gru_op.cc 23.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/gru_op.h"
16

17
#include <memory>
18
#include <string>
19

20
#include "paddle/phi/kernels/funcs/blas/blas.h"
F
Feiyu Chan 已提交
21 22
#include "paddle/phi/kernels/funcs/detail/gru_cpu_kernel.h"
#include "paddle/phi/kernels/funcs/detail/gru_kernel.h"
T
tensor-tang 已提交
23 24

DECLARE_int32(paddle_num_threads);
G
guosheng 已提交
25 26 27 28 29 30 31 32 33 34 35

namespace paddle {
namespace operators {

using framework::Tensor;

class GRUOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
36 37 38
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "GRU");
    OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "GRU");
    OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "GRU");
39 40 41
    bool is_test = ctx->Attrs().Get<bool>("is_test");
    if (!is_test) {
      OP_INOUT_CHECK(ctx->HasOutput("BatchGate"), "Output", "BatchGate", "GRU");
42 43 44
      OP_INOUT_CHECK(ctx->HasOutput("BatchResetHiddenPrev"),
                     "Output",
                     "BatchResetHiddenPrev",
45
                     "GRU");
46 47
      OP_INOUT_CHECK(
          ctx->HasOutput("BatchHidden"), "Output", "BatchHidden", "GRU");
48
    }
G
guosheng 已提交
49 50 51 52
    auto input_dims = ctx->GetInputDim("Input");
    auto weight_dims = ctx->GetInputDim("Weight");
    int input_size = input_dims[1];
    int frame_size = weight_dims[0];
53
    if (ctx->IsRuntime()) {
54 55
      PADDLE_ENFORCE_EQ(input_size,
                        frame_size * 3,
56 57 58 59
                        platform::errors::InvalidArgument(
                            "The second dimension of Input(Input) must be 3 "
                            "times of frame_size in GRUOp, but received %d "
                            "(Input) vs %d (frame_size).",
60 61
                            input_size,
                            frame_size));
62
    }
G
guosheng 已提交
63
    PADDLE_ENFORCE_EQ(
64 65
        weight_dims[1],
        frame_size * 3,
66 67 68
        platform::errors::InvalidArgument(
            "The shape of Input(Weight) matrix must be [frame_size, frame_size "
            "* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).",
69 70 71 72
            weight_dims[0],
            weight_dims[1],
            frame_size,
            frame_size * 3));
73
    if (ctx->HasInput("H0")) {
G
guosheng 已提交
74
      auto h0_dims = ctx->GetInputDim("H0");
75
      PADDLE_ENFORCE_EQ(
76 77
          h0_dims[1],
          frame_size,
78 79 80
          platform::errors::InvalidArgument(
              "The width of Input(H0) must be equal to frame_size, but "
              "received %d (width of H0) vs %d (frame_size).",
81 82
              h0_dims[1],
              frame_size));
G
guosheng 已提交
83
    }
84
    if (ctx->HasInput("Bias")) {
G
guosheng 已提交
85 86 87
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
88
      PADDLE_ENFORCE_EQ(
89 90
          bias_height,
          1,
91 92 93
          platform::errors::InvalidArgument(
              "The shape of Bias must be [1, frame_size * 3], but received "
              "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
94 95 96
              bias_height,
              bias_width,
              frame_size * 3));
97
      PADDLE_ENFORCE_EQ(
98 99
          bias_width,
          frame_size * 3,
100 101 102
          platform::errors::InvalidArgument(
              "The shape of Bias must be [1, frame_size * 3], but received "
              "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
103 104 105
              bias_height,
              bias_width,
              frame_size * 3));
G
guosheng 已提交
106
    }
107 108 109 110 111
    if (!is_test) {
      ctx->SetOutputDim("BatchGate", input_dims);
      ctx->SetOutputDim("BatchResetHiddenPrev", {input_dims[0], frame_size});
      ctx->SetOutputDim("BatchHidden", {input_dims[0], frame_size});
    }
G
guosheng 已提交
112 113 114 115 116 117 118
    ctx->SetOutputDim("Hidden", {input_dims[0], frame_size});
    ctx->ShareLoD("Input", "Hidden");
  }
};

class GRUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
119
  void Make() override {
G
guosheng 已提交
120
    AddInput("Input",
121
             "(LoDTensor) The first input is a LodTensor, which supports "
G
guosheng 已提交
122 123 124 125
             "variable-time length input sequence. The underlying tensor in "
             "this LoDTenosr is a matrix with shape (T X 3D), where, T is the "
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
126
             "(Tensor, optional) The initial hidden state is an optional "
G
guosheng 已提交
127
             "input. This is a tensor with shape (N x D), where N is the "
128 129
             "batch size, D is the hidden size.")
        .AsDispensable();
G
guosheng 已提交
130 131
    AddInput(
        "Weight",
132 133 134 135 136
        "(Tensor) The learnable hidden-hidden weight matrix with shape "
        "(D x 3D), where D is the hidden size. The elements continuous in "
        "memory can be divided into two parts. The first part are weights of "
        "the update gate and reset gate with shape (D x 2D), and the second "
        "part are weights of output candidate with shape (D x D).");
G
guosheng 已提交
137
    AddInput("Bias",
138 139 140
             "(Tensor, optional) Bias vector with shape (1 x 3D) concating "
             "bias of the update gate, reset gate and output candidate.")
        .AsDispensable();
G
guosheng 已提交
141
    AddOutput("BatchGate",
142 143 144 145 146 147 148
              "(LoDTensor) To compute with batches, sequence data will be "
              "reorganized into several successive batches each containing "
              "data from the same time step. The LoDTensor BatchGate contains "
              "the update gate, reset gate and output candidate values "
              "organized in batches. The LoD size is 2. The first LoD contains "
              "the batch offsets and the second LoD contains the indexes in "
              "the raw sequence data.")
149 150
        .AsIntermediate()
        .AsExtra();
G
guosheng 已提交
151 152
    AddOutput(
        "BatchResetHiddenPrev",
T
tianshuo78520a 已提交
153
        "(LoDTensor) The reset hidden state LoDTensor organized in batches. "
154 155
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.")
156 157
        .AsIntermediate()
        .AsExtra();
G
guosheng 已提交
158 159
    AddOutput(
        "BatchHidden",
160 161 162
        "(LoDTensor) The hidden state LoDTensor organized in batches.  "
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.")
163 164
        .AsIntermediate()
        .AsExtra();
165 166 167 168 169
    AddOutput(
        "Hidden",
        "(LoDTensor) the hidden state LoDTensor organized in sequences. "
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.");
G
guosheng 已提交
170 171 172 173 174 175 176 177 178 179
    AddAttr<std::string>("activation",
                         "(string, default tanh) "
                         "The activation type used for output candidate {h}_t.")
        .SetDefault("tanh");
    AddAttr<std::string>(
        "gate_activation",
        "(string, default sigmoid) "
        "The activation type used in update gate and reset gate.")
        .SetDefault("sigmoid");
    AddAttr<bool>("is_reverse",
翟飞跃 已提交
180
                  "(bool, default: False) "
G
guosheng 已提交
181 182
                  "whether to compute reversed GRU.")
        .SetDefault(false);
183 184 185
    AddAttr<bool>("is_test", "True if in test phase.")
        .SetDefault(false)
        .AsExtra();
Q
Qiao Longfei 已提交
186 187 188 189
    AddAttr<bool>("origin_mode",
                  "bool"
                  "use origin mode in article https://arxiv.org/abs/1412.3555")
        .SetDefault(false);
G
guosheng 已提交
190
    AddComment(R"DOC(
191 192
GRU Operator implements part calculations of the complete GRU as following:

K
kavyasrinet 已提交
193 194 195 196
$$
update\_gate: u_t = actGate(xu_t + W_u * h_{t-1} + b_u) \\
reset\_gate: r_t = actGate(xr_t + W_r * h_{t-1} + b_r)  \\
output\_candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h_{t-1}) + b_c) \\
197
output: h_t = dot((1 - u_t), h_{t-1}) + dot(u_t, {h}_t)
K
kavyasrinet 已提交
198
$$
199

K
kavyasrinet 已提交
200
@note To implement the complete GRU, fully-connected operator must be used
201
before to feed xu, xr and xc as the Input of GRU operator.
G
guosheng 已提交
202 203 204 205 206 207 208 209 210
)DOC");
  }
};

class GRUGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
211 212
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "GRU@Grad");
    OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "GRU@Grad");
213 214 215 216 217
    OP_INOUT_CHECK(
        ctx->HasInput("BatchGate"), "Input", "BatchGate", "GRU@Grad");
    OP_INOUT_CHECK(ctx->HasInput("BatchResetHiddenPrev"),
                   "Input",
                   "BatchResetHiddenPrev",
218
                   "GRU@Grad");
219 220
    OP_INOUT_CHECK(
        ctx->HasInput("BatchHidden"), "Input", "BatchHidden", "GRU@Grad");
221
    OP_INOUT_CHECK(ctx->HasInput("Hidden"), "Input", "Hidden", "GRU@Grad");
222 223 224 225
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Hidden")),
                   "Input",
                   framework::GradVarName("Hidden"),
                   "GRU@Grad");
226

G
guosheng 已提交
227 228 229 230 231 232
    auto input_dims = ctx->GetInputDim("Input");
    auto weight_dims = ctx->GetInputDim("Weight");
    int input_size = input_dims[1];
    int frame_size = weight_dims[0];
    int weight_height = weight_dims[0];
    int weight_width = weight_dims[1];
233
    PADDLE_ENFORCE_EQ(
234 235
        input_size,
        frame_size * 3,
236 237 238
        platform::errors::InvalidArgument(
            "The second dimension of Input(Input) must be 3 times of "
            "frame_size in GRUOp, but received %d (Input) vs %d (frame_size).",
239 240
            input_size,
            frame_size));
G
guosheng 已提交
241
    PADDLE_ENFORCE_EQ(
242 243
        weight_height,
        frame_size,
244 245 246
        platform::errors::InvalidArgument(
            "The shape of Input(Weight) matrix must be [frame_size, frame_size "
            "* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).",
247 248 249 250
            weight_height,
            weight_width,
            frame_size,
            frame_size * 3));
G
guosheng 已提交
251
    PADDLE_ENFORCE_EQ(
252 253
        weight_width,
        frame_size * 3,
254 255 256
        platform::errors::InvalidArgument(
            "The shape of Input(Weight) matrix must be [frame_size, frame_size "
            "* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).",
257 258 259 260
            weight_height,
            weight_width,
            frame_size,
            frame_size * 3));
261
    if (ctx->HasInput("H0")) {
G
guosheng 已提交
262
      auto h0_dims = ctx->GetInputDim("H0");
263
      PADDLE_ENFORCE_EQ(
264 265
          h0_dims[1],
          frame_size,
266 267 268
          platform::errors::InvalidArgument(
              "The width of Input(H0) must be equal to frame_size, but "
              "received %d (width of H0) vs %d (frame_size).",
269 270
              h0_dims[1],
              frame_size));
G
guosheng 已提交
271 272 273 274
      auto h0_grad_name = framework::GradVarName("H0");
      if (ctx->HasOutput(h0_grad_name))
        ctx->SetOutputDim(h0_grad_name, h0_dims);
    }
275
    if (ctx->HasInput("Bias")) {
G
guosheng 已提交
276 277 278
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
279
      PADDLE_ENFORCE_EQ(
280 281
          bias_height,
          1,
282 283 284
          platform::errors::InvalidArgument(
              "The shape of Bias must be [1, frame_size * 3], but received "
              "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
285 286 287
              bias_height,
              bias_width,
              frame_size * 3));
288
      PADDLE_ENFORCE_EQ(
289 290
          bias_width,
          frame_size * 3,
291 292 293
          platform::errors::InvalidArgument(
              "The shape of Bias must be [1, frame_size * 3], but received "
              "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
294 295 296
              bias_height,
              bias_width,
              frame_size * 3));
G
guosheng 已提交
297 298 299 300 301 302 303 304 305 306 307
      auto bias_grad_name = framework::GradVarName("Bias");
      if (ctx->HasOutput(bias_grad_name))
        ctx->SetOutputDim(bias_grad_name, bias_dims);
    }
    auto input_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(input_grad_name))
      ctx->SetOutputDim(input_grad_name, input_dims);
    auto weight_grad_name = framework::GradVarName("Weight");
    if (ctx->HasOutput(weight_grad_name))
      ctx->SetOutputDim(weight_grad_name, weight_dims);
  }
308 309 310 311 312 313 314

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Hidden")),
                                   ctx.device_context());
  }
G
guosheng 已提交
315 316
};

317 318 319 320 321
template <typename T>
class GRUCPUKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
322 323 324
    using LodTensorPtr = LoDTensor*;
    bool is_test = context.Attr<bool>("is_test");

Q
Qiao Longfei 已提交
325
    bool origin_mode = context.Attr<bool>("origin_mode");
326 327 328 329 330 331 332 333
    auto* input = context.Input<LoDTensor>("Input");
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* bias = context.Input<Tensor>("Bias");
    auto* hidden = context.Output<LoDTensor>("Hidden");
    hidden->mutable_data<T>(context.GetPlace());

334
    auto input_dims = input->dims();
335 336
    auto hidden_dims = hidden->dims();

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    LodTensorPtr batch_gate, batch_reset_hidden_prev, batch_hidden;
    LoDTensor batch_gate_tmp, batch_reset_hidden_prev_tmp, batch_hidden_tmp;
    if (is_test) {
      batch_gate = &batch_gate_tmp;
      batch_gate->Resize(input_dims);

      batch_reset_hidden_prev = &batch_reset_hidden_prev_tmp;
      batch_reset_hidden_prev->Resize(hidden_dims);

      batch_hidden = &batch_hidden_tmp;
      batch_hidden->Resize(hidden_dims);
    } else {
      batch_gate = context.Output<LoDTensor>("BatchGate");
      batch_hidden = context.Output<LoDTensor>("BatchHidden");
      batch_reset_hidden_prev =
          context.Output<LoDTensor>("BatchResetHiddenPrev");
    }
    batch_gate->mutable_data<T>(context.GetPlace());
    batch_reset_hidden_prev->mutable_data<T>(context.GetPlace());
    batch_hidden->mutable_data<T>(context.GetPlace());

358
    bool is_reverse = context.Attr<bool>("is_reverse");
F
Feiyu Chan 已提交
359
    phi::funcs::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
360 361 362 363
    auto& dev_ctx = context.template device_context<DeviceContext>();
    to_batch(dev_ctx, *input, batch_gate, true, is_reverse);

    if (bias) {
364
      phi::funcs::RowwiseAdd<DeviceContext, T> add_bias;
365 366 367 368
      add_bias(dev_ctx, *batch_gate, *bias, batch_gate);
    }

    int frame_size = hidden_dims[1];
F
Feiyu Chan 已提交
369
    phi::funcs::GRUMetaValue<T> gru_value;
370 371 372 373 374 375 376 377 378 379 380 381
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);
    Tensor ordered_h0;

    framework::Vector<size_t> order(batch_gate->lod()[2]);

    if (h0) {
      // Since the batch computing for GRU reorders the input sequences
      // according to their length. The initialized cell state also needs
      // to reorder.
      ReorderInitState<DeviceContext, T>(
382 383 384 385 386
          context.template device_context<DeviceContext>(),
          *h0,
          order,
          &ordered_h0,
          true);
387 388 389 390 391
      gru_value.prev_out_value = ordered_h0.data<T>();
    } else {
      gru_value.prev_out_value = nullptr;
    }
    auto batch_starts = batch_gate->lod()[0];
T
tensor-tang 已提交
392
    size_t seq_len = batch_starts.size() - 1;
F
Feiyu Chan 已提交
393
    auto active_node = phi::funcs::detail::GetActivationType(
394
        context.Attr<std::string>("activation"));
F
Feiyu Chan 已提交
395
    auto active_gate = phi::funcs::detail::GetActivationType(
396 397 398
        context.Attr<std::string>("gate_activation"));

#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
399
    // use MKL packed to speedup GEMM
T
tensor-tang 已提交
400
    if (FLAGS_paddle_num_threads >= 4) {
401
      auto blas = phi::funcs::GetBlas<DeviceContext, T>(dev_ctx);
402 403
      T* packed_gate = blas.GEMM_ALLOC(CblasBMatrix,
                                       1 /*height of C*/,
T
tensor-tang 已提交
404 405
                                       frame_size * 2 /*width of weight*/,
                                       frame_size /*height of height*/);
406
      PADDLE_ENFORCE_NOT_NULL(
407 408 409 410 411 412 413 414 415 416 417 418
          packed_gate,
          platform::errors::NotFound(
              "The caculation result of packed_gate by "
              "GEMM_ALLOC should not be null when using MKL."));
      blas.GEMM_PACK(CblasBMatrix,
                     CblasNoTrans,
                     1 /*cur bs?*/,
                     frame_size * 2,
                     frame_size,
                     T(1.0),
                     gru_value.gate_weight,
                     frame_size * 2,
T
tensor-tang 已提交
419
                     packed_gate);
420 421
      T* packed_state = blas.GEMM_ALLOC(CblasBMatrix,
                                        1 /*height of C*/,
T
tensor-tang 已提交
422 423
                                        frame_size /*width of weight*/,
                                        frame_size /*height of height*/);
424
      PADDLE_ENFORCE_NOT_NULL(
425 426 427 428 429 430 431 432 433 434 435 436
          packed_state,
          platform::errors::NotFound(
              "The caculation result of packed_state by "
              "GEMM_ALLOC should not be null when using MKL."));
      blas.GEMM_PACK(CblasBMatrix,
                     CblasNoTrans,
                     1 /*cur bs?*/,
                     frame_size,
                     frame_size,
                     T(1.0),
                     gru_value.state_weight,
                     frame_size,
T
tensor-tang 已提交
437 438 439 440 441
                     packed_state);
      for (size_t n = 0; n < seq_len; n++) {
        int bstart = static_cast<int>(batch_starts[n]);
        int bend = static_cast<int>(batch_starts[n + 1]);
        int cur_batch_size = bend - bstart;
442

T
tensor-tang 已提交
443 444 445 446 447 448 449
        Tensor gate_t = batch_gate->Slice(bstart, bend);
        Tensor reset_hidden_prev_t =
            batch_reset_hidden_prev->Slice(bstart, bend);
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
        gru_value.output_value = hidden_t.data<T>();
        gru_value.gate_value = gate_t.data<T>();
        gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
450

T
tensor-tang 已提交
451
        if (gru_value.prev_out_value) {
452 453 454 455 456 457 458 459 460 461 462 463
          blas.GEMM_COMPUTE(CblasNoTrans,
                            CblasPacked,
                            cur_batch_size,
                            frame_size * 2,
                            frame_size,
                            gru_value.prev_out_value,
                            frame_size,
                            packed_gate,
                            frame_size * 2,
                            T(1),
                            gru_value.gate_value,
                            frame_size * 3);
T
tensor-tang 已提交
464
        }
465

466
        phi::funcs::detail::forward_reset_output<DeviceContext>(
467 468 469 470 471
            phi::funcs::detail::forward::gru_resetOutput<T>(),
            gru_value,
            frame_size,
            cur_batch_size,
            active_gate);
T
tensor-tang 已提交
472 473

        if (gru_value.prev_out_value) {
474 475 476 477 478 479 480 481 482 483 484 485
          blas.GEMM_COMPUTE(CblasNoTrans,
                            CblasPacked,
                            cur_batch_size,
                            frame_size,
                            frame_size,
                            gru_value.reset_output_value,
                            frame_size,
                            packed_state,
                            frame_size,
                            T(1),
                            gru_value.gate_value + frame_size * 2,
                            frame_size * 3);
T
tensor-tang 已提交
486 487
        }

488
        phi::funcs::detail::forward_final_output<DeviceContext>(
489 490 491 492 493 494
            phi::funcs::detail::forward::gru_finalOutput<T>(),
            gru_value,
            frame_size,
            cur_batch_size,
            active_node,
            origin_mode);
T
tensor-tang 已提交
495 496

        gru_value.prev_out_value = gru_value.output_value;
497 498
      }

T
tensor-tang 已提交
499 500 501
      blas.GEMM_FREE(packed_gate);
      blas.GEMM_FREE(packed_state);
    } else {
502
#endif
T
tensor-tang 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515
      for (size_t n = 0; n < seq_len; n++) {
        int bstart = static_cast<int>(batch_starts[n]);
        int bend = static_cast<int>(batch_starts[n + 1]);
        int cur_batch_size = bend - bstart;

        Tensor gate_t = batch_gate->Slice(bstart, bend);
        Tensor reset_hidden_prev_t =
            batch_reset_hidden_prev->Slice(bstart, bend);
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
        gru_value.output_value = hidden_t.data<T>();
        gru_value.gate_value = gate_t.data<T>();
        gru_value.reset_output_value = reset_hidden_prev_t.data<T>();

516 517 518 519 520 521 522
        phi::funcs::GRUUnitFunctor<DeviceContext, T>::compute(dev_ctx,
                                                              gru_value,
                                                              frame_size,
                                                              cur_batch_size,
                                                              active_node,
                                                              active_gate,
                                                              origin_mode);
T
tensor-tang 已提交
523 524 525

        gru_value.prev_out_value = gru_value.output_value;
      }
526
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
527
    }
528
#endif
F
Feiyu Chan 已提交
529
    phi::funcs::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
530 531 532 533 534 535 536 537 538
    batch_hidden->set_lod(batch_gate->lod());
    to_seq(dev_ctx, *batch_hidden, hidden);
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

539 540 541 542 543 544
template <typename T>
class GRUGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
545
  void Apply(GradOpPtr<T> grad_op) const override {
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
    grad_op->SetType("gru_grad");
    grad_op->SetInput("Input", this->Input("Input"));
    grad_op->SetInput("H0", this->Input("H0"));
    grad_op->SetInput("Bias", this->Input("Bias"));
    grad_op->SetInput("Weight", this->Input("Weight"));

    grad_op->SetInput("BatchGate", this->Output("BatchGate"));
    grad_op->SetInput("BatchResetHiddenPrev",
                      this->Output("BatchResetHiddenPrev"));
    grad_op->SetInput("BatchHidden", this->Output("BatchHidden"));
    grad_op->SetInput("Hidden", this->Output("Hidden"));

    grad_op->SetInput(framework::GradVarName("Hidden"),
                      this->OutputGrad("Hidden"));

    grad_op->SetOutput(framework::GradVarName("H0"), this->InputGrad("H0"));
    grad_op->SetOutput(framework::GradVarName("Input"),
                       this->InputGrad("Input"));
    grad_op->SetOutput(framework::GradVarName("Weight"),
                       this->InputGrad("Weight"));
    grad_op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));

    grad_op->SetAttrMap(this->Attrs());
  }
};

572 573
DECLARE_NO_NEED_BUFFER_VARS_INFERER(GRUGradOpNoNeedBufferVarInferer,
                                    "Input",
574
                                    "Bias");
575

G
guosheng 已提交
576 577 578 579
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
580 581 582
REGISTER_OPERATOR(gru,
                  ops::GRUOp,
                  ops::GRUOpMaker,
583 584
                  ops::GRUGradOpMaker<paddle::framework::OpDesc>,
                  ops::GRUGradOpMaker<paddle::imperative::OpBase>);
585 586
REGISTER_OPERATOR(gru_grad,
                  ops::GRUGradOp,
587
                  ops::GRUGradOpNoNeedBufferVarInferer);
588 589
REGISTER_OP_CPU_KERNEL(gru,
                       ops::GRUCPUKernel<float>,
590
                       ops::GRUCPUKernel<double>);
Q
QI JUN 已提交
591
REGISTER_OP_CPU_KERNEL(
592 593
    gru_grad,
    ops::GRUGradKernel<paddle::platform::CPUDeviceContext, float>,
Q
QI JUN 已提交
594
    ops::GRUGradKernel<paddle::platform::CPUDeviceContext, double>);