conv_transpose_op.cc 23.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_transpose_op.h"
S
sneaxiy 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17 18
#include <string>
#include <vector>
19
#include "paddle/fluid/framework/data_layout.h"
20
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
21

J
Jacek Czaja 已提交
22 23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
26 27 28
namespace paddle {
namespace operators {

29 30
using DataLayout = framework::DataLayout;

C
chengduoZH 已提交
31
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
32 33 34 35 36 37
  PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
                    "Input(Input) of ConvTransposeOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Filter"), true,
                    "Input(Filter) of ConvTransposeOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true,
                    "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
38 39 40

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
41 42
  std::vector<int> output_size =
      ctx->Attrs().Get<std::vector<int>>("output_size");
C
chengduoZH 已提交
43 44
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
45
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
Y
Yibing Liu 已提交
46
  int groups = ctx->Attrs().Get<int>("groups");
47 48
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
49 50
  const std::string data_layout_str =
      ctx->Attrs().Get<std::string>("data_format");
51 52 53
  const DataLayout data_layout =
      this->IsMKLDNNType() ? DataLayout::kNCHW
                           : framework::StringToDataLayout(data_layout_str);
C
chengduoZH 已提交
54

55
  PADDLE_ENFORCE_EQ(in_dims.size() == 4 || in_dims.size() == 5, true,
56 57 58 59 60 61 62 63 64 65 66 67
                    "ShapeError: input of Op(conv_transpose) should be 4-D or "
                    "5-D Tensor. But received: %u-D Tensor, "
                    "the shape of input is [%s]",
                    in_dims.size(), in_dims);
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "ShapeError: the input's dimension size and filter's dimension size of "
      "Op (conv_transpose) should be equal. But received: the shape of input "
      "is [%s], the dimension size of input is [%d], the shape of filter is "
      "[%s],  the dimension size of filter is [%d]. ",
      in_dims, in_dims.size(), filter_dims, filter_dims.size());
  int in_sub_stride_size = in_dims.size() - strides.size();
68 69
  PADDLE_ENFORCE_EQ(
      in_dims.size() - strides.size(), 2U,
70 71 72 73 74
      "ShapeError: the input's dimension size minus Attr(stride)'s size must "
      "be euqal to 2 for Op(conv_transpose). But received: [%d], the "
      "input's dimension size is [%d], the shape of input "
      "is [%s], the Attr(stride)'s size is [%d].",
      in_sub_stride_size, in_dims.size(), in_dims, strides.size());
75
  if (output_size.size())
76 77 78 79
    PADDLE_ENFORCE_EQ(
        output_size.size(), strides.size(),
        "The Attr(output_size) and Attr(stride) of Op(conv_transpose) "
        "should be the same.");
C
chengduoZH 已提交
80

81
  const int64_t C =
82
      (data_layout != DataLayout::kNHWC ? in_dims[1]
83 84 85
                                        : in_dims[in_dims.size() - 1]);
  PADDLE_ENFORCE_EQ(
      C, filter_dims[0],
86 87 88 89 90 91
      "ShapeError: The number of input channels should be equal to filter "
      "channels for Op(conv_transpose). But received: the input's channels is "
      "[%d], the shape of input is [%s], the filter's channels is [%d], the "
      "shape of filter is [%s]. The data_format is %s."
      "The error may come from wrong data_format setting.",
      C, in_dims, filter_dims[0], filter_dims, data_layout_str);
92 93

  framework::DDim in_data_dims;
94
  if (data_layout != DataLayout::kNHWC) {
95 96 97 98 99 100 101 102 103 104 105
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  }
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
106
  if (data_layout != DataLayout::kNHWC) {
107 108
    output_shape.push_back(filter_dims[1] * groups);
  }
109
  const int offset = (data_layout != DataLayout::kNHWC ? 2 : 1);
C
chengduoZH 已提交
110
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
111
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
112 113 114 115 116
    auto infer_shape = (ctx->IsRuntime() || in_dims[i + offset] > 0)
                           ? (in_dims[i + offset] - 1) * strides[i] -
                                 paddings[2 * i] - paddings[2 * i + 1] +
                                 filter_extent
                           : -1;
117
    if (output_size.size()) {
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
      if (ctx->IsRuntime()) {
        PADDLE_ENFORCE_GE(
            output_size[i], infer_shape,
            platform::errors::InvalidArgument(
                "output_size of Op(ConvTransposeOp) should not be "
                "less than the infered output size. But received output_size = "
                "[%s], whose dim %d is less than the infered output size [%s]",
                framework::make_ddim(output_size), i, infer_shape));
        PADDLE_ENFORCE_LT(
            output_size[i], infer_shape + strides[i],
            platform::errors::InvalidArgument(
                "output_size of Op(ConvTransposeOp) should be less "
                "than infered size + stride. But received output_size = [%s], "
                "whose dim %d is not less than the infered output size (%d) + "
                "stride (%d) = %d",
                framework::make_ddim(output_size), i, infer_shape, strides[i],
                infer_shape + strides[i]));
      }
136 137 138 139
      output_shape.push_back(output_size[i]);
    } else {
      output_shape.push_back(infer_shape);
    }
C
chengduoZH 已提交
140
  }
141 142 143
  if (data_layout == DataLayout::kNHWC) {
    output_shape.push_back(filter_dims[1] * groups);
  }
C
chengduoZH 已提交
144
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
145 146
}

147 148
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
J
Jacek Czaja 已提交
149
  framework::LibraryType library_{framework::LibraryType::kPlain};
150
  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
151
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
152
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
153 154 155 156
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
J
Jacek Czaja 已提交
157 158 159
    if (use_cudnn) {
      library_ = framework::LibraryType::kCUDNN;
    }
C
chengduoZH 已提交
160 161
  }
#endif
J
Jacek Czaja 已提交
162 163 164 165 166
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
167
  }
J
Jacek Czaja 已提交
168
#endif
169

170 171 172
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_);
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
framework::OpKernelType ConvTransposeOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(),
          framework::StringToDataLayout(data_format));
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
201
void Conv2DTransposeOpMaker::Make() {
J
Jacek Czaja 已提交
202 203 204 205
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
206 207 208 209 210
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator. "
           "The format of input tensor is NCHW or NHWC. Where N is batch size, "
           "C is the number of input channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
211 212 213 214 215 216 217 218
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
219 220 221 222 223 224
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();

C
chengduoZH 已提交
225
  AddOutput("Output",
C
chengduoZH 已提交
226
            "(Tensor) The output tensor of convolution transpose operator. "
227
            "The format of output tensor is the same as input tensor.");
228 229 230 231
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
Y
Yibing Liu 已提交
232 233 234 235
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution "
               "transpose operator. ")
      .SetDefault(1);
C
chengduoZH 已提交
236 237 238 239 240
  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
241 242
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
243
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
244
      "convolution transpose operator.")
C
chengduoZH 已提交
245
      .SetDefault({1, 1});
C
chengduoZH 已提交
246 247
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
248
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
249
      "transpose operator.")
C
chengduoZH 已提交
250
      .SetDefault({0, 0});
251 252 253 254
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
J
Jacek Czaja 已提交
255 256 257 258 259
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
260 261 262 263 264 265 266 267
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
268 269 270 271
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
272 273 274 275 276 277 278 279 280
      "Specify that the data format of the input and output data is "
      "channel_first or channel_last.")
      .SetDefault("NCHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
281 282 283 284 285
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
T
tianshuo78520a 已提交
286
               "better hardward. This size should be carefully set.")
287
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
C
chengduoZH 已提交
288
  AddComment(R"DOC(
C
chengduoZH 已提交
289 290
Convolution2D Transpose Operator.

C
chengduoZH 已提交
291
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
292
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
293
parameters is checked in the infer-shape.
294
Input(Input) and output(Output) are in NCHW or NHWC format. Where N is batchsize, C is the
C
chengduoZH 已提交
295 296 297 298 299 300
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
301
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
302

Y
update  
yi.wu 已提交
303
For an example:
C
chengduoZH 已提交
304
  Input:
C
chengduoZH 已提交
305 306
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
307
  Output:
C
chengduoZH 已提交
308 309 310
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
311 312
       H_{out} = (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom  + dilations[0] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[1] - pad_width_left  - pad_width_right + dilations[1] * (W_f - 1) + 1
C
chengduoZH 已提交
313
  $$
C
chengduoZH 已提交
314 315 316
)DOC");
}

Y
Yu Yang 已提交
317
void Conv3DTransposeOpMaker::Make() {
318 319 320 321 322 323
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator."
      "The format of input tensor is NCDHW or NDHWC. Where N is batch "
      "size, C is the number of channels, D is the depth of the feature, "
      "H is the height of the feature, and W is the width of the feature.");
C
chengduoZH 已提交
324 325
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
326 327 328
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
329 330
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
331
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
332
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
333 334
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
335
            "The format of output tensor is the same as input tensor."
C
chengduoZH 已提交
336
            "Where N is batch size, C is "
C
chengduoZH 已提交
337 338
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
339 340 341 342
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
C
chengduoZH 已提交
343 344 345 346 347 348
  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
349
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
350
                            "(vector<int> default:{1, 1, 1}), the "
351
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
352
                            "convolution transpose operator.")
C
chengduoZH 已提交
353
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
354
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
355
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
356
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
357
      .SetDefault({0, 0, 0});
358 359 360 361
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution3d "
               "transpose operator. ")
      .SetDefault(1);
362 363 364 365
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
366 367 368
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
369 370 371 372
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
373 374 375 376 377 378 379 380 381
      "Specify that the data format of the input and output data is "
      "channel_first or channel_last.")
      .SetDefault("NCHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
382 383 384 385 386
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
T
tianshuo78520a 已提交
387
               "better hardward. This size should be carefully set.")
388
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
C
chengduoZH 已提交
389
  AddComment(R"DOC(
C
chengduoZH 已提交
390 391
Convolution3D Transpose Operator.

C
chengduoZH 已提交
392
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
393
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
394
parameters is checked in the infer-shape.
395
Input(Input) and output(Output) are in NCDHW or NDHWC format. Where N is batch size, C is the
C
chengduoZH 已提交
396 397 398 399 400 401 402
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
403
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
404

405
Example:
C
chengduoZH 已提交
406
  Input:
C
chengduoZH 已提交
407 408
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
409
  Output:
C
chengduoZH 已提交
410 411 412
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
413 414 415
       D_{out} = (D_{in} - 1) * strides[0] - pad_depth_front - pad_depth_back + dilations[0] * (D_f - 1) + 1 \\
       H_{out} = (H_{in} - 1) * strides[1] - pad_height_top  - pad_height_bottom + dilations[1] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[2] - pad_width_left - pad_width_right + dilations[2] * (W_f - 1) + 1
C
chengduoZH 已提交
416
  $$
C
chengduoZH 已提交
417 418 419
)DOC");
}

C
chengduoZH 已提交
420
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
421 422 423 424 425 426 427 428 429 430
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

431 432 433
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
434
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
435 436 437 438 439 440
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
441 442 443 444 445 446 447
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

448
  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
449 450 451
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_);
452 453
}

H
hong 已提交
454 455
template <typename T>
class ConvTransposeGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
456
 public:
H
hong 已提交
457
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
458 459

 protected:
460
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
461 462 463 464 465 466 467 468
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    if (this->HasInput("Bias")) {
      op->SetInput("Bias", this->Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
S
sneaxiy 已提交
469
    }
H
hong 已提交
470 471
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
472 473 474
  }
};

C
chengduoZH 已提交
475 476 477 478
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
479

480
// conv2d_transpose
Y
Yang Yang 已提交
481 482
REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
H
hong 已提交
483 484
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
485
REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
486 487

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
488
    conv2d_transpose,
Q
QI JUN 已提交
489 490
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
491
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
492
    conv2d_transpose_grad,
Q
QI JUN 已提交
493 494 495
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
496

497
// conv3d_transpose
Y
Yang Yang 已提交
498 499
REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp,
                  ops::Conv3DTransposeOpMaker,
H
hong 已提交
500 501
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
502
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
503 504

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
505
    conv3d_transpose,
Q
QI JUN 已提交
506 507
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
508
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
509
    conv3d_transpose_grad,
Q
QI JUN 已提交
510 511 512
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
513 514 515 516

// depthwise conv2d_transpose
REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
H
hong 已提交
517 518
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
519 520 521 522 523 524 525 526 527 528 529
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad);

REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose_grad,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);