ConvBaseLayer.cpp 3.4 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/utils/Logging.h"
#include "ConvBaseLayer.h"
namespace paddle {

bool ConvBaseLayer::init(const LayerMap& layerMap,
                         const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

24
  if (config_.type() == "exconv" || config_.type() == "cudnn_conv") {
25
    isDeconv_ = false;
26
  } else {
27
    isDeconv_ = true;
28 29
  }

Z
zhangjinchao01 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42
  /* Initialize the convolutional layer parameter */
  numFilters_ = config_.num_filters();
  sharedBiases_ = config_.shared_biases();
  for (auto& inputConfig : config_.inputs()) {
    const ConvConfig& conf = inputConfig.conv_conf();
    padding_.push_back(conf.padding());
    stride_.push_back(conf.stride());
    filterSize_.push_back(conf.filter_size());
    paddingY_.push_back(conf.padding_y());
    strideY_.push_back(conf.stride_y());
    filterSizeY_.push_back(conf.filter_size_y());
    filterPixels_.push_back(filterSize_.back() * filterSizeY_.back());
    channels_.push_back(conf.channels());
43 44
    imgSizeH_.push_back(conf.img_size());
    imgSizeW_.push_back(conf.img_size());
Z
zhangjinchao01 已提交
45 46
    groups_.push_back(conf.groups());
    filterChannels_.push_back(conf.filter_channels());
47 48
    outputH_.push_back(conf.output_x());
    outputW_.push_back(conf.output_x());
Z
zhangjinchao01 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
  }

  /* initialize the biases_ */
  if (biasParameter_.get() != NULL) {
    if (sharedBiases_) {
      CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
      biases_ =
          std::unique_ptr<Weight>(new Weight(numFilters_, 1, biasParameter_));
    } else {
      biases_ =
          std::unique_ptr<Weight>(new Weight(getSize(), 1, biasParameter_));
    }
  }

  // default caffe model
  caffeMode_ = true;

  return true;
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
size_t ConvBaseLayer::calOutputSize() {
  auto clearAndReserve = [this](IntV* vec) {
    vec->clear();
    vec->reserve(this->inputLayers_.size());
  };
  clearAndReserve(&imgSizeH_);
  clearAndReserve(&imgSizeW_);
  clearAndReserve(&outputH_);
  clearAndReserve(&outputW_);
  size_t layerSize = 0;
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    imgSizeH_.push_back(inputLayers_[i]->getOutput().getFrameHeight());
    imgSizeW_.push_back(inputLayers_[i]->getOutput().getFrameWidth());
    if (imgSizeH_[i] == 0)
      imgSizeH_[i] = config_.inputs(i).conv_conf().img_size();
    if (imgSizeW_[i] == 0)
      imgSizeW_[i] = config_.inputs(i).conv_conf().img_size();
86 87 88 89
    outputH_.push_back(outputSize(imgSizeH_[i], filterSizeY_[i], paddingY_[i],
                                  strideY_[i], caffeMode_));
    outputW_.push_back(outputSize(imgSizeW_[i], filterSize_[i], padding_[i],
                                  stride_[i], caffeMode_));
90 91 92 93 94 95 96
    CHECK_EQ(outputH_[i], outputH_[0]);
    CHECK_EQ(outputW_[i], outputW_[0]);
  }
  getOutput().setFrameHeight(outputH_[0]);
  getOutput().setFrameWidth(outputW_[0]);
  layerSize = outputH_[0] * outputW_[0] * size_t(numFilters_);
  return layerSize;
97

98 99
}

Z
zhangjinchao01 已提交
100
}  // namespace paddle