install_check.py 6.4 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import paddle
17
from .framework import Program, program_guard, unique_name, cuda_places, cpu_places
J
Jiabin Yang 已提交
18 19 20 21
from .param_attr import ParamAttr
from .initializer import Constant
from . import layers
from . import backward
L
lujun 已提交
22
from .dygraph import Layer, nn
J
Jiabin Yang 已提交
23
from . import executor
24
from . import optimizer
J
Jiabin Yang 已提交
25
from . import core
26 27
from . import compiler
import logging
J
Jiabin Yang 已提交
28 29 30 31 32 33
import numpy as np

__all__ = ['run_check']


class SimpleLayer(Layer):
34 35 36 37 38 39
    def __init__(self, input_size):
        super(SimpleLayer, self).__init__()
        self._linear1 = nn.Linear(
            input_size,
            3,
            param_attr=ParamAttr(initializer=Constant(value=0.1)))
J
Jiabin Yang 已提交
40 41

    def forward(self, inputs):
42
        x = self._linear1(inputs)
J
Jiabin Yang 已提交
43 44 45 46 47
        x = layers.reduce_sum(x)
        return x


def run_check():
48
    """To check whether install is successful
J
Jiabin Yang 已提交
49
    This func should not be called only if you need to verify installation
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

    Examples:
        .. code-block: python

            import paddle.fluid as fluid
            fluid.install_check.run_check()

            # If installed successfully, output may be
            # Running Verify Fluid Program ... 
            # W0805 04:24:59.496919 35357 device_context.cc:268] Please NOTE: device: 0, CUDA Capability: 70, Driver API Version: 10.2, Runtime API Version: 10.1
            # W0805 04:24:59.505594 35357 device_context.cc:276] device: 0, cuDNN Version: 7.6.
            # Your Paddle Fluid works well on SINGLE GPU or CPU.
            # Your Paddle Fluid works well on MUTIPLE GPU or CPU.
            # Your Paddle Fluid is installed successfully! Let's start deep Learning with Paddle Fluid now
    """
J
Jiabin Yang 已提交
65
    print("Running Verify Fluid Program ... ")
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    device_list = []
    if core.is_compiled_with_cuda():
        try:
            core.get_cuda_device_count()
        except Exception as e:
            logging.warning(
                "You are using GPU version Paddle Fluid, But Your CUDA Device is not set properly"
                "\n Original Error is {}".format(e))
            return 0
        device_list = cuda_places()
    else:
        device_list = [core.CPUPlace(), core.CPUPlace()]

    np_inp_single = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
    inp = []
    for i in range(len(device_list)):
        inp.append(np_inp_single)
    np_inp_muti = np.array(inp)
    np_inp_muti = np_inp_muti.reshape(len(device_list), 2, 2)
86 87 88 89 90 91 92 93 94 95

    def test_parallerl_exe():
        train_prog = Program()
        startup_prog = Program()
        scope = core.Scope()
        with executor.scope_guard(scope):
            with program_guard(train_prog, startup_prog):
                with unique_name.guard():
                    build_strategy = compiler.BuildStrategy()
                    build_strategy.enable_inplace = True
96
                    inp = layers.data(name="inp", shape=[2, 2])
97
                    simple_layer = SimpleLayer(input_size=2)
98
                    out = simple_layer(inp)
99 100 101
                    exe = executor.Executor(
                        core.CUDAPlace(0) if core.is_compiled_with_cuda() and
                        (core.get_cuda_device_count() > 0) else core.CPUPlace())
102 103 104 105 106 107 108 109
                    loss = layers.mean(out)
                    loss.persistable = True
                    optimizer.SGD(learning_rate=0.01).minimize(loss)
                    startup_prog.random_seed = 1
                    compiled_prog = compiler.CompiledProgram(
                        train_prog).with_data_parallel(
                            build_strategy=build_strategy,
                            loss_name=loss.name,
110
                            places=device_list)
111 112 113
                    exe.run(startup_prog)

                    exe.run(compiled_prog,
114
                            feed={inp.name: np_inp_muti},
115 116 117 118 119 120 121 122 123 124 125
                            fetch_list=[loss.name])

    def test_simple_exe():
        train_prog = Program()
        startup_prog = Program()
        scope = core.Scope()
        with executor.scope_guard(scope):
            with program_guard(train_prog, startup_prog):
                with unique_name.guard():
                    inp0 = layers.data(
                        name="inp", shape=[2, 2], append_batch_size=False)
126
                    simple_layer0 = SimpleLayer(input_size=2)
127 128
                    out0 = simple_layer0(inp0)
                    param_grads = backward.append_backward(
129 130
                        out0,
                        parameter_list=[simple_layer0._linear1.weight.name])[0]
131 132 133
                    exe0 = executor.Executor(
                        core.CUDAPlace(0) if core.is_compiled_with_cuda() and
                        (core.get_cuda_device_count() > 0) else core.CPUPlace())
134
                    exe0.run(startup_prog)
135
                    exe0.run(feed={inp0.name: np_inp_single},
136 137 138 139 140 141 142 143 144 145 146 147 148 149
                             fetch_list=[out0.name, param_grads[1].name])

    test_simple_exe()

    print("Your Paddle Fluid works well on SINGLE GPU or CPU.")
    try:
        test_parallerl_exe()
        print("Your Paddle Fluid works well on MUTIPLE GPU or CPU.")
        print(
            "Your Paddle Fluid is installed successfully! Let's start deep Learning with Paddle Fluid now"
        )
    except Exception as e:
        logging.warning(
            "Your Paddle Fluid has some problem with multiple GPU. This may be caused by:"
150
            "\n 1. There is only 1 or 0 GPU visible on your Device;"
151 152 153 154
            "\n 2. No.1 or No.2 GPU or both of them are occupied now"
            "\n 3. Wrong installation of NVIDIA-NCCL2, please follow instruction on https://github.com/NVIDIA/nccl-tests "
            "\n to test your NCCL, or reinstall it following https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html"
        )
J
Jiabin Yang 已提交
155

156 157 158
        print("\n Original Error is: {}".format(e))
        print(
            "Your Paddle Fluid is installed successfully ONLY for SINGLE GPU or CPU! "
159
            "\n Let's start deep Learning with Paddle Fluid now")