conv_cudnn_op.cu.cc 24.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

Y
Yi Wang 已提交
15 16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
18
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
Y
Yi Wang 已提交
19 20 21
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cudnn_helper.h"
K
Kexin Zhao 已提交
22
#include "paddle/fluid/platform/float16.h"
23
#include "paddle/fluid/platform/profiler.h"
武毅 已提交
24

Y
Yu Yang 已提交
25
DEFINE_bool(cudnn_deterministic, false,
C
chengduoZH 已提交
26 27
            "Whether allow using an autotuning algorithm for convolution "
            "operator. The autotuning algorithm may be non-deterministic. If "
Y
Yu Yang 已提交
28
            "true, the algorithm is deterministic.");
29 30 31 32 33
DEFINE_uint64(conv_workspace_size_limit, 4096,
              "cuDNN convolution workspace limit in MB unit.");
DEFINE_bool(cudnn_exhaustive_search, false,
            "Whether enable exhaustive search for cuDNN convolution or "
            "not, defalut is False.");
C
chengduoZH 已提交
34

武毅 已提交
35 36 37 38 39 40 41 42
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
K
update  
Kexin Zhao 已提交
43 44
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
武毅 已提交
45 46

template <typename T>
47
class CUDNNConvOpKernel : public framework::OpKernel<T> {
武毅 已提交
48 49
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
50
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
武毅 已提交
51
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
52
                   "It must use CUDAPlace.");
武毅 已提交
53 54 55 56 57 58 59 60
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
61 62
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
63 64
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
武毅 已提交
65 66 67 68 69 70 71 72 73 74 75

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
76 77 78 79 80 81 82
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
83
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
84 85 86
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
87
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
88 89 90
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
91

C
chengduoZH 已提交
92 93 94 95 96 97
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
98 99

    int input_channels = input->dims()[1];
武毅 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }
    int output_channels = filter->dims()[0];
    int output_height, output_width, output_depth;
    if (output->dims().size() == 5) {
      output_depth = output->dims()[2];
      output_height = output->dims()[3];
      output_width = output->dims()[4];
    } else {
      output_depth = 1;
      output_height = output->dims()[2];
      output_width = output->dims()[3];
    }
武毅 已提交
121

武毅 已提交
122 123
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
武毅 已提交
124
    int group_offset_out =
武毅 已提交
125
        output_channels / groups * output_height * output_width * output_depth;
武毅 已提交
126 127 128 129
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
130 131 132 133 134
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
          std::max(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
武毅 已提交
135
    }
136

武毅 已提交
137 138
    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
Q
QI JUN 已提交
139
    auto handle = dev_ctx.cudnn_handle();
140

141
    bool half_float = false;
142 143 144 145 146 147 148 149 150
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    // Tensor core is supported since the volta GPU and
    // is only enabled when input and filter data are float16
    if (dev_ctx.GetComputeCapability() >= 70 &&
        std::type_index(typeid(T)) ==
            std::type_index(typeid(platform::float16))) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
      // Currently tensor core is only enabled using this algo
K
Kexin Zhao 已提交
151
      algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
152
      half_float = true;
M
minqiyang 已提交
153
      VLOG(5) << "use cudnn_tensor_op_math";
K
Kexin Zhao 已提交
154
    } else {
155 156
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_DEFAULT_MATH));
M
minqiyang 已提交
157
      VLOG(5) << "NOT use cudnn_tensor_op_math";
K
Kexin Zhao 已提交
158
    }
159
#endif
160 161
    Tensor cudnn_workspace;
    void* cudnn_workspace_ptr = nullptr;
K
Kexin Zhao 已提交
162

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    auto x_dims = framework::vectorize(input->dims());
    auto f_dims = framework::vectorize(filter->dims());
    if ((!exhaustive_search) && (!half_float)) {
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
          handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
          workspace_size_limit, &algo));
      VLOG(3) << "cuDNN forward algo " << algo;
    } else if (exhaustive_search && (!half_float)) {
      AlgorithmsCache<cudnnConvolutionFwdAlgo_t>* algo_cache = nullptr;
      if (ctx.scope().FindVar(kCUDNNFwdAlgoCache)) {
        algo_cache =
            ctx.scope()
                .FindVar(kCUDNNFwdAlgoCache)
                ->GetMutable<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>();
      } else {
        algo_cache =
            const_cast<framework::Scope&>(ctx.scope())
                .Var(kCUDNNFwdAlgoCache)
                ->GetMutable<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>();
      }
184 185 186 187 188 189 190
      cudnn_workspace =
          ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
              framework::make_ddim(
                  {static_cast<int64_t>(workspace_size_limit)}),
              dev_ctx);
      cudnn_workspace_ptr = static_cast<void*>(cudnn_workspace.data<int8_t>());

191 192 193 194 195
      algo = algo_cache->GetAlgorithm(
          x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
            int returned_algo_count;
            std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
                fwd_perf_stat;
196 197 198 199 200 201 202 203

            CUDNN_ENFORCE(
                platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                    handle, cudnn_input_desc, input_data, cudnn_filter_desc,
                    filter_data, cudnn_conv_desc, cudnn_output_desc,
                    output_data, kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
                    fwd_perf_stat.data(), cudnn_workspace_ptr,
                    workspace_size_limit));
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

            VLOG(3) << "Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = fwd_perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return fwd_perf_stat[0].algo;
          });
      VLOG(3) << "choose algo " << algo;
    } else {
      PADDLE_ENFORCE(half_float,
                     "cuDNN exhaustive search doesn't support half float.");
    }

武毅 已提交
219
    // get workspace size able to allocate
W
Wu Yi 已提交
220
    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
武毅 已提交
221 222
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, algo, &workspace_size_in_bytes));
K
Kexin Zhao 已提交
223 224 225 226 227
    // It is possible for float16 on Volta GPU to allocate more memory than
    // the limit because the algo is overrided to use tensor core.
    PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit,
                      "workspace_size to be allocated exceeds the limit");

228 229 230 231 232 233 234 235 236
    // Allocate on GPU memory
    if (!cudnn_workspace_ptr) {
      cudnn_workspace =
          ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
              framework::make_ddim(
                  {static_cast<int64_t>(workspace_size_in_bytes)}),
              dev_ctx);
      cudnn_workspace_ptr = static_cast<void*>(cudnn_workspace.data<int8_t>());
    }
武毅 已提交
237
    // ------------------- cudnn conv forward ---------------------
K
update  
Kexin Zhao 已提交
238
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
239
    for (int i = 0; i < groups; i++) {
240 241 242 243 244
      CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
          handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
          cudnn_filter_desc, filter_data + i * group_offset_filter,
          cudnn_conv_desc, algo, cudnn_workspace_ptr, workspace_size_in_bytes,
          &beta, cudnn_output_desc, output_data + i * group_offset_out));
武毅 已提交
245 246 247 248 249
    }
  }
};

template <typename T>
250
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
武毅 已提交
251 252
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
253
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
武毅 已提交
254
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
255
                   "It must use CUDAPlace.");
武毅 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
270 271
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
272 273 274 275 276 277 278
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
    if (exhaustive_search && FLAGS_cudnn_deterministic) {
      PADDLE_THROW(
          "Cann't set exhaustive_search True and "
          "FLAGS_cudnn_deterministic True at same time.");
    }
武毅 已提交
279 280 281 282 283 284 285 286 287

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_grad_desc;

    ScopedFilterDescriptor filter_desc;
    ScopedFilterDescriptor filter_grad_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
288 289 290 291 292 293 294
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
295
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
296 297 298
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
299
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
300 301 302
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
303

C
chengduoZH 已提交
304 305
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
武毅 已提交
306
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
C
chengduoZH 已提交
307 308 309 310
        output_grad_desc.descriptor<T>(
            layout, framework::vectorize2int(output_grad->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
311

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    // Enable Tensor Core for cudnn backward
    if (dev_ctx.GetComputeCapability() >= 70 &&
        std::type_index(typeid(T)) ==
            std::type_index(typeid(platform::float16))) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
      VLOG(5) << "use cudnn_tensor_op_math for backward";
    } else {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_DEFAULT_MATH));
      VLOG(5) << "NOT use cudnn_tensor_op_math for backward";
    }
#endif

武毅 已提交
327
    int input_channels = input->dims()[1];
武毅 已提交
328 329 330 331 332 333 334 335 336 337 338
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }

武毅 已提交
339
    int output_grad_channels = filter->dims()[0];
武毅 已提交
340 341 342 343 344 345 346 347 348 349
    int output_grad_height, output_grad_width, output_grad_depth;
    if (input->dims().size() == 5) {
      output_grad_depth = output_grad->dims()[2];
      output_grad_height = output_grad->dims()[3];
      output_grad_width = output_grad->dims()[4];
    } else {
      output_grad_depth = 1;
      output_grad_height = output_grad->dims()[2];
      output_grad_width = output_grad->dims()[3];
    }
武毅 已提交
350

武毅 已提交
351 352 353 354
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
    int group_offset_out = output_grad_channels / groups * output_grad_height *
                           output_grad_width * output_grad_depth;
武毅 已提交
355 356 357 358 359 360
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn backward algorithm ---------------------
    cudnnConvolutionBwdDataAlgo_t data_algo;
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
    size_t workspace_size_in_bytes = 0, tmp_size = 0;
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
361 362 363 364 365
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
          std::max(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
武毅 已提交
366 367
    }

368 369 370 371 372 373 374 375 376 377 378
    Tensor cudnn_workspace;
    void* cudnn_workspace_ptr = nullptr;
    if ((input_data || filter_data) && exhaustive_search) {
      cudnn_workspace =
          ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
              framework::make_ddim(
                  {static_cast<int64_t>(workspace_size_limit)}),
              dev_ctx);
      cudnn_workspace_ptr = static_cast<void*>(cudnn_workspace.data<int8_t>());
    }

379 380
    auto x_dims = framework::vectorize(input->dims());
    auto f_dims = framework::vectorize(filter->dims());
Q
QI JUN 已提交
381
    auto handle = dev_ctx.cudnn_handle();
武毅 已提交
382
    if (input_grad) {
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
      if (exhaustive_search) {
        AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>* data_algo_cache;
        if (ctx.scope().FindVar(kCUDNNBwdDataAlgoCache)) {
          data_algo_cache =
              ctx.scope()
                  .FindVar(kCUDNNBwdDataAlgoCache)
                  ->GetMutable<
                      AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>();
        } else {
          data_algo_cache =
              const_cast<framework::Scope&>(ctx.scope())
                  .Var(kCUDNNBwdDataAlgoCache)
                  ->GetMutable<
                      AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>();
        }
399

400 401 402 403 404 405
        data_algo = data_algo_cache->GetAlgorithm(
            x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
              int returned_algo_count;
              std::array<cudnnConvolutionBwdDataAlgoPerf_t,
                         kNUM_CUDNN_BWD_DATA_ALGS>
                  data_perf_stat;
406 407 408 409 410 411 412 413 414

              CUDNN_ENFORCE(platform::dynload::
                                cudnnFindConvolutionBackwardDataAlgorithmEx(
                                    handle, cudnn_filter_desc, filter_data,
                                    cudnn_output_grad_desc, output_grad_data,
                                    cudnn_conv_desc, cudnn_input_desc,
                                    input_grad_data, kNUM_CUDNN_BWD_DATA_ALGS,
                                    &returned_algo_count, data_perf_stat.data(),
                                    cudnn_workspace_ptr, workspace_size_limit));
415 416 417 418 419 420 421 422 423 424 425 426 427

              VLOG(3) << "Perf result: (algo: stat, time, memory)";
              for (int i = 0; i < returned_algo_count; ++i) {
                const auto& stat = data_perf_stat[i];
                VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                        << " " << stat.memory;
              }
              return data_perf_stat[0].algo;
            });
        VLOG(3) << "cuDNN backward data algo " << data_algo;
      } else if (FLAGS_cudnn_deterministic) {
        data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      } else {
W
Wu Yi 已提交
428
        CUDNN_ENFORCE(
C
chengduoZH 已提交
429 430 431 432 433 434 435 436 437 438 439 440
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                handle, cudnn_filter_desc,
                // dyDesc: Handle to the previously initialized input
                // differential
                // tensor descriptor.
                cudnn_output_grad_desc, cudnn_conv_desc,
                // dxDesc: Handle to the previously initialized output tensor
                // descriptor.
                cudnn_input_desc,
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &data_algo));
      }
W
Wu Yi 已提交
441
      CUDNN_ENFORCE(
武毅 已提交
442 443
          platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
              handle, cudnn_filter_desc, cudnn_output_grad_desc,
武毅 已提交
444
              cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
武毅 已提交
445 446 447 448
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }

    if (filter_grad) {
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
      if (exhaustive_search) {
        AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>* f_algo_cache;
        if (ctx.scope().FindVar(kCUDNNBwdFilterAlgoCache)) {
          f_algo_cache =
              ctx.scope()
                  .FindVar(kCUDNNBwdFilterAlgoCache)
                  ->GetMutable<
                      AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>();
        } else {
          f_algo_cache =
              const_cast<framework::Scope&>(ctx.scope())
                  .Var(kCUDNNBwdFilterAlgoCache)
                  ->GetMutable<
                      AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>();
        }
465

466 467 468 469 470 471
        filter_algo = f_algo_cache->GetAlgorithm(
            x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
              int returned_algo_count;
              std::array<cudnnConvolutionBwdFilterAlgoPerf_t,
                         kNUM_CUDNN_BWD_FILTER_ALGS>
                  filter_perf_stat;
472 473 474 475 476 477 478 479 480 481

              CUDNN_ENFORCE(
                  platform::dynload::
                      cudnnFindConvolutionBackwardFilterAlgorithmEx(
                          handle, cudnn_input_desc, input_data,
                          cudnn_output_grad_desc, output_grad_data,
                          cudnn_conv_desc, cudnn_filter_desc, filter_grad_data,
                          kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count,
                          filter_perf_stat.data(), cudnn_workspace_ptr,
                          workspace_size_limit));
482 483 484 485 486 487
              return filter_perf_stat[0].algo;
            });
        VLOG(3) << "cuDNN backward filter algo " << filter_algo;
      } else if (FLAGS_cudnn_deterministic) {
        filter_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
      } else {
W
Wu Yi 已提交
488
        CUDNN_ENFORCE(
C
chengduoZH 已提交
489 490 491 492 493 494
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                handle, cudnn_input_desc, cudnn_output_grad_desc,
                cudnn_conv_desc, cudnn_filter_desc,
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &filter_algo));
      }
W
Wu Yi 已提交
495
      CUDNN_ENFORCE(
武毅 已提交
496 497 498 499 500
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
              cudnn_filter_desc, filter_algo, &tmp_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
501

502 503 504 505 506 507 508 509 510 511
    // ------------------- cudnn conv workspace ---------------------
    if (!cudnn_workspace_ptr) {
      cudnn_workspace =
          ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
              framework::make_ddim(
                  {static_cast<int64_t>(workspace_size_in_bytes)}),
              dev_ctx);
      cudnn_workspace_ptr = static_cast<void*>(cudnn_workspace.data<int8_t>());
    }

武毅 已提交
512
    // ------------------- cudnn conv backward data ---------------------
K
update  
Kexin Zhao 已提交
513
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
514 515
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
516 517
      // Because beta is zero, it is unnecessary to reset input_grad.

武毅 已提交
518
      for (int i = 0; i < groups; i++) {
519 520 521 522 523 524
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
            handle, &alpha, cudnn_filter_desc,
            filter_data + i * group_offset_filter, cudnn_output_grad_desc,
            output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo,
            cudnn_workspace_ptr, workspace_size_in_bytes, &beta,
            cudnn_input_desc, input_grad_data + i * group_offset_in));
武毅 已提交
525 526 527 528 529
      }
    }
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
530
      // Because beta is zero, it is unnecessary to reset filter_grad.
武毅 已提交
531
      for (int i = 0; i < groups; i++) {
532 533 534 535 536 537
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
            handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
            cudnn_output_grad_desc, output_grad_data + i * group_offset_out,
            cudnn_conv_desc, filter_algo, cudnn_workspace_ptr,
            workspace_size_in_bytes, &beta, cudnn_filter_desc,
            filter_grad_data + i * group_offset_filter));
武毅 已提交
538 539 540 541 542 543 544 545
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

K
Kexin Zhao 已提交
546 547
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
548
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
549
                   paddle::operators::CUDNNConvOpKernel<double>,
K
Kexin Zhao 已提交
550
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
551
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
552
                   paddle::operators::CUDNNConvGradOpKernel<float>,
C
chengduo 已提交
553 554
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
555

K
Kexin Zhao 已提交
556
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
557
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
558 559
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
560
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
561
                   paddle::operators::CUDNNConvGradOpKernel<float>,
562
                   paddle::operators::CUDNNConvGradOpKernel<double>);