conv_transpose_op.cc 17.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_transpose_op.h"
S
Siddharth Goyal 已提交
16 17
#include <string>
#include <vector>
C
chengduoZH 已提交
18

J
Jacek Czaja 已提交
19 20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
23 24 25
namespace paddle {
namespace operators {

C
chengduoZH 已提交
26
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
27
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
28
                 "Input(Input) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
29
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
30
                 "Input(Filter) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
31
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
32
                 "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
33 34 35

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
36 37
  std::vector<int> output_size =
      ctx->Attrs().Get<std::vector<int>>("output_size");
C
chengduoZH 已提交
38 39
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
40
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
Y
Yibing Liu 已提交
41
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
42

C
chengduoZH 已提交
43 44 45 46 47 48 49 50
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "ConvTransposeOp intput should be 4-D or 5-D tensor.");
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
  PADDLE_ENFORCE(in_dims.size() - strides.size() == 2U,
                 "ConvTransposeOp input dimension and strides dimension should "
                 "be consistent.");
51 52 53 54
  if (output_size.size())
    PADDLE_ENFORCE_EQ(output_size.size(), strides.size(),
                      "ConvTransposeOp output_size dimension and strides "
                      "dimension should be the same.");
C
chengduoZH 已提交
55
  PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
C
chengduoZH 已提交
56
                    "ConvTransposeOp paddings dimension and strides "
C
chengduoZH 已提交
57
                    "dimension should be the same.");
C
chengduoZH 已提交
58 59 60
  PADDLE_ENFORCE_EQ(paddings.size(), dilations.size(),
                    "ConvTransposeOp paddings dimension and dilations "
                    "dimension should be the same.");
C
chengduoZH 已提交
61
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
Y
Yibing Liu 已提交
62
                    "In ConvTransposeOp, The number of input channels should "
63
                    "be equal to the number of filter's channels.");
C
chengduoZH 已提交
64

Y
Yibing Liu 已提交
65
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[1] * groups});
C
chengduoZH 已提交
66
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
67
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
68 69 70 71 72 73 74 75 76 77 78
    auto infer_shape =
        (in_dims[i + 2] - 1) * strides[i] - 2 * paddings[i] + filter_extent;
    if (output_size.size()) {
      PADDLE_ENFORCE((output_size[i] >= infer_shape &&
                      output_size[i] < infer_shape + strides[i]),
                     "ConvTransposeOp output_size should be "
                     "in appropriate range.");
      output_shape.push_back(output_size[i]);
    } else {
      output_shape.push_back(infer_shape);
    }
C
chengduoZH 已提交
79
  }
C
chengduoZH 已提交
80
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
81 82
}

83 84
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
J
Jacek Czaja 已提交
85 86 87
  framework::LibraryType library_{framework::LibraryType::kPlain};
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
88
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
89
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
90 91 92 93
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
J
Jacek Czaja 已提交
94 95 96
    if (use_cudnn) {
      library_ = framework::LibraryType::kCUDNN;
    }
C
chengduoZH 已提交
97 98
  }
#endif
J
Jacek Czaja 已提交
99 100 101 102 103
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
104
  }
J
Jacek Czaja 已提交
105
#endif
106

Y
Yu Yang 已提交
107 108
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout_, library_);
109 110
}

Y
Yu Yang 已提交
111
void Conv2DTransposeOpMaker::Make() {
J
Jacek Czaja 已提交
112 113 114 115
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
116 117 118 119
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator. "
      "The format of input tensor is NCHW. Where N is batch size, C is the "
C
chengduoZH 已提交
120 121
      "number of input channels, H is the height of the feature, and "
      "W is the width of the feature.");
C
chengduoZH 已提交
122 123 124 125 126 127 128 129
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
C
chengduoZH 已提交
130
  AddOutput("Output",
C
chengduoZH 已提交
131
            "(Tensor) The output tensor of convolution transpose operator. "
C
chengduoZH 已提交
132
            "The format of output tensor is also NCHW.");
133 134 135 136
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
Y
Yibing Liu 已提交
137 138 139 140
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution "
               "transpose operator. ")
      .SetDefault(1);
C
chengduoZH 已提交
141 142 143 144 145
  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
146 147
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
148
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
149
      "convolution transpose operator.")
C
chengduoZH 已提交
150
      .SetDefault({1, 1});
C
chengduoZH 已提交
151 152
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
153
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
154
      "transpose operator.")
C
chengduoZH 已提交
155
      .SetDefault({0, 0});
156 157 158 159
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
J
Jacek Czaja 已提交
160 161 162 163 164
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
      .SetDefault(4096);
C
chengduoZH 已提交
180
  AddComment(R"DOC(
C
chengduoZH 已提交
181 182
Convolution2D Transpose Operator.

C
chengduoZH 已提交
183
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
184
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
185
parameters is checked in the infer-shape.
C
chengduoZH 已提交
186 187 188 189 190 191 192
Input(Input) and output(Output) are in NCHW format. Where N is batchsize, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
193
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
194

Y
update  
yi.wu 已提交
195
For an example:
C
chengduoZH 已提交
196
  Input:
C
chengduoZH 已提交
197 198
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
199
  Output:
C
chengduoZH 已提交
200 201 202
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
203 204
       H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
C
chengduoZH 已提交
205
  $$
C
chengduoZH 已提交
206 207 208
)DOC");
}

Y
Yu Yang 已提交
209
void Conv3DTransposeOpMaker::Make() {
C
chengduoZH 已提交
210 211 212 213 214 215
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator."
           "The format of input tensor is NCDHW. Where N is batch size, C is "
           "the number of channels, D is the depth of the feature, H is the "
           "height of the feature, and "
           "W is the width of the feature.");
C
chengduoZH 已提交
216 217
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
218 219 220
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
221 222
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
223
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
224
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
225 226 227 228
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
C
chengduoZH 已提交
229 230
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
231 232 233 234
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
C
chengduoZH 已提交
235 236 237 238 239 240
  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
241
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
242
                            "(vector<int> default:{1, 1, 1}), the "
243
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
244
                            "convolution transpose operator.")
C
chengduoZH 已提交
245
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
246
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
247
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
248
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
249
      .SetDefault({0, 0, 0});
250 251 252 253
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution3d "
               "transpose operator. ")
      .SetDefault(1);
254 255 256 257
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
258 259 260
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
      .SetDefault(4096);
C
chengduoZH 已提交
276
  AddComment(R"DOC(
C
chengduoZH 已提交
277 278
Convolution3D Transpose Operator.

C
chengduoZH 已提交
279
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
280
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
281
parameters is checked in the infer-shape.
C
chengduoZH 已提交
282 283 284 285 286 287 288 289
Input(Input) and output(Output) are in NCDHW format. Where N is batch size, C is the
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
290
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
291

292
Example:
C
chengduoZH 已提交
293
  Input:
C
chengduoZH 已提交
294 295
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
296
  Output:
C
chengduoZH 已提交
297 298 299
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
300 301 302
       D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\
       H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
C
chengduoZH 已提交
303
  $$
C
chengduoZH 已提交
304 305 306
)DOC");
}

C
chengduoZH 已提交
307
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
308 309 310 311 312 313 314 315 316 317
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

318 319 320
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
321
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
322 323 324 325 326 327
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
328 329 330 331 332 333 334 335 336
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
Y
Yu Yang 已提交
337 338
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout_, library_);
339 340
}

C
chengduoZH 已提交
341 342 343 344
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
345

346
// conv2d_transpose
Y
Yang Yang 已提交
347 348
REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
349 350
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
351 352

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
353
    conv2d_transpose,
Q
QI JUN 已提交
354 355
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
356
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
357
    conv2d_transpose_grad,
Q
QI JUN 已提交
358 359 360
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
361

362
// conv3d_transpose
Y
Yang Yang 已提交
363 364
REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp,
                  ops::Conv3DTransposeOpMaker,
365 366
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
367 368

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
369
    conv3d_transpose,
Q
QI JUN 已提交
370 371
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
372
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
373
    conv3d_transpose_grad,
Q
QI JUN 已提交
374 375 376
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

// depthwise conv2d_transpose
REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad);

REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose_grad,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);