executor.cc 18.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
Y
Yang Yang 已提交
17

Y
Yi Wang 已提交
18 19 20
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
B
baojun-nervana 已提交
21
#include "paddle/fluid/framework/ngraph_operator.h"
Y
Yi Wang 已提交
22 23
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
24
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
25
#include "paddle/fluid/framework/variable_helper.h"
G
gongweibao 已提交
26
#include "paddle/fluid/operators/detail/macros.h"
Y
Yi Wang 已提交
27
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
28
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
29

D
dzhwinter 已提交
30
DECLARE_bool(benchmark);
31
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
B
baojun-nervana 已提交
32
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
Q
qijun 已提交
33 34 35

namespace paddle {
namespace framework {
X
Xin Pan 已提交
36 37 38 39 40
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
41

S
fix bug  
sneaxiy 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
static std::unordered_map<std::string, size_t> GetNonPersistableReferenceCounts(
    const BlockDesc& block, const std::vector<std::string>& skip_var_list) {
  std::unordered_map<std::string, size_t> ref_cnts;
  std::unordered_set<std::string> skip_vars(skip_var_list.begin(),
                                            skip_var_list.end());

  auto update_ref_cnts = [&](OpDesc* op_desc, const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        if (skip_vars.count(name)) continue;
        auto* var_desc = block.FindVar(name);
        if (var_desc == nullptr || var_desc->Persistable()) continue;
        auto type = var_desc->Proto()->type().type();
        if (type != proto::VarType::LOD_TENSOR &&
            type != proto::VarType::SELECTED_ROWS &&
            type != proto::VarType::LOD_TENSOR_ARRAY) {
          continue;
        }
S
sneaxiy 已提交
60
        ++ref_cnts[name];
S
fix bug  
sneaxiy 已提交
61 62 63 64 65 66 67 68 69 70 71
      }
    }
  };

  for (auto op_desc : block.AllOps()) {
    update_ref_cnts(op_desc, op_desc->Inputs());
    update_ref_cnts(op_desc, op_desc->Outputs());
  }
  return ref_cnts;
}

Q
Qiao Longfei 已提交
72
ExecutorPrepareContext::ExecutorPrepareContext(
S
fix bug  
sneaxiy 已提交
73 74
    const framework::ProgramDesc& prog, size_t block_id,
    const std::vector<std::string>& skip_ref_cnt_vars)
S
sneaxiy 已提交
75 76
    : prog_(prog), block_id_(block_id) {
  if (GetEagerDeletionThreshold() >= 0) {
S
sneaxiy 已提交
77 78
    global_ref_cnts_ = GetNonPersistableReferenceCounts(prog.Block(block_id),
                                                        skip_ref_cnt_vars);
S
sneaxiy 已提交
79 80
  }
}
Y
Yu Yang 已提交
81

Q
Qiao Longfei 已提交
82
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
83
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
84
}
Y
Yu Yang 已提交
85

S
fix bug  
sneaxiy 已提交
86
static void DeleteUnusedTensors(
S
sneaxiy 已提交
87
    const Scope& scope, const OperatorBase* op, GarbageCollector* gc,
S
fix bug  
sneaxiy 已提交
88
    std::unordered_map<std::string, size_t>* ref_cnts) {
S
sneaxiy 已提交
89
  std::deque<std::shared_ptr<memory::Allocation>> garbages;
S
sneaxiy 已提交
90 91 92 93 94 95

  auto handler = [&](const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        auto it = ref_cnts->find(name);
        if (it == ref_cnts->end()) continue;
S
sneaxiy 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        if (--(it->second) != 0) {
          continue;
        }
        auto* var = scope.FindVar(name);
        if (var != nullptr) {
          continue;
        }

        VLOG(2) << "Erase variable " << name;
        if (var->IsType<LoDTensor>()) {
          garbages.emplace_back(var->GetMutable<LoDTensor>()->MoveMemory());
        } else if (var->IsType<SelectedRows>()) {
          garbages.emplace_back(
              var->GetMutable<SelectedRows>()->mutable_value()->MoveMemory());
        } else if (var->IsType<LoDTensorArray>()) {
          auto* lod_tensor_arr = var->GetMutable<LoDTensorArray>();
          for (auto& t : *lod_tensor_arr) {
            garbages.emplace_back(t.MoveMemory());
S
sneaxiy 已提交
114
          }
S
sneaxiy 已提交
115 116 117
        } else {
          PADDLE_THROW("Type %s of %s is not supported eager deletion",
                       var->Type().name(), name);
S
sneaxiy 已提交
118 119 120 121 122 123 124 125
        }
      }
    }
  };

  handler(op->Inputs());
  handler(op->Outputs());

S
sneaxiy 已提交
126 127
  if (!garbages.empty()) {
    gc->Add(std::move(garbages));
S
sneaxiy 已提交
128 129 130
  }
}

B
baojun-nervana 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
static void EnableFusedOp(ExecutorPrepareContext* ctx) {
#ifdef PADDLE_WITH_NGRAPH
  VLOG(3) << "use_ngraph=True";
  auto intervals = FusedOperator::FusedOpIntervals(&ctx->ops_);
  for (auto& interval : intervals) {
    auto* fused_op = new FusedOperator(ctx->prog_, ctx->block_id_,
                                       interval.at(0), interval.at(1));
    *interval[0] = std::unique_ptr<OperatorBase>(fused_op);
  }
  for (auto it = intervals.rbegin(); it != intervals.rend(); ++it) {
    ctx->ops_.erase(it->at(0) + 1, it->at(1));
  }
#else
  LOG(WARNING)
      << "'NGRAPH' is not supported, Please re-compile with WITH_NGRAPH option";
#endif
}

D
dzhwinter 已提交
149
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
150

Y
Yancey1989 已提交
151
void Executor::Close() {
W
Wu Yi 已提交
152
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
153 154
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
Y
Yancey1989 已提交
155
  ::paddle::operators::distributed::RPCClient::GetInstance<
W
Wu Yi 已提交
156
      ::paddle::operators::distributed::GRPCClient>(0)
Y
Yancey1989 已提交
157
      ->SendComplete();
W
Wu Yi 已提交
158
#endif
Y
Yancey1989 已提交
159
}
W
Wu Yi 已提交
160

L
Liu Yiqun 已提交
161 162 163
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
164 165 166 167 168 169 170 171 172 173 174 175 176 177

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
178
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
179 180
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
181 182
      } else {
        auto* ptr = scope->Var(var->Name());
183
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
184 185
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
186 187 188 189 190
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
191
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
192 193
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
194 195 196 197
    }
  }
}

Y
Yu Yang 已提交
198
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
199
                   bool create_local_scope, bool create_vars) {
X
Xin Pan 已提交
200
  platform::RecordBlock b(block_id);
201
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
Q
Qiao Longfei 已提交
202 203
  auto ctx = Prepare(pdesc, block_id);
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
204 205
}

206 207 208 209 210 211 212
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
213
    const BlockDesc& block,
L
Liu Yiqun 已提交
214
    const std::map<std::string, const LoDTensor*>& feed_targets,
215 216
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
217
  for (auto* op : block.AllOps()) {
218 219
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
220
      // The input variable's name of feed_op should be feed_holder_name.
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

236
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
237
      // When feed operator are present, so should be feed_holder.
238 239 240 241 242 243 244
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
245 246 247 248 249 250 251 252 253 254 255 256
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
257 258
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
259 260
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
261
  for (auto* op : block.AllOps()) {
262 263
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
264
      // The output variable's name of fetch_op should be fetch_holder_name.
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

280
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
281
      // When fetch operator are present, so should be fetch_holder.
282 283 284 285 286 287 288
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
289 290 291 292 293 294
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
295 296
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
297 298
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
299
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
300
  platform::RecordBlock b(kProgramId);
301
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
302
  bool has_feed_ops =
303
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
304
  bool has_fetch_ops =
305
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
306 307

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
308
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
309
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
310 311
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
312
  }
313 314
  auto* global_block = copy_program->MutableBlock(0);

315
  if (!has_feed_ops) {
316 317
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
318
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
319 320 321
    feed_holder->SetPersistable(true);

    int i = 0;
322
    for (auto& feed_target : (*feed_targets)) {
323
      std::string var_name = feed_target.first;
M
minqiyang 已提交
324
      VLOG(3) << "feed target's name: " << var_name;
325 326 327 328 329 330 331 332 333 334 335 336 337

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

338
  if (!has_fetch_ops) {
339 340
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
341
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
342 343 344
    fetch_holder->SetPersistable(true);

    int i = 0;
345
    for (auto& fetch_target : (*fetch_targets)) {
346
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
347
      VLOG(3) << "fetch target's name: " << var_name;
348 349 350 351 352 353 354 355 356 357 358 359 360

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

361
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
362 363 364
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
365 366
}

Q
Qiao Longfei 已提交
367
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
368 369
    const ProgramDesc& program, int block_id,
    const std::vector<std::string>& skip_ref_cnt_vars) {
Q
Qiyang Min 已提交
370
  std::unique_ptr<ExecutorPrepareContext> ctx(
S
fix bug  
sneaxiy 已提交
371
      new ExecutorPrepareContext(program, block_id, skip_ref_cnt_vars));
Y
Yu Yang 已提交
372 373 374 375 376
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
B
baojun-nervana 已提交
377
  if (FLAGS_use_ngraph) EnableFusedOp(ctx.get());
Q
Qiyang Min 已提交
378
  return ctx;
Y
Yu Yang 已提交
379 380
}

T
refine  
typhoonzero 已提交
381
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
382 383 384 385 386 387
    const ProgramDesc& program, const std::vector<int>& block_ids,
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars) {
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
388
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
389
  size_t idx = 0;
T
typhoonzero 已提交
390
  for (auto& bid : block_ids) {
S
fix bug  
sneaxiy 已提交
391 392 393 394 395 396
    ExecutorPrepareContext* ctx;
    if (skip_ref_cnt_vars.empty()) {
      ctx = new ExecutorPrepareContext(program, bid);
    } else {
      ctx = new ExecutorPrepareContext(program, bid, skip_ref_cnt_vars[idx]);
    }
T
typhoonzero 已提交
397 398 399 400 401 402
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
403
    ++idx;
T
typhoonzero 已提交
404 405 406 407
  }
  return result;
}

Y
Yu Yang 已提交
408
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
409 410
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
411
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
412 413 414 415
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
416 417
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
418
  }
Y
Yu Yang 已提交
419

S
sneaxiy 已提交
420
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
421
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
422 423
  // skip while_op and while_grad_op temporarily
  if (max_memory_size >= 0 && !keep_kids) {
S
sneaxiy 已提交
424
    ctx->ResetReferenceCount();
S
sneaxiy 已提交
425 426
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
427
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
428
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
429 430
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
431
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
432 433 434
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
435
#endif
S
sneaxiy 已提交
436 437
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
438 439 440 441 442
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

Y
Yu Yang 已提交
443
  for (auto& op : ctx->ops_) {
444
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
445

S
fix bug  
sneaxiy 已提交
446
    if (gc) {
S
sneaxiy 已提交
447
      DeleteUnusedTensors(*local_scope, op.get(), gc.get(),
S
sneaxiy 已提交
448
                          &(ctx->runtime_ref_cnts_));
S
sneaxiy 已提交
449
    }
Y
Yu Yang 已提交
450
  }
S
sneaxiy 已提交
451

S
fix bug  
sneaxiy 已提交
452
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
453

Q
qiaolongfei 已提交
454
  if (local_scope != scope) {
Y
Yu Yang 已提交
455
    scope->DeleteScope(local_scope);
456
  } else {
Q
qiaolongfei 已提交
457 458 459 460 461
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
462 463
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
464 465
      scope->DropKids();
    }
Y
Yu Yang 已提交
466 467 468
  }
}

469 470
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
471
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
472 473 474
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
475 476
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

477
  PADDLE_ENFORCE(
478
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
479 480
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
481
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
482 483
      "Program in the prepared context should has fetch_ops.");

484 485 486 487 488
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
489 490
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
491 492 493
    }
  }

W
Wu Yi 已提交
494
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
495 496 497 498 499 500

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
501
      *(*fetch_targets)[fetch_target_name] =
502 503 504 505 506
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

507 508
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
509
  VLOG(3) << "use_mkldnn=True";
510 511 512 513 514 515 516 517
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
518 519 520
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
521 522
#endif
}
Q
qijun 已提交
523 524
}  // namespace framework
}  // namespace paddle