split_op.cc 6.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yancey 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/split_op.h"
16
#include <string>
Y
Yancey 已提交
17 18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {
using framework::Tensor;

class SplitOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext *ctx) const override {
27
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
T
Thunderbrook 已提交
28 29
                      platform::errors::InvalidArgument(
                          "Input(X) of SplitOp should not be null."));
30
    PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL,
T
Thunderbrook 已提交
31 32
                      platform::errors::InvalidArgument(
                          "Outputs(Out) of SplitOp should not be empty."));
Q
Qiao Longfei 已提交
33 34 35 36 37 38 39
    auto in_dims = ctx->GetInputDim("X");
    auto outs_names = ctx->Outputs("Out");
    size_t axis = static_cast<size_t>(ctx->Attrs().Get<int>("axis"));
    size_t num = static_cast<size_t>(ctx->Attrs().Get<int>("num"));
    std::vector<int> sections = static_cast<std::vector<int>>(
        ctx->Attrs().Get<std::vector<int>>("sections"));
    const size_t outs_number = outs_names.size();
40 41

    if (sections.size() > 0) {
T
Thunderbrook 已提交
42 43 44 45
      PADDLE_ENFORCE_EQ(
          sections.size(), outs_number,
          platform::errors::InvalidArgument("tensor split sections size "
                                            "should be equal to output size."));
46 47 48 49 50 51 52
    }

    if (ctx->HasInput("AxisTensor")) {
      auto out_dims =
          framework::make_ddim(std::vector<int>(in_dims.size(), -1));
      std::vector<framework::DDim> outs_dims(outs_number, out_dims);
      ctx->SetOutputsDim("Out", outs_dims);
Q
Qiao Longfei 已提交
53
      for (size_t i = 0; i < outs_number; ++i) {
54
        ctx->ShareLoD("X", "Out", 0, i);
Y
Yancey 已提交
55
      }
56
      return;
Y
Yancey 已提交
57
    }
58 59 60 61 62 63

    bool each_section_is_known =
        (sections.size() > 0 && !ctx->HasInputs("SectionsTensorList"));

    auto outs_dims = UpdateOutsDims(ctx->IsRuntime(), each_section_is_known,
                                    in_dims, num, sections, axis, outs_number);
Q
Qiao Longfei 已提交
64
    ctx->SetOutputsDim("Out", outs_dims);
G
guosheng 已提交
65 66 67 68 69 70
    if (axis != 0) {
      // Only pass LoD when not spliting along the first dim.
      for (size_t i = 0; i < outs_number; ++i) {
        ctx->ShareLoD("X", "Out", 0, i);
      }
    }
Y
Yancey 已提交
71
  }
72 73 74 75

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
76 77 78 79 80
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
81 82 83
      // OneDNN uses blocking format, which cannot be always supported with
      // reorders, because if blocked dimension is not divisible by 8 or
      // 16(depending on which blocking format is used) submemory cannot be
J
jakpiase 已提交
84 85 86 87 88 89 90 91
      // created, so in that scenario a fallback is needed
      auto tmp_md = dnnl::memory::desc(
          framework::vectorize(ctx.Input<Tensor>("X")->dims()),
          dnnl::memory::data_type::f32, ctx.Input<Tensor>("X")->format());
      if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
        return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                       framework::DataLayout::kMKLDNN,
                                       framework::LibraryType::kMKLDNN);
92 93 94
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
95 96 97 98 99 100 101 102 103 104 105
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor" || var_name == "SectionsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
Yancey 已提交
106 107 108 109
};

class SplitOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
110
  void Make() override {
111
    AddInput("X", "(Tensor) Input tensor of the split operator.");
112
    AddInput("AxisTensor",
T
tianshuo78520a 已提交
113
             "(Tensor) The axis which the input will be split on. "
114 115 116 117 118 119 120 121 122 123
             "It has higher priority than Attr(axis). "
             "The shape of AxisTensor must be [1]")
        .AsDispensable();
    AddInput("SectionsTensorList",
             "(vector<Tensor<int>>, optional). "
             "The length of each output along the specified axis. "
             "It has a higher priority than Attr(sections)."
             "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
124 125
    AddOutput("Out", "(Tensor) Output tensors of the split operator.")
        .AsDuplicable();
Y
Yancey 已提交
126
    AddComment(R"DOC(
127 128 129 130 131 132 133 134 135 136 137 138 139
Split operator

This operator splits the input tensor into multiple sub-tensors.

Example:
  Input = [[1,2],
           [3,4],
           [5,6]]
  sections = [2,1]
  axis = 0
  Output[0] = [[1,2],
               [3,4]]
  Output[1] = [[5,6]]
Y
Yancey 已提交
140 141 142

    )DOC");
    AddAttr<std::vector<int>>("sections",
143 144 145
                              "(vector<int>) "
                              "the length of each output along the "
                              "specified axis.")
Y
Yancey 已提交
146 147
        .SetDefault(std::vector<int>{});
    AddAttr<int>("num",
148 149
                 "(int, default 0)"
                 "Number of sub-tensors. This must evenly divide "
Y
Yancey 已提交
150 151
                 "Input.dims()[axis]")
        .SetDefault(0);
152 153
    AddAttr<int>("axis",
                 "(int, default 0) "
T
tianshuo78520a 已提交
154
                 "The axis which the input will be split on.")
Y
Yancey 已提交
155
        .SetDefault(0);
156 157 158 159 160 161 162 163
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "bfloat16"});
Y
Yancey 已提交
164 165 166 167 168 169 170
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
171 172 173 174

REGISTER_OPERATOR(split, ops::SplitOp, ops::SplitOpMaker,
                  ops::SplitGradMaker<paddle::framework::OpDesc>,
                  ops::SplitGradMaker<paddle::imperative::OpBase>);
175
namespace plat = paddle::platform;
C
chengduo 已提交
176
REGISTER_OP_CPU_KERNEL(
177 178 179 180
    split, ops::SplitOpKernel<plat::CPUDeviceContext, double>,
    ops::SplitOpKernel<plat::CPUDeviceContext, float>,
    ops::SplitOpKernel<plat::CPUDeviceContext, int64_t>,
    ops::SplitOpKernel<plat::CPUDeviceContext, int>,
181
    ops::SplitOpKernel<plat::CPUDeviceContext, bool>,
182
    ops::SplitOpKernel<plat::CPUDeviceContext, plat::float16>);