split_op.cc 5.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yancey 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/split_op.h"
16
#include <string>
Y
Yancey 已提交
17 18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {
using framework::Tensor;

class SplitOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext *ctx) const override {
27 28
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of SplitOp should not be null.");
29 30
    PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL,
                      "Outputs(Out) of SplitOp should not be empty.");
Q
Qiao Longfei 已提交
31 32 33 34 35 36 37
    auto in_dims = ctx->GetInputDim("X");
    auto outs_names = ctx->Outputs("Out");
    size_t axis = static_cast<size_t>(ctx->Attrs().Get<int>("axis"));
    size_t num = static_cast<size_t>(ctx->Attrs().Get<int>("num"));
    std::vector<int> sections = static_cast<std::vector<int>>(
        ctx->Attrs().Get<std::vector<int>>("sections"));
    const size_t outs_number = outs_names.size();
38 39

    if (sections.size() > 0) {
Q
Qiao Longfei 已提交
40
      PADDLE_ENFORCE_EQ(sections.size(), outs_number,
41
                        "tensor split sections size "
Y
Yancey 已提交
42
                        "should be equal to output size.");
43 44 45 46 47 48 49
    }

    if (ctx->HasInput("AxisTensor")) {
      auto out_dims =
          framework::make_ddim(std::vector<int>(in_dims.size(), -1));
      std::vector<framework::DDim> outs_dims(outs_number, out_dims);
      ctx->SetOutputsDim("Out", outs_dims);
Q
Qiao Longfei 已提交
50
      for (size_t i = 0; i < outs_number; ++i) {
51
        ctx->ShareLoD("X", "Out", 0, i);
Y
Yancey 已提交
52
      }
53
      return;
Y
Yancey 已提交
54
    }
55 56 57 58 59 60

    bool each_section_is_known =
        (sections.size() > 0 && !ctx->HasInputs("SectionsTensorList"));

    auto outs_dims = UpdateOutsDims(ctx->IsRuntime(), each_section_is_known,
                                    in_dims, num, sections, axis, outs_number);
Q
Qiao Longfei 已提交
61
    ctx->SetOutputsDim("Out", outs_dims);
G
guosheng 已提交
62 63 64 65 66 67
    if (axis != 0) {
      // Only pass LoD when not spliting along the first dim.
      for (size_t i = 0; i < outs_number; ++i) {
        ctx->ShareLoD("X", "Out", 0, i);
      }
    }
Y
Yancey 已提交
68
  }
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor" || var_name == "SectionsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
Yancey 已提交
86 87 88 89
};

class SplitOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
90
  void Make() override {
91
    AddInput("X", "(Tensor) Input tensor of the split operator.");
92 93 94 95 96 97 98 99 100 101 102 103
    AddInput("AxisTensor",
             "(Tensor) The axis which the input will be splited on. "
             "It has higher priority than Attr(axis). "
             "The shape of AxisTensor must be [1]")
        .AsDispensable();
    AddInput("SectionsTensorList",
             "(vector<Tensor<int>>, optional). "
             "The length of each output along the specified axis. "
             "It has a higher priority than Attr(sections)."
             "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
104 105
    AddOutput("Out", "(Tensor) Output tensors of the split operator.")
        .AsDuplicable();
Y
Yancey 已提交
106
    AddComment(R"DOC(
107 108 109 110 111 112 113 114 115 116 117 118 119
Split operator

This operator splits the input tensor into multiple sub-tensors.

Example:
  Input = [[1,2],
           [3,4],
           [5,6]]
  sections = [2,1]
  axis = 0
  Output[0] = [[1,2],
               [3,4]]
  Output[1] = [[5,6]]
Y
Yancey 已提交
120 121 122

    )DOC");
    AddAttr<std::vector<int>>("sections",
123 124 125
                              "(vector<int>) "
                              "the length of each output along the "
                              "specified axis.")
Y
Yancey 已提交
126 127
        .SetDefault(std::vector<int>{});
    AddAttr<int>("num",
128 129
                 "(int, default 0)"
                 "Number of sub-tensors. This must evenly divide "
Y
Yancey 已提交
130 131
                 "Input.dims()[axis]")
        .SetDefault(0);
132 133 134
    AddAttr<int>("axis",
                 "(int, default 0) "
                 "The axis which the input will be splited on.")
Y
Yancey 已提交
135 136 137 138 139 140 141 142
        .SetDefault(0);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
143
namespace plat = paddle::platform;
Y
Yu Yang 已提交
144
REGISTER_OPERATOR(split, ops::SplitOp, ops::SplitOpMaker, ops::SplitGradMaker);
C
chengduo 已提交
145
REGISTER_OP_CPU_KERNEL(
146 147 148 149 150
    split, ops::SplitOpKernel<plat::CPUDeviceContext, double>,
    ops::SplitOpKernel<plat::CPUDeviceContext, float>,
    ops::SplitOpKernel<plat::CPUDeviceContext, int64_t>,
    ops::SplitOpKernel<plat::CPUDeviceContext, int>,
    ops::SplitOpKernel<plat::CPUDeviceContext, plat::float16>);