ConvBaseLayer.cpp 4.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "ConvBaseLayer.h"
16
#include "paddle/math/MathUtils.h"
Y
Yu Yang 已提交
17
#include "paddle/utils/Logging.h"
Z
zhangjinchao01 已提交
18 19 20 21 22 23
namespace paddle {

bool ConvBaseLayer::init(const LayerMap& layerMap,
                         const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);
24 25 26 27 28
  isDeconv_ = (config_.type() == "exconv" ||
          config_.type() == "cudnn_conv" ||
          config_.type() == "conv3d" ||
          config_.type() == "deconv3d"   )
                  ? false : true;
29

Z
zhangjinchao01 已提交
30 31 32 33 34 35 36 37 38 39 40 41
  /* Initialize the convolutional layer parameter */
  numFilters_ = config_.num_filters();
  sharedBiases_ = config_.shared_biases();
  for (auto& inputConfig : config_.inputs()) {
    const ConvConfig& conf = inputConfig.conv_conf();
    padding_.push_back(conf.padding());
    stride_.push_back(conf.stride());
    filterSize_.push_back(conf.filter_size());
    paddingY_.push_back(conf.padding_y());
    strideY_.push_back(conf.stride_y());
    filterSizeY_.push_back(conf.filter_size_y());
    channels_.push_back(conf.channels());
L
Luo Tao 已提交
42 43
    imgSizeH_.push_back(conf.has_img_size_y() ? conf.img_size_y()
                                              : conf.img_size());
44
    imgSizeW_.push_back(conf.img_size());
Z
zhangjinchao01 已提交
45 46
    groups_.push_back(conf.groups());
    filterChannels_.push_back(conf.filter_channels());
L
Luo Tao 已提交
47
    outputH_.push_back(conf.has_output_y() ? conf.output_y() : conf.output_x());
48
    outputW_.push_back(conf.output_x());
49 50 51 52 53 54 55 56

    paddingZ_.push_back(conf.padding_z());
    strideZ_.push_back(conf.stride_z());
    filterSizeZ_.push_back(conf.filter_size_z());
    imgSizeD_.push_back(conf.img_size_z());
    outputD_.push_back(conf.output_z());
    filterPixels_.push_back(
            filterSize_.back() * filterSizeY_.back() * filterSizeZ_.back());
Z
zhangjinchao01 已提交
57 58
  }

59 60 61 62 63 64 65 66 67 68 69 70
  CHECK(inputLayers_.size() == parameters_.size());
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    size_t height, width;
    height = filterPixels_[i] * filterChannels_[i];
    width = (!isDeconv_) ? numFilters_ : channels_[i];

    // create a new weight
    CHECK_EQ(parameters_[i]->getSize(), width * height);
    Weight* w = new Weight(height, width, parameters_[i]);
    weights_.emplace_back(w);
  }

Z
zhangjinchao01 已提交
71
  /* initialize the biases_ */
72
  if (biasParameter_.get()) {
Z
zhangjinchao01 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    if (sharedBiases_) {
      CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
      biases_ =
          std::unique_ptr<Weight>(new Weight(numFilters_, 1, biasParameter_));
    } else {
      biases_ =
          std::unique_ptr<Weight>(new Weight(getSize(), 1, biasParameter_));
    }
  }

  // default caffe model
  caffeMode_ = true;

  return true;
}

89 90 91 92 93 94 95 96 97 98
size_t ConvBaseLayer::calOutputSize() {
  auto clearAndReserve = [this](IntV* vec) {
    vec->clear();
    vec->reserve(this->inputLayers_.size());
  };
  clearAndReserve(&imgSizeH_);
  clearAndReserve(&imgSizeW_);
  clearAndReserve(&outputH_);
  clearAndReserve(&outputW_);
  size_t layerSize = 0;
99

100
  auto setLayerSize = [&](IntV& inH, IntV& inW, IntV& outH, IntV& outW) {
101
    for (size_t i = 0; i < inputLayers_.size(); i++) {
102 103
      inH.push_back(inputLayers_[i]->getOutput().getFrameHeight());
      inW.push_back(inputLayers_[i]->getOutput().getFrameWidth());
L
Luo Tao 已提交
104
      const ConvConfig& conf = config_.inputs(i).conv_conf();
105
      if (isDeconv_) {
L
Luo Tao 已提交
106 107 108
        if (inH[i] == 0)
          inH[i] = conf.has_output_y() ? conf.output_y() : conf.output_x();
        if (inW[i] == 0) inW[i] = conf.output_x();
109 110 111 112 113
        outH.push_back(imageSize(
            inH[i], filterSizeY_[i], paddingY_[i], strideY_[i], caffeMode_));
        outW.push_back(imageSize(
            inW[i], filterSize_[i], padding_[i], stride_[i], caffeMode_));
      } else {
L
Luo Tao 已提交
114 115 116
        if (inH[i] == 0)
          inH[i] = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
        if (inW[i] == 0) inW[i] = conf.img_size();
117 118 119 120 121 122 123
        outH.push_back(outputSize(
            inH[i], filterSizeY_[i], paddingY_[i], strideY_[i], caffeMode_));
        outW.push_back(outputSize(
            inW[i], filterSize_[i], padding_[i], stride_[i], caffeMode_));
      }
      CHECK_EQ(outH[i], outH[0]);
      CHECK_EQ(outW[i], outW[0]);
124
    }
125 126 127 128 129
    getOutput().setFrameHeight(outH[0]);
    getOutput().setFrameWidth(outW[0]);
    layerSize = outH[0] * outW[0] * size_t(numFilters_);
  };

130
  setLayerSize(imgSizeH_, imgSizeW_, outputH_, outputW_);
131

132
  return layerSize;
133 134
}

Z
zhangjinchao01 已提交
135
}  // namespace paddle