset;
D
dzhwinter 已提交
68 69
        if (out->lod().size() == 1) {
          out_start = out->lod()[0][out_offset];
D
dzhwinter 已提交
70 71 72 73 74 75 76 77
        }
        auto out_sub_tensor =
            out->Slice(out_start, out_start + x_seq_len * repeat_num);
        out_sub_tensor.Resize({repeat_num, x_sub_tensor.dims()[1]});
        EigenMatrix<T>::From(out_sub_tensor).device(eigen_place) =
            EigenMatrix<T>::From(x_sub_tensor)
                .broadcast(Eigen::array<int, 2>({{repeat_num, 1}}));
      }
D
dzhwinter 已提交
78
      out_offset += repeat_num;
D
dzhwinter 已提交
79
    }
D
dzhwinter 已提交
80
  }
D
dzhwinter 已提交
81
};
D
dzhwinter 已提交
82

Q
QI JUN 已提交
83
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
84
class SequenceExpandKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
85 86 87
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<LoDTensor>("X");
W
wanghaoshuang 已提交
88
    auto* y = context.Input<LoDTensor>("Y");
D
dzhwinter 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    auto* out = context.Output<LoDTensor>("Out");

    int ref_level = context.Attr<int>("ref_level");
    auto& x_lod = x->lod();
    auto& y_lod = y->lod();

    if (ref_level == -1) ref_level = y_lod.size() - 1;

    out->mutable_data<T>(context.GetPlace());

    if (y_lod[ref_level].size() <= 1) {
      framework::TensorCopy(*x, context.GetPlace(), out);
      return;
    }

    // x lod level is at most 1.
D
dzhwinter 已提交
105 106 107
    framework::Vector<size_t> out_lod;
    if (x_lod.size() == 1) {
      out_lod.push_back(0);
D
dzhwinter 已提交
108 109 110 111 112 113 114
      int out_offset = 0;
      for (size_t i = 1; i < y_lod[ref_level].size(); ++i) {
        int repeat_num = y_lod[ref_level][i] - y_lod[ref_level][i - 1];
        int x_start = x_lod[0][i - 1];
        int x_end = x_lod[0][i];
        int x_seq_len = x_end - x_start;
        for (int j = 0; j < repeat_num; ++j) {
D
dzhwinter 已提交
115
          out_lod.push_back(out_lod.back() + x_seq_len);
D
dzhwinter 已提交
116 117 118
          out_offset++;
        }
      }
D
dzhwinter 已提交
119 120 121 122 123 124 125 126 127 128 129
      // write lod to out if x has lod
      auto& ref_lod = *out->mutable_lod();
      ref_lod[0] = out_lod;
    }
    framework::Vector<size_t> ref_x_lod;
    if (x->lod().size() == 1) {
      ref_x_lod = x->lod()[0];
    } else {
      // x_lod doesn't has lod, use fake x lod, level = 0
      ref_x_lod.resize(x->dims()[0] + 1);
      std::iota(ref_x_lod.begin(), ref_x_lod.end(), 0);
D
dzhwinter 已提交
130
    }
D
dzhwinter 已提交
131
    SequenceExpandFunctor<DeviceContext, T> functor;
D
dzhwinter 已提交
132 133
    functor(context.template device_context<DeviceContext>(), *x, ref_x_lod,
            y_lod[ref_level], out);
W
wanghaoshuang 已提交
134 135 136
  }
};

137 138 139 140 141 142 143 144 145 146 147 148
/*
 *Given Grad(Out)
 *
 *    Grad(Out).lod = [[0,                            2],
 *                     [0,              3,            6]]
 *    Grad(Out).data = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
 * Then
 *    Grad(X).data = [(0.1 + 0.2 + 0.3), (0.4 + 0.5 + 0.6)]
 *                 = [0.6, 1.5]
 *    Grad(X).lod = Input(X).lod
 *
 * */
D
dzhwinter 已提交
149 150
template <typename T>
struct SequenceExpandGradFunctor<platform::CPUDeviceContext, T> {
D
dzhwinter 已提交
151 152 153 154 155 156 157 158 159 160 161
  void operator()(
      const platform::CPUDeviceContext& context, const LoDTensor& dout,
      const framework::Vector<size_t>& x_lod,   /*expand source lod*/
      const framework::Vector<size_t>& ref_lod, /*expand referenced lod*/
      LoDTensor* dx) {
    math::SetConstant<platform::CPUDeviceContext, T> set_zero;
    set_zero(context, dx, static_cast<T>(0));

    int dout_offset = 0;
    for (size_t i = 1; i < ref_lod.size(); ++i) {
      int repeat_num = ref_lod[i] - ref_lod[i - 1];
D
dzhwinter 已提交
162
      if (repeat_num > 0) {
D
dzhwinter 已提交
163 164
        int x_start = x_lod[i - 1];
        int x_end = x_lod[i];
D
dzhwinter 已提交
165
        int x_seq_len = x_end - x_start;
D
dzhwinter 已提交
166 167 168 169 170 171 172 173
        auto dx_sub = dx->Slice(x_start, x_end);
        dx_sub.Resize(flatten_to_1d(dx_sub.dims()));
        int dout_end = dout_offset + repeat_num * x_seq_len;
        auto dout_sub = dout.Slice(dout_offset, dout_end);
        dout_sub.Resize({repeat_num, dx_sub.dims()[0]});
        math::ColwiseSum<platform::CPUDeviceContext, T> col_sum;
        col_sum(context, dout_sub, &dx_sub);
        dout_offset += repeat_num * x_seq_len;
D
dzhwinter 已提交
174
      }
W
wanghaoshuang 已提交
175
    }
W
wanghaoshuang 已提交
176 177 178
  }
};

D
dzhwinter 已提交
179 180 181 182
template <typename DeviceContext, typename T>
class SequenceExpandGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
D
dzhwinter 已提交
183
    auto* g_out = context.Input<LoDTensor>(framework::GradVarName("Out"));
D
dzhwinter 已提交
184
    auto* x = context.Input<LoDTensor>("X");
D
dzhwinter 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198
    auto* y = context.Input<LoDTensor>("Y");
    auto* g_x = context.Output<LoDTensor>(framework::GradVarName("X"));
    int ref_level = context.Attr<int>("ref_level");

    g_x->mutable_data<T>(context.GetPlace());
    g_x->set_lod(x->lod());

    auto& y_lod = y->lod();
    if (ref_level == -1) ref_level = y_lod.size() - 1;
    // just copy the gradient
    if (y_lod[ref_level].size() <= 1) {
      framework::TensorCopy(*g_out, context.GetPlace(), g_x);
      return;
    }
D
dzhwinter 已提交
199

D
dzhwinter 已提交
200 201 202 203 204 205 206 207 208
    framework::Vector<size_t> ref_x_lod;
    framework::Vector<size_t> ref_lod = y_lod[ref_level];
    if (x->lod().size() == 1) {
      ref_x_lod = x->lod()[0];
    } else {
      // x_lod doesn't has lod, use fake x lod, level = 0
      ref_x_lod.resize(x->dims()[0] + 1);
      std::iota(ref_x_lod.begin(), ref_x_lod.end(), 0);
    }
D
dzhwinter 已提交
209
    SequenceExpandGradFunctor<DeviceContext, T> functor;
D
dzhwinter 已提交
210 211
    functor(context.template device_context<DeviceContext>(), *g_out, ref_x_lod,
            ref_lod, g_x);
D
dzhwinter 已提交
212 213 214
  }
};

W
wanghaoshuang 已提交
215 216
}  // namespace operators
}  // namespace paddle