math_function_impl.h 9.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#pragma once
16
#include <memory>
17
#include <vector>
Y
Yi Wang 已提交
18
#include "paddle/fluid/framework/data_type.h"
19
#include "paddle/phi/kernels/funcs/math_function.h"
20

21
namespace phi {
22
namespace funcs {
23

24
using paddle::framework::To32BitIndex;
25

Q
QI JUN 已提交
26
template <typename DeviceContext, typename T>
27 28
void SetConstant<DeviceContext, T>::operator()(
    const DeviceContext& context, paddle::framework::Tensor* tensor, T num) {
29 30
  bool xpu_place = false;
#ifdef PADDLE_WITH_XPU
31
  if (paddle::platform::is_xpu_place(context.GetPlace())) {
32
    xpu_place = true;
33
    phi::VisitDataType(
34
        tensor->dtype(),
35
        TensorSetConstantXPU<T>(tensor, num, context.GetPlace()));
36 37 38
  }
#endif
  if (!xpu_place) {
39
    auto t = paddle::framework::EigenVector<T>::Flatten(*tensor);
40 41
    t.device(*context.eigen_device()) = t.constant(static_cast<T>(num));
  }
42 43
}

Q
QI JUN 已提交
44 45
template <typename DeviceContext, typename T, int Rank>
void Transpose<DeviceContext, T, Rank>::operator()(
46 47 48 49
    const DeviceContext& context,
    const paddle::framework::Tensor& in,
    paddle::framework::Tensor* out,
    const std::vector<int>& axis) {
50 51 52 53
  Eigen::array<int, Rank> permute;
  for (int i = 0; i < Rank; i++) {
    permute[i] = axis[i];
  }
54 55
  auto eigen_in = paddle::framework::EigenTensor<T, Rank>::From(in);
  auto eigen_out = paddle::framework::EigenTensor<T, Rank>::From(*out);
Q
QI JUN 已提交
56
  auto* dev = context.eigen_device();
57 58
  // use 32bit index to speed up computation
  bool use_32bit_index = eigen_out.size() < Eigen::NumTraits<int>::highest();
59
  bool is_gpu_place = paddle::platform::is_gpu_place(context.GetPlace());
60 61 62 63 64 65
  if (use_32bit_index && is_gpu_place) {
    To32BitIndex(eigen_out).device(*dev) =
        To32BitIndex(eigen_in).shuffle(permute);
  } else {
    eigen_out.device(*dev) = eigen_in.shuffle(permute);
  }
66
}
67

Q
QI JUN 已提交
68
template <typename DeviceContext, typename T>
69 70 71 72
void ColwiseSum<DeviceContext, T>::operator()(
    const DeviceContext& context,
    const paddle::framework::Tensor& input,
    paddle::framework::Tensor* out) {
73 74
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
75 76
  PADDLE_ENFORCE_EQ(out->numel(),
                    size,
77
                    phi::errors::InvalidArgument(
78 79 80
                        "The size of output tensor "
                        "should be equal to the size of input tensor column"
                        " dimension. Expected output size=%d, but received %d",
81 82
                        size,
                        out->numel()));
83

84 85
  auto in = paddle::framework::EigenMatrix<T>::From(input);
  auto vec = paddle::framework::EigenVector<T>::Flatten(*out);
Y
Yu Yang 已提交
86 87

  vec.device(*context.eigen_device()) = in.sum(Eigen::array<int, 1>({{0}}));
88
}
89

Y
Yu Yang 已提交
90 91 92 93
// Specialize for CPU, since Eigen implement a general reduce. However,
// colwise-sum can be easily implemented. General reduce has a huge overhead in
// CPU
template <typename T>
94
class ColwiseSum<paddle::platform::CPUDeviceContext, T> {
Y
Yu Yang 已提交
95
 public:
96 97 98
  void operator()(const paddle::platform::CPUDeviceContext& context,
                  const paddle::framework::Tensor& input,
                  paddle::framework::Tensor* out) {
Y
Yu Yang 已提交
99 100 101
    auto& in_dims = input.dims();
    auto height = in_dims[0];
    auto size = in_dims[1];
102
    PADDLE_ENFORCE_EQ(
103 104
        out->numel(),
        size,
105
        phi::errors::InvalidArgument(
106 107 108
            "The size of output tensor "
            "should be equal to the size of input tensor column"
            " dimension. Expected output size=%d, but received %d",
109 110
            size,
            out->numel()));
Y
Yu Yang 已提交
111 112 113 114

    T* out_buf = out->mutable_data<T>(out->place());
    const T* in_buf = input.data<T>();

Q
qiaolongfei 已提交
115 116
    for (size_t i = 0; i < static_cast<size_t>(height); ++i) {
      for (size_t j = 0; j < static_cast<size_t>(size); ++j) {
Y
Yu Yang 已提交
117 118 119 120 121 122 123 124 125 126
        if (i == 0) {
          out_buf[j] = in_buf[i * size + j];
        } else {
          out_buf[j] += in_buf[i * size + j];
        }
      }
    }
  }
};

C
chengduoZH 已提交
127
template <typename DeviceContext, typename T>
128 129 130 131
void RowwiseMean<DeviceContext, T>::operator()(
    const DeviceContext& context,
    const paddle::framework::Tensor& input,
    paddle::framework::Tensor* out) {
C
chengduoZH 已提交
132
  auto in_dims = input.dims();
133 134 135 136 137
  PADDLE_ENFORCE_EQ(in_dims.size(),
                    2U,
                    phi::errors::InvalidArgument("The rank of input tensor "
                                                 "should be 2, but received %d",
                                                 in_dims.size()));
138 139
  PADDLE_ENFORCE_EQ(out->numel(),
                    in_dims[0],
140
                    phi::errors::InvalidArgument(
141 142 143
                        "The size of output tensor "
                        "should be equal to the size of input tensor row"
                        " dimension. Expected output size=%d, but received %d",
144 145
                        in_dims[0],
                        out->numel()));
C
chengduoZH 已提交
146

147 148
  auto in = paddle::framework::EigenMatrix<T>::From(input);
  auto vec = paddle::framework::EigenVector<T>::Flatten(*out);
C
chengduoZH 已提交
149 150 151 152 153 154 155 156

  vec.device(*context.eigen_device()) = in.mean(Eigen::array<int, 1>({{1}}));
}
// TODO(zcd): Following ColwiseSum format, need to confirm.
// Specialize for CPU, since Eigen implement a general reduce. However,
// rowwise-sum can be easily implemented. General reduce has a huge overhead in
// CPU
template <typename T>
157
class RowwiseMean<paddle::platform::CPUDeviceContext, T> {
C
chengduoZH 已提交
158
 public:
159 160 161
  void operator()(const paddle::platform::CPUDeviceContext& context,
                  const paddle::framework::Tensor& input,
                  paddle::framework::Tensor* out) {
C
chengduoZH 已提交
162
    auto& in_dims = input.dims();
163 164 165 166 167 168
    PADDLE_ENFORCE_EQ(
        in_dims.size(),
        2U,
        phi::errors::InvalidArgument("The rank of input tensor "
                                     "should be 2, but received %d",
                                     in_dims.size()));
C
chengduoZH 已提交
169 170
    auto height = in_dims[0];
    auto size = in_dims[1];
171
    PADDLE_ENFORCE_EQ(
172 173
        out->numel(),
        height,
174
        phi::errors::InvalidArgument(
175 176 177
            "The size of output tensor "
            "should be equal to the size of input tensor row"
            " dimension. Expected output size=%d, but received %d",
178 179
            height,
            out->numel()));
C
chengduoZH 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    auto inv_size = 1.0 / size;
    T* out_buf = out->mutable_data<T>(out->place());
    const T* in_buf = input.data<T>();

    for (size_t i = 0; i < static_cast<size_t>(height); ++i) {
      T sum = 0;
      for (size_t j = 0; j < static_cast<size_t>(size); ++j) {
        sum += in_buf[i * size + j];
      }
      out_buf[i] = sum * inv_size;
    }
  }
};

template <typename DeviceContext, typename T>
195 196 197 198
void RowwiseSum<DeviceContext, T>::operator()(
    const DeviceContext& context,
    const paddle::framework::Tensor& input,
    paddle::framework::Tensor* out) {
C
chengduoZH 已提交
199
  auto in_dims = input.dims();
200 201 202 203 204
  PADDLE_ENFORCE_EQ(in_dims.size(),
                    2U,
                    phi::errors::InvalidArgument("The rank of input tensor "
                                                 "should be 2, but received %d",
                                                 in_dims.size()));
205 206
  PADDLE_ENFORCE_EQ(out->numel(),
                    in_dims[0],
207
                    phi::errors::InvalidArgument(
208 209 210
                        "The size of output tensor "
                        "should be equal to the size of input tensor row"
                        " dimension. Expected output size=%d, but received %d",
211 212
                        in_dims[0],
                        out->numel()));
C
chengduoZH 已提交
213

214 215
  auto in = paddle::framework::EigenMatrix<T>::From(input);
  auto vec = paddle::framework::EigenVector<T>::Flatten(*out);
C
chengduoZH 已提交
216 217 218 219 220 221 222 223

  vec.device(*context.eigen_device()) = in.sum(Eigen::array<int, 1>({{1}}));
}
// TODO(zcd): Following ColwiseSum format, need to confirm.
// Specialize for CPU, since Eigen implement a general reduce. However,
// rowwise-sum can be easily implemented. General reduce has a huge overhead in
// CPU
template <typename T>
224
class RowwiseSum<paddle::platform::CPUDeviceContext, T> {
C
chengduoZH 已提交
225
 public:
226 227 228
  void operator()(const paddle::platform::CPUDeviceContext& context,
                  const paddle::framework::Tensor& input,
                  paddle::framework::Tensor* out) {
C
chengduoZH 已提交
229
    auto& in_dims = input.dims();
230 231 232 233 234 235
    PADDLE_ENFORCE_EQ(
        in_dims.size(),
        2U,
        phi::errors::InvalidArgument("The rank of input tensor "
                                     "should be 2, but received %d",
                                     in_dims.size()));
C
chengduoZH 已提交
236 237
    auto height = in_dims[0];
    auto size = in_dims[1];
238
    PADDLE_ENFORCE_EQ(
239 240
        out->numel(),
        height,
241
        phi::errors::InvalidArgument(
242 243 244
            "The size of output tensor "
            "should be equal to the size of input tensor row"
            " dimension. Expected output size=%d, but received %d",
245 246
            height,
            out->numel()));
C
chengduoZH 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260

    T* out_buf = out->mutable_data<T>(out->place());
    const T* in_buf = input.data<T>();

    for (size_t i = 0; i < static_cast<size_t>(height); ++i) {
      T sum = 0;
      for (size_t j = 0; j < static_cast<size_t>(size); ++j) {
        sum += in_buf[i * size + j];
      }
      out_buf[i] = sum;
    }
  }
};

261
}  // namespace funcs
262
}  // namespace phi