gru_op.cc 20.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/gru_op.h"
16
#include <memory>
17
#include <string>
T
tensor-tang 已提交
18 19 20 21 22
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"

DECLARE_int32(paddle_num_threads);
G
guosheng 已提交
23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

using framework::Tensor;

class GRUOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
34 35 36 37 38 39 40 41 42
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "GRU");
    OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "GRU");
    OP_INOUT_CHECK(ctx->HasOutput("BatchGate"), "Output", "BatchGate", "GRU");
    OP_INOUT_CHECK(ctx->HasOutput("BatchResetHiddenPrev"), "Output",
                   "BatchResetHiddenPrev", "GRU");
    OP_INOUT_CHECK(ctx->HasOutput("BatchHidden"), "Output", "BatchHidden",
                   "GRU");
    OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "GRU");

G
guosheng 已提交
43 44 45 46
    auto input_dims = ctx->GetInputDim("Input");
    auto weight_dims = ctx->GetInputDim("Weight");
    int input_size = input_dims[1];
    int frame_size = weight_dims[0];
47
    if (ctx->IsRuntime()) {
48 49 50 51 52 53
      PADDLE_ENFORCE_EQ(input_size, frame_size * 3,
                        platform::errors::InvalidArgument(
                            "The second dimension of Input(Input) must be 3 "
                            "times of frame_size in GRUOp, but received %d "
                            "(Input) vs %d (frame_size).",
                            input_size, frame_size));
54
    }
G
guosheng 已提交
55 56
    PADDLE_ENFORCE_EQ(
        weight_dims[1], frame_size * 3,
57 58 59 60
        platform::errors::InvalidArgument(
            "The shape of Input(Weight) matrix must be [frame_size, frame_size "
            "* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).",
            weight_dims[0], weight_dims[1], frame_size, frame_size * 3));
61
    if (ctx->HasInput("H0")) {
G
guosheng 已提交
62
      auto h0_dims = ctx->GetInputDim("H0");
63 64 65 66 67 68
      PADDLE_ENFORCE_EQ(
          h0_dims[1], frame_size,
          platform::errors::InvalidArgument(
              "The width of Input(H0) must be equal to frame_size, but "
              "received %d (width of H0) vs %d (frame_size).",
              h0_dims[1], frame_size));
G
guosheng 已提交
69
    }
70
    if (ctx->HasInput("Bias")) {
G
guosheng 已提交
71 72 73
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
74 75 76 77 78 79 80 81 82 83 84 85
      PADDLE_ENFORCE_EQ(
          bias_height, 1,
          platform::errors::InvalidArgument(
              "The shape of Bias must be [1, frame_size * 3], but received "
              "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
              bias_height, bias_width, frame_size * 3));
      PADDLE_ENFORCE_EQ(
          bias_width, frame_size * 3,
          platform::errors::InvalidArgument(
              "The shape of Bias must be [1, frame_size * 3], but received "
              "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
              bias_height, bias_width, frame_size * 3));
G
guosheng 已提交
86 87 88 89 90 91 92 93 94 95 96
    }
    ctx->SetOutputDim("BatchGate", input_dims);
    ctx->SetOutputDim("BatchResetHiddenPrev", {input_dims[0], frame_size});
    ctx->SetOutputDim("BatchHidden", {input_dims[0], frame_size});
    ctx->SetOutputDim("Hidden", {input_dims[0], frame_size});
    ctx->ShareLoD("Input", "Hidden");
  }
};

class GRUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
97
  void Make() override {
G
guosheng 已提交
98
    AddInput("Input",
99
             "(LoDTensor) The first input is a LodTensor, which supports "
G
guosheng 已提交
100 101 102 103
             "variable-time length input sequence. The underlying tensor in "
             "this LoDTenosr is a matrix with shape (T X 3D), where, T is the "
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
104
             "(Tensor, optional) The initial hidden state is an optional "
G
guosheng 已提交
105
             "input. This is a tensor with shape (N x D), where N is the "
106 107
             "batch size, D is the hidden size.")
        .AsDispensable();
G
guosheng 已提交
108 109
    AddInput(
        "Weight",
110 111 112 113 114
        "(Tensor) The learnable hidden-hidden weight matrix with shape "
        "(D x 3D), where D is the hidden size. The elements continuous in "
        "memory can be divided into two parts. The first part are weights of "
        "the update gate and reset gate with shape (D x 2D), and the second "
        "part are weights of output candidate with shape (D x D).");
G
guosheng 已提交
115
    AddInput("Bias",
116 117 118
             "(Tensor, optional) Bias vector with shape (1 x 3D) concating "
             "bias of the update gate, reset gate and output candidate.")
        .AsDispensable();
G
guosheng 已提交
119
    AddOutput("BatchGate",
120 121 122 123 124 125 126
              "(LoDTensor) To compute with batches, sequence data will be "
              "reorganized into several successive batches each containing "
              "data from the same time step. The LoDTensor BatchGate contains "
              "the update gate, reset gate and output candidate values "
              "organized in batches. The LoD size is 2. The first LoD contains "
              "the batch offsets and the second LoD contains the indexes in "
              "the raw sequence data.")
G
guosheng 已提交
127 128 129
        .AsIntermediate();
    AddOutput(
        "BatchResetHiddenPrev",
T
tianshuo78520a 已提交
130
        "(LoDTensor) The reset hidden state LoDTensor organized in batches. "
131 132
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.")
G
guosheng 已提交
133 134 135
        .AsIntermediate();
    AddOutput(
        "BatchHidden",
136 137 138
        "(LoDTensor) The hidden state LoDTensor organized in batches.  "
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.")
G
guosheng 已提交
139
        .AsIntermediate();
140 141 142 143 144
    AddOutput(
        "Hidden",
        "(LoDTensor) the hidden state LoDTensor organized in sequences. "
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.");
G
guosheng 已提交
145 146 147 148 149 150 151 152 153 154
    AddAttr<std::string>("activation",
                         "(string, default tanh) "
                         "The activation type used for output candidate {h}_t.")
        .SetDefault("tanh");
    AddAttr<std::string>(
        "gate_activation",
        "(string, default sigmoid) "
        "The activation type used in update gate and reset gate.")
        .SetDefault("sigmoid");
    AddAttr<bool>("is_reverse",
翟飞跃 已提交
155
                  "(bool, default: False) "
G
guosheng 已提交
156 157
                  "whether to compute reversed GRU.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
158 159 160 161
    AddAttr<bool>("origin_mode",
                  "bool"
                  "use origin mode in article https://arxiv.org/abs/1412.3555")
        .SetDefault(false);
G
guosheng 已提交
162
    AddComment(R"DOC(
163 164
GRU Operator implements part calculations of the complete GRU as following:

K
kavyasrinet 已提交
165 166 167 168
$$
update\_gate: u_t = actGate(xu_t + W_u * h_{t-1} + b_u) \\
reset\_gate: r_t = actGate(xr_t + W_r * h_{t-1} + b_r)  \\
output\_candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h_{t-1}) + b_c) \\
169
output: h_t = dot((1 - u_t), h_{t-1}) + dot(u_t, {h}_t)
K
kavyasrinet 已提交
170
$$
171

K
kavyasrinet 已提交
172
@note To implement the complete GRU, fully-connected operator must be used
173
before to feed xu, xr and xc as the Input of GRU operator.
G
guosheng 已提交
174 175 176 177 178 179 180 181 182
)DOC");
  }
};

class GRUGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
183 184 185 186 187 188 189 190 191 192 193 194
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "GRU@Grad");
    OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "GRU@Grad");
    OP_INOUT_CHECK(ctx->HasInput("BatchGate"), "Input", "BatchGate",
                   "GRU@Grad");
    OP_INOUT_CHECK(ctx->HasInput("BatchResetHiddenPrev"), "Input",
                   "BatchResetHiddenPrev", "GRU@Grad");
    OP_INOUT_CHECK(ctx->HasInput("BatchHidden"), "Input", "BatchHidden",
                   "GRU@Grad");
    OP_INOUT_CHECK(ctx->HasInput("Hidden"), "Input", "Hidden", "GRU@Grad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Hidden")), "Input",
                   framework::GradVarName("Hidden"), "GRU@Grad");

G
guosheng 已提交
195 196 197 198 199 200
    auto input_dims = ctx->GetInputDim("Input");
    auto weight_dims = ctx->GetInputDim("Weight");
    int input_size = input_dims[1];
    int frame_size = weight_dims[0];
    int weight_height = weight_dims[0];
    int weight_width = weight_dims[1];
201 202 203 204 205 206
    PADDLE_ENFORCE_EQ(
        input_size, frame_size * 3,
        platform::errors::InvalidArgument(
            "The second dimension of Input(Input) must be 3 times of "
            "frame_size in GRUOp, but received %d (Input) vs %d (frame_size).",
            input_size, frame_size));
G
guosheng 已提交
207 208
    PADDLE_ENFORCE_EQ(
        weight_height, frame_size,
209 210 211 212
        platform::errors::InvalidArgument(
            "The shape of Input(Weight) matrix must be [frame_size, frame_size "
            "* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).",
            weight_height, weight_width, frame_size, frame_size * 3));
G
guosheng 已提交
213 214
    PADDLE_ENFORCE_EQ(
        weight_width, frame_size * 3,
215 216 217 218
        platform::errors::InvalidArgument(
            "The shape of Input(Weight) matrix must be [frame_size, frame_size "
            "* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).",
            weight_height, weight_width, frame_size, frame_size * 3));
219
    if (ctx->HasInput("H0")) {
G
guosheng 已提交
220
      auto h0_dims = ctx->GetInputDim("H0");
221 222 223 224 225 226
      PADDLE_ENFORCE_EQ(
          h0_dims[1], frame_size,
          platform::errors::InvalidArgument(
              "The width of Input(H0) must be equal to frame_size, but "
              "received %d (width of H0) vs %d (frame_size).",
              h0_dims[1], frame_size));
G
guosheng 已提交
227 228 229 230
      auto h0_grad_name = framework::GradVarName("H0");
      if (ctx->HasOutput(h0_grad_name))
        ctx->SetOutputDim(h0_grad_name, h0_dims);
    }
231
    if (ctx->HasInput("Bias")) {
G
guosheng 已提交
232 233 234
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
235 236 237 238 239 240 241 242 243 244 245 246
      PADDLE_ENFORCE_EQ(
          bias_height, 1,
          platform::errors::InvalidArgument(
              "The shape of Bias must be [1, frame_size * 3], but received "
              "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
              bias_height, bias_width, frame_size * 3));
      PADDLE_ENFORCE_EQ(
          bias_width, frame_size * 3,
          platform::errors::InvalidArgument(
              "The shape of Bias must be [1, frame_size * 3], but received "
              "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
              bias_height, bias_width, frame_size * 3));
G
guosheng 已提交
247 248 249 250 251 252 253 254 255 256 257
      auto bias_grad_name = framework::GradVarName("Bias");
      if (ctx->HasOutput(bias_grad_name))
        ctx->SetOutputDim(bias_grad_name, bias_dims);
    }
    auto input_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(input_grad_name))
      ctx->SetOutputDim(input_grad_name, input_dims);
    auto weight_grad_name = framework::GradVarName("Weight");
    if (ctx->HasOutput(weight_grad_name))
      ctx->SetOutputDim(weight_grad_name, weight_dims);
  }
258 259 260 261 262 263 264

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Hidden")),
                                   ctx.device_context());
  }
G
guosheng 已提交
265 266
};

267 268 269 270 271
template <typename T>
class GRUCPUKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
Q
Qiao Longfei 已提交
272
    bool origin_mode = context.Attr<bool>("origin_mode");
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    auto* input = context.Input<LoDTensor>("Input");
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* bias = context.Input<Tensor>("Bias");
    auto* batch_gate = context.Output<LoDTensor>("BatchGate");
    batch_gate->mutable_data<T>(context.GetPlace());
    auto* batch_reset_hidden_prev =
        context.Output<LoDTensor>("BatchResetHiddenPrev");
    batch_reset_hidden_prev->mutable_data<T>(context.GetPlace());
    auto* batch_hidden = context.Output<LoDTensor>("BatchHidden");
    batch_hidden->mutable_data<T>(context.GetPlace());
    auto* hidden = context.Output<LoDTensor>("Hidden");
    hidden->mutable_data<T>(context.GetPlace());

    auto hidden_dims = hidden->dims();

    bool is_reverse = context.Attr<bool>("is_reverse");
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    auto& dev_ctx = context.template device_context<DeviceContext>();
    to_batch(dev_ctx, *input, batch_gate, true, is_reverse);

    if (bias) {
      math::RowwiseAdd<DeviceContext, T> add_bias;
      add_bias(dev_ctx, *batch_gate, *bias, batch_gate);
    }

    int frame_size = hidden_dims[1];
    math::GRUMetaValue<T> gru_value;
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);
    Tensor ordered_h0;

    framework::Vector<size_t> order(batch_gate->lod()[2]);

    if (h0) {
      // Since the batch computing for GRU reorders the input sequences
      // according to their length. The initialized cell state also needs
      // to reorder.
      ReorderInitState<DeviceContext, T>(
          context.template device_context<DeviceContext>(), *h0, order,
          &ordered_h0, true);
      gru_value.prev_out_value = ordered_h0.data<T>();
    } else {
      gru_value.prev_out_value = nullptr;
    }
    auto batch_starts = batch_gate->lod()[0];
T
tensor-tang 已提交
321
    size_t seq_len = batch_starts.size() - 1;
322 323 324 325 326 327
    auto active_node = math::detail::GetActivationType(
        context.Attr<std::string>("activation"));
    auto active_gate = math::detail::GetActivationType(
        context.Attr<std::string>("gate_activation"));

#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
328
    // use MKL packed to speedup GEMM
T
tensor-tang 已提交
329 330 331 332 333
    if (FLAGS_paddle_num_threads >= 4) {
      auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
      T* packed_gate = blas.GEMM_ALLOC(CblasBMatrix, 1 /*height of C*/,
                                       frame_size * 2 /*width of weight*/,
                                       frame_size /*height of height*/);
334 335 336 337
      PADDLE_ENFORCE_NOT_NULL(
          packed_gate, platform::errors::NotFound(
                           "The caculation result of packed_gate by "
                           "GEMM_ALLOC should not be null when using MKL."));
T
tensor-tang 已提交
338 339 340 341 342 343
      blas.GEMM_PACK(CblasBMatrix, CblasNoTrans, 1 /*cur bs?*/, frame_size * 2,
                     frame_size, T(1.0), gru_value.gate_weight, frame_size * 2,
                     packed_gate);
      T* packed_state = blas.GEMM_ALLOC(CblasBMatrix, 1 /*height of C*/,
                                        frame_size /*width of weight*/,
                                        frame_size /*height of height*/);
344 345 346 347
      PADDLE_ENFORCE_NOT_NULL(
          packed_state, platform::errors::NotFound(
                            "The caculation result of packed_state by "
                            "GEMM_ALLOC should not be null when using MKL."));
T
tensor-tang 已提交
348 349 350 351 352 353 354
      blas.GEMM_PACK(CblasBMatrix, CblasNoTrans, 1 /*cur bs?*/, frame_size,
                     frame_size, T(1.0), gru_value.state_weight, frame_size,
                     packed_state);
      for (size_t n = 0; n < seq_len; n++) {
        int bstart = static_cast<int>(batch_starts[n]);
        int bend = static_cast<int>(batch_starts[n + 1]);
        int cur_batch_size = bend - bstart;
355

T
tensor-tang 已提交
356 357 358 359 360 361 362
        Tensor gate_t = batch_gate->Slice(bstart, bend);
        Tensor reset_hidden_prev_t =
            batch_reset_hidden_prev->Slice(bstart, bend);
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
        gru_value.output_value = hidden_t.data<T>();
        gru_value.gate_value = gate_t.data<T>();
        gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
363

T
tensor-tang 已提交
364 365 366 367 368 369
        if (gru_value.prev_out_value) {
          blas.GEMM_COMPUTE(
              CblasNoTrans, CblasPacked, cur_batch_size, frame_size * 2,
              frame_size, gru_value.prev_out_value, frame_size, packed_gate,
              frame_size * 2, T(1), gru_value.gate_value, frame_size * 3);
        }
370

T
tensor-tang 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384
        math::detail::forward_reset_output(
            math::detail::forward::gru_resetOutput<T>(), gru_value, frame_size,
            cur_batch_size, active_gate);

        if (gru_value.prev_out_value) {
          blas.GEMM_COMPUTE(
              CblasNoTrans, CblasPacked, cur_batch_size, frame_size, frame_size,
              gru_value.reset_output_value, frame_size, packed_state,
              frame_size, T(1), gru_value.gate_value + frame_size * 2,
              frame_size * 3);
        }

        math::detail::forward_final_output(
            math::detail::forward::gru_finalOutput<T>(), gru_value, frame_size,
Q
Qiao Longfei 已提交
385
            cur_batch_size, active_node, origin_mode);
T
tensor-tang 已提交
386 387

        gru_value.prev_out_value = gru_value.output_value;
388 389
      }

T
tensor-tang 已提交
390 391 392
      blas.GEMM_FREE(packed_gate);
      blas.GEMM_FREE(packed_state);
    } else {
393
#endif
T
tensor-tang 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
      for (size_t n = 0; n < seq_len; n++) {
        int bstart = static_cast<int>(batch_starts[n]);
        int bend = static_cast<int>(batch_starts[n + 1]);
        int cur_batch_size = bend - bstart;

        Tensor gate_t = batch_gate->Slice(bstart, bend);
        Tensor reset_hidden_prev_t =
            batch_reset_hidden_prev->Slice(bstart, bend);
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
        gru_value.output_value = hidden_t.data<T>();
        gru_value.gate_value = gate_t.data<T>();
        gru_value.reset_output_value = reset_hidden_prev_t.data<T>();

        math::GRUUnitFunctor<DeviceContext, T>::compute(
            dev_ctx, gru_value, frame_size, cur_batch_size, active_node,
Q
Qiao Longfei 已提交
409
            active_gate, origin_mode);
T
tensor-tang 已提交
410 411 412

        gru_value.prev_out_value = gru_value.output_value;
      }
413
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
414
    }
415 416 417 418 419 420 421 422 423 424 425
#endif
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
    batch_hidden->set_lod(batch_gate->lod());
    to_seq(dev_ctx, *batch_hidden, hidden);
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

426 427 428 429 430 431
template <typename T>
class GRUGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
432
  void Apply(GradOpPtr<T> grad_op) const override {
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    grad_op->SetType("gru_grad");
    grad_op->SetInput("Input", this->Input("Input"));
    grad_op->SetInput("H0", this->Input("H0"));
    grad_op->SetInput("Bias", this->Input("Bias"));
    grad_op->SetInput("Weight", this->Input("Weight"));

    grad_op->SetInput("BatchGate", this->Output("BatchGate"));
    grad_op->SetInput("BatchResetHiddenPrev",
                      this->Output("BatchResetHiddenPrev"));
    grad_op->SetInput("BatchHidden", this->Output("BatchHidden"));
    grad_op->SetInput("Hidden", this->Output("Hidden"));

    grad_op->SetInput(framework::GradVarName("Hidden"),
                      this->OutputGrad("Hidden"));

    grad_op->SetOutput(framework::GradVarName("H0"), this->InputGrad("H0"));
    grad_op->SetOutput(framework::GradVarName("Input"),
                       this->InputGrad("Input"));
    grad_op->SetOutput(framework::GradVarName("Weight"),
                       this->InputGrad("Weight"));
    grad_op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));

    grad_op->SetAttrMap(this->Attrs());
  }
};

459
DECLARE_NO_NEED_BUFFER_VARS_INFERER(GRUGradOpNoNeedBufferVarInferer, "Input",
460
                                    "Bias");
461

G
guosheng 已提交
462 463 464 465
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
466 467 468 469
REGISTER_OPERATOR(gru, ops::GRUOp, ops::GRUOpMaker,
                  ops::GRUGradOpMaker<paddle::framework::OpDesc>,
                  ops::GRUGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(gru_grad, ops::GRUGradOp,
470
                  ops::GRUGradOpNoNeedBufferVarInferer);
471 472
REGISTER_OP_CPU_KERNEL(gru, ops::GRUCPUKernel<float>,
                       ops::GRUCPUKernel<double>);
Q
QI JUN 已提交
473 474 475
REGISTER_OP_CPU_KERNEL(
    gru_grad, ops::GRUGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GRUGradKernel<paddle::platform::CPUDeviceContext, double>);