fused_attention_op.cc 29.0 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/framework/op_version_registry.h"
L
Li Min 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class FusedAttentionOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("QKVW"), "Input", "QKVW", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("OutLinearW"), "Input", "OutLinearW",
                   "FusedAttentionOp");

35 36 37 38 39 40 41
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      OP_INOUT_CHECK(ctx->HasOutput("LnMean"), "Output", "LnMean",
                     "FusedAttentionOp");
      OP_INOUT_CHECK(ctx->HasOutput("LnVariance"), "Output", "LnVariance",
                     "FusedAttentionOp");
      OP_INOUT_CHECK(ctx->HasOutput("LnOut"), "Output", "LnOut",
                     "FusedAttentionOp");
L
Li Min 已提交
42 43 44 45 46 47 48
    } else {
      OP_INOUT_CHECK(ctx->HasOutput("Ln2Mean"), "Output", "Ln2Mean",
                     "FusedAttentionOp");
      OP_INOUT_CHECK(ctx->HasOutput("Ln2Variance"), "Output", "Ln2Variance",
                     "FusedAttentionOp");
      OP_INOUT_CHECK(ctx->HasOutput("BiasDropoutResidualOut"), "Output",
                     "BiasDropoutResidualOut", "FusedAttentionOp");
49 50
    }

L
Li Min 已提交
51 52 53
    // qkv_out: [batch_size, seq_len, 3, num_head, dim_head]
    OP_INOUT_CHECK(ctx->HasOutput("QKVOut"), "Output", "QKVOut",
                   "FusedAttentionOp");
54 55 56 57
    if (ctx->HasInput("QKVBias")) {
      OP_INOUT_CHECK(ctx->HasOutput("QKVBiasOut"), "Output", "QKVBiasOut",
                     "FusedAttentionOp");
    }
L
Li Min 已提交
58 59 60 61 62 63
    OP_INOUT_CHECK(ctx->HasOutput("TransposeOut2"), "Output", "TransposeOut2",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("QKOut"), "Output", "QKOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("QKTVOut"), "Output", "QKTVOut",
                   "FusedAttentionOp");
64

65 66 67 68
    if (ctx->HasInput("CacheKV")) {
      OP_INOUT_CHECK(ctx->HasOutput("CacheKVOut"), "Output", "CacheKVOut",
                     "FusedAttentionOp");
    }
69 70 71 72
    if (ctx->HasInput("SrcMask")) {
      OP_INOUT_CHECK(ctx->HasOutput("SrcMaskOut"), "Output", "SrcMaskOut",
                     "FusedAttentionOp");
    }
L
Li Min 已提交
73 74 75 76 77 78 79 80 81 82
    OP_INOUT_CHECK(ctx->HasOutput("SoftmaxOut"), "Output", "SoftmaxOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("AttnDropoutMaskOut"), "Output",
                   "AttnDropoutMaskOut", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("AttnDropoutOut"), "Output", "AttnDropoutOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("FMHAOut"), "Output", "FMHAOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("OutLinearOut"), "Output", "OutLinearOut",
                   "FusedAttentionOp");
L
Li Min 已提交
83

L
Li Min 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    OP_INOUT_CHECK(ctx->HasOutput("DropoutMaskOut"), "Output", "DropoutMaskOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "FusedAttentionOp");

    // x: qkv's input [batch_size, seq_len, dim_embed]
    // y: qkv's weight: [3, num_head, dim_head, dim_embed]
    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("QKVW");
    PADDLE_ENFORCE_EQ(x_dim.size(), 3, platform::errors::InvalidArgument(
                                           "The dimensions of x must be 3"
                                           "(batch_size, seq_len, dim_embed),"
                                           "but received dimensions of"
                                           "Input is [%d]",
                                           x_dim.size()));
    PADDLE_ENFORCE_EQ(y_dim.size(), 4,
                      platform::errors::InvalidArgument(
                          "The dimensions of qkv_weight must be 4"
                          "(3, num_head, dim_head, dim_embed),"
                          "but received dimensions of"
                          "Input is [%d]",
                          y_dim.size()));
    PADDLE_ENFORCE_EQ(x_dim[2], y_dim[3],
                      platform::errors::InvalidArgument(
                          "ShapeError: the dimension of x_dim[2] and y_dim[3]"
                          "must be equal. But received: the shape "
                          "of input x = [%s], and the shape of "
                          "input qkv_weight = [%s]",
                          x_dim, y_dim));

113 114 115 116 117 118 119 120
    if (ctx->Attrs().Get<int>("ring_id") == -1) {
      PADDLE_ENFORCE_EQ(y_dim[1] * y_dim[2], y_dim[3],
                        platform::errors::InvalidArgument(
                            "The dimensions of qkv_weight must be 4"
                            "(3, num_head, dim_head, dim_embed),"
                            "and must satisfy the limitations: "
                            "(num_head * dim_head == dim_embed)"));
    }
121

122 123 124 125
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      ctx->SetOutputDim("LnMean", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("LnVariance", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("LnOut", ctx->GetInputDim("X"));
L
Li Min 已提交
126 127 128 129
    } else {
      ctx->SetOutputDim("Ln2Mean", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("Ln2Variance", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("BiasDropoutResidualOut", ctx->GetInputDim("X"));
130
    }
L
Li Min 已提交
131 132 133
    // [batch_size, seq_len, 3, num_head, head_size]
    ctx->SetOutputDim("QKVOut",
                      {x_dim[0], x_dim[1], y_dim[0], y_dim[1], y_dim[2]});
134 135 136 137 138

    if (ctx->HasInput("QKVBias")) {
      ctx->SetOutputDim("QKVBiasOut",
                        {x_dim[0], x_dim[1], y_dim[0], y_dim[1], y_dim[2]});
    }
L
Li Min 已提交
139 140 141
    // [3, batch_size, num_head, seq_len, head_size]
    ctx->SetOutputDim("TransposeOut2",
                      {y_dim[0], x_dim[0], y_dim[1], x_dim[1], y_dim[2]});
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

    // cache_seq_len + seq_len if cache else seq_len
    auto out_seq_len = x_dim[1];
    if (ctx->HasInput("CacheKV")) {
      // [2, batch_size, num_head, cache_seq_len, head_size]
      auto c_dim = ctx->GetInputDim("CacheKV");

      PADDLE_ENFORCE_EQ(
          c_dim.size(), 5,
          paddle::platform::errors::InvalidArgument(
              "The CacheKV must be 5 dims, but got %d", c_dim.size()));
      PADDLE_ENFORCE_EQ(c_dim[0], 2,
                        paddle::platform::errors::InvalidArgument(
                            "The first dim of CacheKV must be 2, but got %d",
                            c_dim[0]));  // 2
      PADDLE_ENFORCE_EQ(c_dim[1], x_dim[0],
                        paddle::platform::errors::InvalidArgument(
                            "The second dim of CacheKV must be equal with "
                            "batch size %d, but got %d",
                            x_dim[0], c_dim[1]));  // batch_size
      PADDLE_ENFORCE_EQ(c_dim[2], y_dim[1],
                        paddle::platform::errors::InvalidArgument(
                            "The third dim of CacheKV must be equal with num "
                            "head %d, but got %d",
                            y_dim[1], c_dim[2]));  // num_head
      PADDLE_ENFORCE_GE(
          c_dim[3], 0,
          paddle::platform::errors::InvalidArgument(
              "The forth dim of CacheKV must be greater than 0, but got %d",
              c_dim[3]));  // cache_seq_len
      PADDLE_ENFORCE_EQ(c_dim[4], y_dim[2],
                        paddle::platform::errors::InvalidArgument(
                            "The fifth dim of CacheKV must be equal with head "
                            "size %d, but got %d",
                            y_dim[2], c_dim[4]));  // head_size

      out_seq_len += c_dim[3];
      // [3, batch_size, num_head, cache_seq_len + seq_len, head_size]
      ctx->SetOutputDim("CacheKVOut",
                        {c_dim[0], c_dim[1], c_dim[2], out_seq_len, c_dim[4]});
    }

    // [batch, num_head, seq_len, out_seq_len]
    ctx->SetOutputDim("QKOut", {x_dim[0], y_dim[1], x_dim[1], out_seq_len});
186 187

    if (ctx->HasInput("SrcMask")) {
188 189
      ctx->SetOutputDim("SrcMaskOut",
                        {x_dim[0], y_dim[1], x_dim[1], out_seq_len});
190
    }
L
Li Min 已提交
191 192
    // the same as QKOut's shape.
    ctx->SetOutputDim("AttnDropoutOut",
193
                      {x_dim[0], y_dim[1], x_dim[1], out_seq_len});
194
    if (ctx->Attrs().Get<bool>("is_test") == false) {
L
Li Min 已提交
195
      ctx->SetOutputDim("AttnDropoutMaskOut",
196
                        {x_dim[0], y_dim[1], x_dim[1], out_seq_len});
L
Li Min 已提交
197
    }
198 199
    ctx->SetOutputDim("SoftmaxOut",
                      {x_dim[0], y_dim[1], x_dim[1], out_seq_len});
L
Li Min 已提交
200 201 202 203 204 205
    // [batch_size, num_heads, seq_len, head_dim]
    ctx->SetOutputDim("QKTVOut", {x_dim[0], y_dim[1], x_dim[1], y_dim[2]});
    // [batch_size, seq_len, number of heads*head size]
    ctx->SetOutputDim("FMHAOut", {x_dim[0], x_dim[1], y_dim[1], y_dim[2]});
    ctx->SetOutputDim("OutLinearOut", ctx->GetInputDim("X"));

206
    if (ctx->Attrs().Get<bool>("is_test") == false) {
L
Li Min 已提交
207 208
      ctx->SetOutputDim("DropoutMaskOut", ctx->GetInputDim("X"));
    }
L
Li Min 已提交
209

L
Li Min 已提交
210 211 212 213 214 215 216
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input = ctx.Input<Tensor>("X");
217
    auto input_data_type = framework::TransToProtoVarType(input->dtype());
L
Li Min 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class FusedAttentionOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor.");
    AddInput("LnScale",
             "(optional) Scale is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("LnBias",
             "(optional) Bias is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("QKVW", "The qkv weight tensor.");
235
    AddInput("QKVBias", "The qkv bias tensor.").AsDispensable();
236 237
    AddInput("CacheKV", "(optional) The cached KV for generation inference.")
        .AsDispensable();
L
Li Min 已提交
238 239 240
    AddInput("SrcMask", "(optional) The attention mask tensor in fmha.")
        .AsDispensable();
    AddInput("OutLinearW", "The out_linear weight tensor.");
241
    AddInput("OutLinearBias", "The out_linear bias tensor.").AsDispensable();
L
Li Min 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    AddInput("Ln2Scale",
             "(optional) Scale is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("Ln2Bias",
             "(optional) Bias is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddOutput("LnMean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("LnVariance", "Variance of the current mini batch.")
        .AsIntermediate();
    AddOutput("LnOut", "The output of pre layer_norm.").AsIntermediate();
    AddOutput("QKVOut", "Result after qkv.").AsIntermediate();
    AddOutput("QKVBiasOut", "Result after qkv and bias op.").AsIntermediate();
    AddOutput("TransposeOut2", "Result in fmha.").AsIntermediate();
    AddOutput("QKOut", "Result in fmha.").AsIntermediate();
    AddOutput("QKTVOut", "Result in fmha.").AsIntermediate();
    AddOutput("SoftmaxOut", "Result in fmha.").AsIntermediate();
    AddOutput("AttnDropoutMaskOut", "Result in fmha.").AsIntermediate();
    AddOutput("AttnDropoutOut", "Result in fmha.").AsIntermediate();
    AddOutput("SrcMaskOut", "Result in fmha.").AsIntermediate();
    AddOutput("FMHAOut", "Result after fmha.").AsIntermediate();
    AddOutput("OutLinearOut", "Result after out_linear.").AsIntermediate();
    AddOutput("DropoutMaskOut", "The random sampled dropout mask.")
        .AsIntermediate();
    AddOutput("Ln2Mean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("Ln2Variance", "Variance of the current mini batch.")
        .AsIntermediate();
    AddOutput("BiasDropoutResidualOut",
              "Result of residual + dropout(src + bias).")
        .AsIntermediate();
273
    AddOutput("CacheKVOut", "The udpated cache KV.");
L
Li Min 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    AddOutput("Y", "Result after attention.");

    AddAttr<bool>("pre_layer_norm",
                  "if true, the attention op uses pre_layer_norm architecure, "
                  "else, uses post_layer_norm architecuture. "
                  "[default false].")
        .SetDefault(false);
    AddAttr<float>("epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' in Op(LayerNorm) should be between"
                                "0.0 and 0.001, But received [%s].",
                                epsilon));
        });

    // for dropout in fmha.
    AddAttr<float>("attn_dropout_rate", "Probability of setting units to zero.")
        .SetDefault(.5f)
        .AddCustomChecker([](const float &drop_p) {
          PADDLE_ENFORCE_EQ(
              drop_p >= 0.0f && drop_p <= 1.0f, true,
              platform::errors::InvalidArgument(
                  "'attn_dropout_rate' must be between 0.0 and 1.0."));
        });
301
    AddAttr<bool>("is_test",
L
Li Min 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddAttr<bool>("attn_dropout_fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(true);
    AddAttr<int>("attn_dropout_seed", "Dropout random seed.").SetDefault(0);
    AddAttr<std::string>(
        "attn_dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "There are two kinds of ways to implement dropout"
        "(the mask below is a tensor have the same shape with input"
        "the value of mask is 0 or 1, the ratio of 0 is dropout_rate)"
        "1. downgrade_in_infer(default), downgrade the outcome at inference "
        "time"
        "   train: out = input * mask"
        "   inference: out = input * (1.0 - dropout_rate)"
        "2. upscale_in_train, upscale the outcome at training time, do nothing "
        "in inference"
        "   train: out = input * mask / ( 1.0 - dropout_rate )"
        "   inference: out = input"
        "   dropout op can be removed from the program. the program will be "
        "efficient")
        .SetDefault("upscale_in_train")
        .AddCustomChecker([](const std::string &type) {
          PADDLE_ENFORCE_EQ(
              type == "downgrade_in_infer" || type == "upscale_in_train", true,
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
        });

    AddAttr<float>("dropout_rate", "Probability of setting units to zero.")
        .SetDefault(.5f)
        .AddCustomChecker([](const float &drop_p) {
          PADDLE_ENFORCE_EQ(drop_p >= 0.0f && drop_p <= 1.0f, true,
                            platform::errors::InvalidArgument(
                                "'dropout_rate' must be between 0.0 and 1.0."));
        });
    AddAttr<bool>("dropout_fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(true);
    AddAttr<int>("dropout_seed", "Dropout random seed.").SetDefault(0);
    AddAttr<std::string>(
        "dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "The meaning is the same as 'attn_dropout_implementation'.")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string &type) {
          PADDLE_ENFORCE_EQ(
              type == "downgrade_in_infer" || type == "upscale_in_train", true,
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
        });
    AddAttr<float>("ln_epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &ln_epsilon) {
          PADDLE_ENFORCE_EQ(ln_epsilon >= 0.0f && ln_epsilon <= 0.001f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' of the second LayerNorm in Fused "
                                "attention op should be between"
                                "0.0 and 0.001, But received [%s].",
                                ln_epsilon));
        });
376
    AddAttr<bool>("add_residual", "Whether to add residual.").SetDefault(true);
377 378 379 380
    AddAttr<int>(
        "ring_id",
        "ring id for tensor model parallel. distributed training and inference")
        .SetDefault(-1);
L
Li Min 已提交
381 382

    AddComment(R"DOC(
383 384 385
  The fused_attention operator is the same as following pseudo codes:

  // @input: [batch_size, seq_len, embed_dim] 
L
Li Min 已提交
386
  // @final_out: [batch_size, seq_len, num_heads, head_dim] 
387
  residual = input
L
Li Min 已提交
388
  if (pre_layernorm)
389 390 391
    query = layer_norm(input);
  out = compute_qkv(query) + qkv_bias;
  // fmha module
L
Li Min 已提交
392 393 394 395 396 397 398 399
  {
    out = transpose(out, perm=[2, 0, 3, 1, 4]);
    out = q * k^t;
    out = attn_mask + out;
    out = softmax(out);
    out = dropout(out);
    out = out * v;
    out = transpose(out, perm=[0, 2, 1, 3]);
L
Li Min 已提交
400
                
L
Li Min 已提交
401
  }
402 403 404 405 406 407 408 409
  // out linear
  out = linear(out);
  if add_residual:
    out = residual + dropout(out);
  else:
    out = dropout(out);
  if (!pre_layernorm)
    out = layer_norm(out);
L
Li Min 已提交
410 411 412 413
    )DOC");
  }
};

414 415 416 417 418
class FusedAttentionGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
419 420 421
    PADDLE_ENFORCE_EQ(ctx->Attrs().Get<bool>("is_test"), false,
                      platform::errors::InvalidArgument(
                          "GradOp is only callable when is_test is false"));
422

L
Li Min 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == false) {
      OP_INOUT_CHECK(ctx->HasInput("Ln2Mean"), "Input", "Ln2Mean",
                     "FusedAttentionGrad");
      OP_INOUT_CHECK(ctx->HasInput("Ln2Variance"), "Input", "Ln2Variance",
                     "FusedAttentionGrad");
      if (ctx->HasOutput(framework::GradVarName("Ln2Scale"))) {
        ctx->SetOutputDim(framework::GradVarName("Ln2Scale"),
                          ctx->GetInputDim("Ln2Scale"));
      }
      if (ctx->HasOutput(framework::GradVarName("Ln2Bias"))) {
        ctx->SetOutputDim(framework::GradVarName("Ln2Bias"),
                          ctx->GetInputDim("Ln2Bias"));
      }
    } else {
437 438 439 440
      OP_INOUT_CHECK(ctx->HasInput("LnMean"), "Input", "LnMean",
                     "FusedAttentionGrad");
      OP_INOUT_CHECK(ctx->HasInput("LnVariance"), "Input", "LnVariance",
                     "FusedAttentionGrad");
441 442 443
      OP_INOUT_CHECK(ctx->HasInput("LnOut"), "Input", "LnOut",
                     "FusedAttentionGrad");
    }
L
Li Min 已提交
444 445

    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedAttentionGrad");
446 447 448 449 450
    OP_INOUT_CHECK(ctx->HasInput("QKVW"), "Input", "QKVW",
                   "FusedAttentionGrad");
    OP_INOUT_CHECK(ctx->HasInput("OutLinearW"), "Input", "OutLinearW",
                   "FusedAttentionGrad");

451 452 453 454 455 456 457 458 459
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      if (ctx->HasOutput(framework::GradVarName("LnScale"))) {
        ctx->SetOutputDim(framework::GradVarName("LnScale"),
                          ctx->GetInputDim("LnScale"));
      }
      if (ctx->HasOutput(framework::GradVarName("LnBias"))) {
        ctx->SetOutputDim(framework::GradVarName("LnBias"),
                          ctx->GetInputDim("LnBias"));
      }
460 461 462 463
    }
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    }
464 465 466 467
    if (ctx->HasOutput(framework::GradVarName("OutLinearBias"))) {
      ctx->SetOutputDim(framework::GradVarName("OutLinearBias"),
                        ctx->GetInputDim("OutLinearBias"));
    }
468 469 470
    ctx->SetOutputDim(framework::GradVarName("OutLinearW"),
                      ctx->GetInputDim("OutLinearW"));
    ctx->SetOutputDim(framework::GradVarName("QKVW"), ctx->GetInputDim("QKVW"));
471 472 473 474
    if (ctx->HasOutput(framework::GradVarName("QKVBias"))) {
      ctx->SetOutputDim(framework::GradVarName("QKVBias"),
                        ctx->GetInputDim("QKVBias"));
    }
475

476 477 478
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      ctx->SetOutputDim(framework::GradVarName("LnOut"),
                        ctx->GetInputDim("LnOut"));
L
Li Min 已提交
479 480 481
    } else {
      ctx->SetOutputDim(framework::GradVarName("BiasDropoutResidualOut"),
                        ctx->GetInputDim("BiasDropoutResidualOut"));
482
    }
483 484 485 486 487 488 489 490 491 492 493 494
    ctx->SetOutputDim(framework::GradVarName("FMHAOut"),
                      ctx->GetInputDim("FMHAOut"));
    ctx->SetOutputDim(framework::GradVarName("QKTVOut"),
                      ctx->GetInputDim("QKTVOut"));
    ctx->SetOutputDim(framework::GradVarName("TransposeOut2"),
                      ctx->GetInputDim("TransposeOut2"));
    ctx->SetOutputDim(framework::GradVarName("QKOut"),
                      ctx->GetInputDim("QKOut"));
    ctx->SetOutputDim(framework::GradVarName("SoftmaxOut"),
                      ctx->GetInputDim("SoftmaxOut"));
    ctx->SetOutputDim(framework::GradVarName("AttnDropoutOut"),
                      ctx->GetInputDim("AttnDropoutOut"));
495 496 497 498 499

    if (ctx->HasOutput(framework::GradVarName("SrcMaskOut"))) {
      ctx->SetOutputDim(framework::GradVarName("SrcMaskOut"),
                        ctx->GetInputDim("SrcMaskOut"));
    }
500 501
    ctx->SetOutputDim(framework::GradVarName("QKVOut"),
                      ctx->GetInputDim("QKVOut"));
502 503 504 505
    if (ctx->HasOutput(framework::GradVarName("QKVBiasOut"))) {
      ctx->SetOutputDim(framework::GradVarName("QKVBiasOut"),
                        ctx->GetInputDim("QKVBiasOut"));
    }
506 507 508 509 510 511 512 513
    ctx->SetOutputDim(framework::GradVarName("OutLinearOut"),
                      ctx->GetInputDim("OutLinearOut"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input = ctx.Input<Tensor>("X");
514
    auto input_data_type = framework::TransToProtoVarType(input->dtype());
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

template <typename T>
class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("fused_attention_grad");
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

    // inputs x, parameters and their grad.
    op->SetInput("X", this->Input("X"));
    op->SetInput("QKVW", this->Input("QKVW"));
532 533 534 535 536 537 538 539 540

    if (this->HasInput("QKVBias")) {
      op->SetInput("QKVBias", this->Input("QKVBias"));
      op->SetOutput(framework::GradVarName("QKVBias"),
                    this->InputGrad("QKVBias"));
      op->SetInput("QKVBiasOut", this->Output("QKVBiasOut"));
      op->SetOutput(framework::GradVarName("QKVBiasOut"),
                    this->OutputGrad("QKVBiasOut"));
    }
541 542 543 544 545 546 547 548

    if (this->HasInput("SrcMask")) {
      op->SetInput("SrcMask", this->Input("SrcMask"));
      op->SetInput("SrcMaskOut", this->Output("SrcMaskOut"));
      op->SetOutput(framework::GradVarName("SrcMaskOut"),
                    this->OutputGrad("SrcMaskOut"));
    }

549
    op->SetInput("OutLinearW", this->Input("OutLinearW"));
550 551 552 553 554
    if (this->HasInput("OutLinearBias")) {
      op->SetInput("OutLinearBias", this->Input("OutLinearBias"));
      op->SetOutput(framework::GradVarName("OutLinearBias"),
                    this->InputGrad("OutLinearBias"));
    }
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569

    op->SetAttrMap(this->Attrs());
    bool is_pre_layer_norm =
        BOOST_GET_CONST(bool, op->GetAttr("pre_layer_norm"));
    if (is_pre_layer_norm) {
      if (this->HasInput("LnScale")) {
        op->SetInput("LnScale", this->Input("LnScale"));
        op->SetOutput(framework::GradVarName("LnScale"),
                      this->InputGrad("LnScale"));
      }
      if (this->HasInput("LnBias")) {
        op->SetInput("LnBias", this->Input("LnBias"));
        op->SetOutput(framework::GradVarName("LnBias"),
                      this->InputGrad("LnBias"));
      }
L
Li Min 已提交
570 571 572 573 574 575 576 577 578 579 580
    } else {
      if (this->HasInput("Ln2Scale")) {
        op->SetInput("Ln2Scale", this->Input("Ln2Scale"));
        op->SetOutput(framework::GradVarName("Ln2Scale"),
                      this->InputGrad("Ln2Scale"));
      }
      if (this->HasInput("Ln2Bias")) {
        op->SetInput("Ln2Bias", this->Input("Ln2Bias"));
        op->SetOutput(framework::GradVarName("Ln2Bias"),
                      this->InputGrad("Ln2Bias"));
      }
581 582 583 584
    }

    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("QKVW"), this->InputGrad("QKVW"));
585

586 587 588 589
    op->SetOutput(framework::GradVarName("OutLinearW"),
                  this->InputGrad("OutLinearW"));

    // use forward outputs as backward inputs.
590 591 592 593 594 595 596 597 598 599
    if (is_pre_layer_norm) {
      if (this->HasOutput("LnOut")) {
        op->SetInput("LnOut", this->Output("LnOut"));
      }
      if (this->HasOutput("LnMean")) {
        op->SetInput("LnMean", this->Output("LnMean"));
      }
      if (this->HasOutput("LnVariance")) {
        op->SetInput("LnVariance", this->Output("LnVariance"));
      }
L
Li Min 已提交
600 601 602 603 604
    } else {
      op->SetInput("Ln2Mean", this->Output("Ln2Mean"));
      op->SetInput("Ln2Variance", this->Output("Ln2Variance"));
      op->SetInput("BiasDropoutResidualOut",
                   this->Output("BiasDropoutResidualOut"));
605
    }
606
    op->SetInput("QKVOut", this->Output("QKVOut"));
607

608 609 610 611 612 613
    op->SetInput("TransposeOut2", this->Output("TransposeOut2"));
    op->SetInput("QKOut", this->Output("QKOut"));
    op->SetInput("QKTVOut", this->Output("QKTVOut"));
    op->SetInput("SoftmaxOut", this->Output("SoftmaxOut"));
    op->SetInput("AttnDropoutMaskOut", this->Output("AttnDropoutMaskOut"));
    op->SetInput("AttnDropoutOut", this->Output("AttnDropoutOut"));
614

615 616 617 618 619 620
    op->SetInput("FMHAOut", this->Output("FMHAOut"));
    op->SetInput("OutLinearOut", this->Output("OutLinearOut"));
    op->SetInput("DropoutMaskOut", this->Output("DropoutMaskOut"));
    op->SetInput("QKVOut", this->Output("QKVOut"));

    // backward outputs: dinput
621 622 623 624 625
    if (is_pre_layer_norm) {
      if (this->HasOutput("LnOut")) {
        op->SetOutput(framework::GradVarName("LnOut"),
                      this->OutputGrad("LnOut"));
      }
L
Li Min 已提交
626 627 628
    } else {
      op->SetOutput(framework::GradVarName("BiasDropoutResidualOut"),
                    this->OutputGrad("BiasDropoutResidualOut"));
629
    }
L
Li Min 已提交
630

631
    op->SetOutput(framework::GradVarName("QKVOut"), this->OutputGrad("QKVOut"));
632

633 634 635 636 637 638 639 640 641
    op->SetOutput(framework::GradVarName("QKTVOut"),
                  this->OutputGrad("QKTVOut"));
    op->SetOutput(framework::GradVarName("TransposeOut2"),
                  this->OutputGrad("TransposeOut2"));
    op->SetOutput(framework::GradVarName("QKOut"), this->OutputGrad("QKOut"));
    op->SetOutput(framework::GradVarName("SoftmaxOut"),
                  this->OutputGrad("SoftmaxOut"));
    op->SetOutput(framework::GradVarName("AttnDropoutOut"),
                  this->OutputGrad("AttnDropoutOut"));
642

643 644 645 646 647 648 649
    op->SetOutput(framework::GradVarName("FMHAOut"),
                  this->OutputGrad("FMHAOut"));
    op->SetOutput(framework::GradVarName("OutLinearOut"),
                  this->OutputGrad("OutLinearOut"));
  }
};

L
Li Min 已提交
650 651 652 653 654
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fused_attention, ops::FusedAttentionOp,
655 656 657 658
                  ops::FusedAttentionOpMaker,
                  ops::FusedAttentionGradOpMaker<paddle::framework::OpDesc>,
                  ops::FusedAttentionGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(fused_attention_grad, ops::FusedAttentionGradOp);
659 660 661 662 663 664 665 666

REGISTER_OP_VERSION(fused_attention)
    .AddCheckpoint(
        R"ROC(
              Add a new attribute [add_residual] )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "add_residual", "A flag to indicate whether to add residual.",
            true));