install_check.py 5.7 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import os
from .framework import Program, program_guard, unique_name, cuda_places, cpu_places
J
Jiabin Yang 已提交
17 18 19 20
from .param_attr import ParamAttr
from .initializer import Constant
from . import layers
from . import backward
L
lujun 已提交
21
from .dygraph import Layer, nn
J
Jiabin Yang 已提交
22
from . import executor
23
from . import optimizer
J
Jiabin Yang 已提交
24
from . import core
25 26
from . import compiler
import logging
J
Jiabin Yang 已提交
27 28 29 30 31 32
import numpy as np

__all__ = ['run_check']


class SimpleLayer(Layer):
33 34 35 36 37 38
    def __init__(self, input_size):
        super(SimpleLayer, self).__init__()
        self._linear1 = nn.Linear(
            input_size,
            3,
            param_attr=ParamAttr(initializer=Constant(value=0.1)))
J
Jiabin Yang 已提交
39 40

    def forward(self, inputs):
41
        x = self._linear1(inputs)
J
Jiabin Yang 已提交
42 43 44 45 46
        x = layers.reduce_sum(x)
        return x


def run_check():
T
tianshuo78520a 已提交
47
    ''' install check to verify if install is success
J
Jiabin Yang 已提交
48 49 50 51

    This func should not be called only if you need to verify installation
    '''
    print("Running Verify Fluid Program ... ")
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    device_list = []
    if core.is_compiled_with_cuda():
        try:
            core.get_cuda_device_count()
        except Exception as e:
            logging.warning(
                "You are using GPU version Paddle Fluid, But Your CUDA Device is not set properly"
                "\n Original Error is {}".format(e))
            return 0
        device_list = cuda_places()
    else:
        device_list = [core.CPUPlace(), core.CPUPlace()]

    np_inp_single = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
    inp = []
    for i in range(len(device_list)):
        inp.append(np_inp_single)
    np_inp_muti = np.array(inp)
    np_inp_muti = np_inp_muti.reshape(len(device_list), 2, 2)
72 73 74 75 76 77 78 79 80 81

    def test_parallerl_exe():
        train_prog = Program()
        startup_prog = Program()
        scope = core.Scope()
        with executor.scope_guard(scope):
            with program_guard(train_prog, startup_prog):
                with unique_name.guard():
                    build_strategy = compiler.BuildStrategy()
                    build_strategy.enable_inplace = True
82
                    inp = layers.data(name="inp", shape=[2, 2])
83
                    simple_layer = SimpleLayer(input_size=2)
84
                    out = simple_layer(inp)
85 86 87
                    exe = executor.Executor(
                        core.CUDAPlace(0) if core.is_compiled_with_cuda() and
                        (core.get_cuda_device_count() > 0) else core.CPUPlace())
88 89 90 91 92 93 94 95
                    loss = layers.mean(out)
                    loss.persistable = True
                    optimizer.SGD(learning_rate=0.01).minimize(loss)
                    startup_prog.random_seed = 1
                    compiled_prog = compiler.CompiledProgram(
                        train_prog).with_data_parallel(
                            build_strategy=build_strategy,
                            loss_name=loss.name,
96
                            places=device_list)
97 98 99
                    exe.run(startup_prog)

                    exe.run(compiled_prog,
100
                            feed={inp.name: np_inp_muti},
101 102 103 104 105 106 107 108 109 110 111
                            fetch_list=[loss.name])

    def test_simple_exe():
        train_prog = Program()
        startup_prog = Program()
        scope = core.Scope()
        with executor.scope_guard(scope):
            with program_guard(train_prog, startup_prog):
                with unique_name.guard():
                    inp0 = layers.data(
                        name="inp", shape=[2, 2], append_batch_size=False)
112
                    simple_layer0 = SimpleLayer(input_size=2)
113 114
                    out0 = simple_layer0(inp0)
                    param_grads = backward.append_backward(
115 116
                        out0,
                        parameter_list=[simple_layer0._linear1.weight.name])[0]
117 118 119
                    exe0 = executor.Executor(
                        core.CUDAPlace(0) if core.is_compiled_with_cuda() and
                        (core.get_cuda_device_count() > 0) else core.CPUPlace())
120
                    exe0.run(startup_prog)
121
                    exe0.run(feed={inp0.name: np_inp_single},
122 123 124 125 126 127 128 129 130 131 132 133 134 135
                             fetch_list=[out0.name, param_grads[1].name])

    test_simple_exe()

    print("Your Paddle Fluid works well on SINGLE GPU or CPU.")
    try:
        test_parallerl_exe()
        print("Your Paddle Fluid works well on MUTIPLE GPU or CPU.")
        print(
            "Your Paddle Fluid is installed successfully! Let's start deep Learning with Paddle Fluid now"
        )
    except Exception as e:
        logging.warning(
            "Your Paddle Fluid has some problem with multiple GPU. This may be caused by:"
136
            "\n 1. There is only 1 or 0 GPU visible on your Device;"
137 138 139 140
            "\n 2. No.1 or No.2 GPU or both of them are occupied now"
            "\n 3. Wrong installation of NVIDIA-NCCL2, please follow instruction on https://github.com/NVIDIA/nccl-tests "
            "\n to test your NCCL, or reinstall it following https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html"
        )
J
Jiabin Yang 已提交
141

142 143 144
        print("\n Original Error is: {}".format(e))
        print(
            "Your Paddle Fluid is installed successfully ONLY for SINGLE GPU or CPU! "
145
            "\n Let's start deep Learning with Paddle Fluid now")