math_function_impl.h 9.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#pragma once
16
#include <memory>
17
#include <vector>
18

Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/data_type.h"
20
#include "paddle/phi/kernels/funcs/math_function.h"
21

22
namespace phi {
23
namespace funcs {
24

25
using paddle::framework::To32BitIndex;
26

Q
QI JUN 已提交
27
template <typename DeviceContext, typename T>
28 29
void SetConstant<DeviceContext, T>::operator()(
    const DeviceContext& context, paddle::framework::Tensor* tensor, T num) {
30 31
  bool xpu_place = false;
#ifdef PADDLE_WITH_XPU
32
  if (paddle::platform::is_xpu_place(context.GetPlace())) {
33
    xpu_place = true;
34
    phi::VisitDataType(
35
        tensor->dtype(),
36
        TensorSetConstantXPU<T>(tensor, num, context.GetPlace()));
37 38 39
  }
#endif
  if (!xpu_place) {
40
    auto t = paddle::framework::EigenVector<T>::Flatten(*tensor);
41 42
    t.device(*context.eigen_device()) = t.constant(static_cast<T>(num));
  }
43 44
}

Q
QI JUN 已提交
45 46
template <typename DeviceContext, typename T, int Rank>
void Transpose<DeviceContext, T, Rank>::operator()(
47 48 49 50
    const DeviceContext& context,
    const paddle::framework::Tensor& in,
    paddle::framework::Tensor* out,
    const std::vector<int>& axis) {
51 52 53 54
  Eigen::array<int, Rank> permute;
  for (int i = 0; i < Rank; i++) {
    permute[i] = axis[i];
  }
55 56
  auto eigen_in = paddle::framework::EigenTensor<T, Rank>::From(in);
  auto eigen_out = paddle::framework::EigenTensor<T, Rank>::From(*out);
Q
QI JUN 已提交
57
  auto* dev = context.eigen_device();
58 59
  // use 32bit index to speed up computation
  bool use_32bit_index = eigen_out.size() < Eigen::NumTraits<int>::highest();
60
  bool is_gpu_place = paddle::platform::is_gpu_place(context.GetPlace());
61 62 63 64 65 66
  if (use_32bit_index && is_gpu_place) {
    To32BitIndex(eigen_out).device(*dev) =
        To32BitIndex(eigen_in).shuffle(permute);
  } else {
    eigen_out.device(*dev) = eigen_in.shuffle(permute);
  }
67
}
68

Q
QI JUN 已提交
69
template <typename DeviceContext, typename T>
70 71 72 73
void ColwiseSum<DeviceContext, T>::operator()(
    const DeviceContext& context,
    const paddle::framework::Tensor& input,
    paddle::framework::Tensor* out) {
74 75
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
76 77
  PADDLE_ENFORCE_EQ(out->numel(),
                    size,
78
                    phi::errors::InvalidArgument(
79 80 81
                        "The size of output tensor "
                        "should be equal to the size of input tensor column"
                        " dimension. Expected output size=%d, but received %d",
82 83
                        size,
                        out->numel()));
84

85 86
  auto in = paddle::framework::EigenMatrix<T>::From(input);
  auto vec = paddle::framework::EigenVector<T>::Flatten(*out);
Y
Yu Yang 已提交
87 88

  vec.device(*context.eigen_device()) = in.sum(Eigen::array<int, 1>({{0}}));
89
}
90

Y
Yu Yang 已提交
91 92 93 94
// Specialize for CPU, since Eigen implement a general reduce. However,
// colwise-sum can be easily implemented. General reduce has a huge overhead in
// CPU
template <typename T>
95
class ColwiseSum<paddle::platform::CPUDeviceContext, T> {
Y
Yu Yang 已提交
96
 public:
97 98 99
  void operator()(const paddle::platform::CPUDeviceContext& context,
                  const paddle::framework::Tensor& input,
                  paddle::framework::Tensor* out) {
Y
Yu Yang 已提交
100 101 102
    auto& in_dims = input.dims();
    auto height = in_dims[0];
    auto size = in_dims[1];
103
    PADDLE_ENFORCE_EQ(
104 105
        out->numel(),
        size,
106
        phi::errors::InvalidArgument(
107 108 109
            "The size of output tensor "
            "should be equal to the size of input tensor column"
            " dimension. Expected output size=%d, but received %d",
110 111
            size,
            out->numel()));
Y
Yu Yang 已提交
112 113 114 115

    T* out_buf = out->mutable_data<T>(out->place());
    const T* in_buf = input.data<T>();

Q
qiaolongfei 已提交
116 117
    for (size_t i = 0; i < static_cast<size_t>(height); ++i) {
      for (size_t j = 0; j < static_cast<size_t>(size); ++j) {
Y
Yu Yang 已提交
118 119 120 121 122 123 124 125 126 127
        if (i == 0) {
          out_buf[j] = in_buf[i * size + j];
        } else {
          out_buf[j] += in_buf[i * size + j];
        }
      }
    }
  }
};

C
chengduoZH 已提交
128
template <typename DeviceContext, typename T>
129 130 131 132
void RowwiseMean<DeviceContext, T>::operator()(
    const DeviceContext& context,
    const paddle::framework::Tensor& input,
    paddle::framework::Tensor* out) {
C
chengduoZH 已提交
133
  auto in_dims = input.dims();
134 135 136 137 138
  PADDLE_ENFORCE_EQ(in_dims.size(),
                    2U,
                    phi::errors::InvalidArgument("The rank of input tensor "
                                                 "should be 2, but received %d",
                                                 in_dims.size()));
139 140
  PADDLE_ENFORCE_EQ(out->numel(),
                    in_dims[0],
141
                    phi::errors::InvalidArgument(
142 143 144
                        "The size of output tensor "
                        "should be equal to the size of input tensor row"
                        " dimension. Expected output size=%d, but received %d",
145 146
                        in_dims[0],
                        out->numel()));
C
chengduoZH 已提交
147

148 149
  auto in = paddle::framework::EigenMatrix<T>::From(input);
  auto vec = paddle::framework::EigenVector<T>::Flatten(*out);
C
chengduoZH 已提交
150 151 152 153 154 155 156 157

  vec.device(*context.eigen_device()) = in.mean(Eigen::array<int, 1>({{1}}));
}
// TODO(zcd): Following ColwiseSum format, need to confirm.
// Specialize for CPU, since Eigen implement a general reduce. However,
// rowwise-sum can be easily implemented. General reduce has a huge overhead in
// CPU
template <typename T>
158
class RowwiseMean<paddle::platform::CPUDeviceContext, T> {
C
chengduoZH 已提交
159
 public:
160 161 162
  void operator()(const paddle::platform::CPUDeviceContext& context,
                  const paddle::framework::Tensor& input,
                  paddle::framework::Tensor* out) {
C
chengduoZH 已提交
163
    auto& in_dims = input.dims();
164 165 166 167 168 169
    PADDLE_ENFORCE_EQ(
        in_dims.size(),
        2U,
        phi::errors::InvalidArgument("The rank of input tensor "
                                     "should be 2, but received %d",
                                     in_dims.size()));
C
chengduoZH 已提交
170 171
    auto height = in_dims[0];
    auto size = in_dims[1];
172
    PADDLE_ENFORCE_EQ(
173 174
        out->numel(),
        height,
175
        phi::errors::InvalidArgument(
176 177 178
            "The size of output tensor "
            "should be equal to the size of input tensor row"
            " dimension. Expected output size=%d, but received %d",
179 180
            height,
            out->numel()));
C
chengduoZH 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    auto inv_size = 1.0 / size;
    T* out_buf = out->mutable_data<T>(out->place());
    const T* in_buf = input.data<T>();

    for (size_t i = 0; i < static_cast<size_t>(height); ++i) {
      T sum = 0;
      for (size_t j = 0; j < static_cast<size_t>(size); ++j) {
        sum += in_buf[i * size + j];
      }
      out_buf[i] = sum * inv_size;
    }
  }
};

template <typename DeviceContext, typename T>
196 197 198 199
void RowwiseSum<DeviceContext, T>::operator()(
    const DeviceContext& context,
    const paddle::framework::Tensor& input,
    paddle::framework::Tensor* out) {
C
chengduoZH 已提交
200
  auto in_dims = input.dims();
201 202 203 204 205
  PADDLE_ENFORCE_EQ(in_dims.size(),
                    2U,
                    phi::errors::InvalidArgument("The rank of input tensor "
                                                 "should be 2, but received %d",
                                                 in_dims.size()));
206 207
  PADDLE_ENFORCE_EQ(out->numel(),
                    in_dims[0],
208
                    phi::errors::InvalidArgument(
209 210 211
                        "The size of output tensor "
                        "should be equal to the size of input tensor row"
                        " dimension. Expected output size=%d, but received %d",
212 213
                        in_dims[0],
                        out->numel()));
C
chengduoZH 已提交
214

215 216
  auto in = paddle::framework::EigenMatrix<T>::From(input);
  auto vec = paddle::framework::EigenVector<T>::Flatten(*out);
C
chengduoZH 已提交
217 218 219 220 221 222 223 224

  vec.device(*context.eigen_device()) = in.sum(Eigen::array<int, 1>({{1}}));
}
// TODO(zcd): Following ColwiseSum format, need to confirm.
// Specialize for CPU, since Eigen implement a general reduce. However,
// rowwise-sum can be easily implemented. General reduce has a huge overhead in
// CPU
template <typename T>
225
class RowwiseSum<paddle::platform::CPUDeviceContext, T> {
C
chengduoZH 已提交
226
 public:
227 228 229
  void operator()(const paddle::platform::CPUDeviceContext& context,
                  const paddle::framework::Tensor& input,
                  paddle::framework::Tensor* out) {
C
chengduoZH 已提交
230
    auto& in_dims = input.dims();
231 232 233 234 235 236
    PADDLE_ENFORCE_EQ(
        in_dims.size(),
        2U,
        phi::errors::InvalidArgument("The rank of input tensor "
                                     "should be 2, but received %d",
                                     in_dims.size()));
C
chengduoZH 已提交
237 238
    auto height = in_dims[0];
    auto size = in_dims[1];
239
    PADDLE_ENFORCE_EQ(
240 241
        out->numel(),
        height,
242
        phi::errors::InvalidArgument(
243 244 245
            "The size of output tensor "
            "should be equal to the size of input tensor row"
            " dimension. Expected output size=%d, but received %d",
246 247
            height,
            out->numel()));
C
chengduoZH 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261

    T* out_buf = out->mutable_data<T>(out->place());
    const T* in_buf = input.data<T>();

    for (size_t i = 0; i < static_cast<size_t>(height); ++i) {
      T sum = 0;
      for (size_t j = 0; j < static_cast<size_t>(size); ++j) {
        sum += in_buf[i * size + j];
      }
      out_buf[i] = sum;
    }
  }
};

262
}  // namespace funcs
263
}  // namespace phi