test_detection.py 25.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16 17
import unittest

18 19
import numpy as np
from unittests.test_imperative_base import new_program_scope
20

P
pangyoki 已提交
21
import paddle
22 23 24 25 26
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid import core
from paddle.fluid.dygraph import base
from paddle.fluid.framework import Program, program_guard
P
pangyoki 已提交
27 28

paddle.enable_static()
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield

56 57 58
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
59 60
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
        exe.run(fluid.default_startup_program())
61 62 63 64 65 66
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
67 68 69 70

    @contextlib.contextmanager
    def dynamic_graph(self, force_to_use_cpu=False):
        with fluid.dygraph.guard(
71 72
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
73 74 75
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield
76 77


R
ruri 已提交
78 79
class TestDensityPriorBox(unittest.TestCase):
    def test_density_prior_box(self):
80 81 82
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
83 84 85
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32'
            )
86
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
87 88 89 90 91 92 93 94
            box, var = layers.density_prior_box(
                input=conv1,
                image=images,
                densities=[3, 4],
                fixed_sizes=[50.0, 60.0],
                fixed_ratios=[1.0],
                clip=True,
            )
95 96 97
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[-1] == 4
R
ruri 已提交
98 99


100 101 102
class TestAnchorGenerator(unittest.TestCase):
    def test_anchor_generator(self):
        data_shape = [3, 224, 224]
103 104 105
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32'
        )
106 107 108 109 110 111 112
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        anchor, var = fluid.layers.anchor_generator(
            input=conv1,
            anchor_sizes=[64, 128, 256, 512],
            aspect_ratios=[0.5, 1.0, 2.0],
            variance=[0.1, 0.1, 0.2, 0.2],
            stride=[16.0, 16.0],
113 114
            offset=0.5,
        )
115 116 117 118 119
        assert len(anchor.shape) == 4
        assert anchor.shape == var.shape
        assert anchor.shape[3] == 4


120
class TestGenerateProposalLabels(unittest.TestCase):
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    def check_out(self, outs):
        rois = outs[0]
        labels_int32 = outs[1]
        bbox_targets = outs[2]
        bbox_inside_weights = outs[3]
        bbox_outside_weights = outs[4]
        assert rois.shape[1] == 4
        assert rois.shape[0] == labels_int32.shape[0]
        assert rois.shape[0] == bbox_targets.shape[0]
        assert rois.shape[0] == bbox_inside_weights.shape[0]
        assert rois.shape[0] == bbox_outside_weights.shape[0]
        assert bbox_targets.shape[1] == 4 * self.class_nums
        assert bbox_inside_weights.shape[1] == 4 * self.class_nums
        assert bbox_outside_weights.shape[1] == 4 * self.class_nums
        if len(outs) == 6:
            max_overlap_with_gt = outs[5]
            assert max_overlap_with_gt.shape[0] == rois.shape[0]

139
    def test_generate_proposal_labels(self):
140 141
        program = Program()
        with program_guard(program):
142 143 144 145 146 147 148 149 150 151 152 153
            rpn_rois = fluid.data(
                name='rpn_rois', shape=[4, 4], dtype='float32', lod_level=1
            )
            gt_classes = fluid.data(
                name='gt_classes', shape=[6], dtype='int32', lod_level=1
            )
            is_crowd = fluid.data(
                name='is_crowd', shape=[6], dtype='int32', lod_level=1
            )
            gt_boxes = fluid.data(
                name='gt_boxes', shape=[6, 4], dtype='float32', lod_level=1
            )
154
            im_info = fluid.data(name='im_info', shape=[1, 3], dtype='float32')
155 156 157
            max_overlap = fluid.data(
                name='max_overlap', shape=[4], dtype='float32', lod_level=1
            )
158
            self.class_nums = 5
159
            outs = fluid.layers.generate_proposal_labels(
160 161 162 163 164 165 166 167 168 169 170
                rpn_rois=rpn_rois,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_boxes=gt_boxes,
                im_info=im_info,
                batch_size_per_im=2,
                fg_fraction=0.5,
                fg_thresh=0.5,
                bg_thresh_hi=0.5,
                bg_thresh_lo=0.0,
                bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
171 172
                class_nums=self.class_nums,
            )
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
            outs_1 = fluid.layers.generate_proposal_labels(
                rpn_rois=rpn_rois,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_boxes=gt_boxes,
                im_info=im_info,
                batch_size_per_im=2,
                fg_fraction=0.5,
                fg_thresh=0.5,
                bg_thresh_hi=0.5,
                bg_thresh_lo=0.0,
                bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
                class_nums=self.class_nums,
                is_cascade_rcnn=True,
                max_overlap=max_overlap,
188 189
                return_max_overlap=True,
            )
190 191 192

            self.check_out(outs)
            self.check_out(outs_1)
193
            rois = outs[0]
194 195


196 197 198 199
class TestGenerateMaskLabels(unittest.TestCase):
    def test_generate_mask_labels(self):
        program = Program()
        with program_guard(program):
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            gt_classes = layers.data(
                name='gt_classes',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            is_crowd = layers.data(
                name='is_crowd',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            gt_segms = layers.data(
                name='gt_segms',
                shape=[20, 2],
                dtype='float32',
                lod_level=3,
                append_batch_size=False,
            )
            rois = layers.data(
                name='rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            labels_int32 = layers.data(
                name='labels_int32',
                shape=[4, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
242 243
            num_classes = 5
            resolution = 14
244 245 246 247 248 249 250 251 252 253
            outs = fluid.layers.generate_mask_labels(
                im_info=im_info,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_segms=gt_segms,
                rois=rois,
                labels_int32=labels_int32,
                num_classes=num_classes,
                resolution=resolution,
            )
254 255 256 257 258
            mask_rois, roi_has_mask_int32, mask_int32 = outs
            assert mask_rois.shape[1] == 4
            assert mask_int32.shape[1] == num_classes * resolution * resolution


C
chengduoZH 已提交
259 260
class TestMultiBoxHead(unittest.TestCase):
    def test_multi_box_head(self):
261
        data_shape = [3, 224, 224]
C
chengduoZH 已提交
262
        mbox_locs, mbox_confs, box, var = self.multi_box_head_output(data_shape)
263 264 265 266

        assert len(box.shape) == 2
        assert box.shape == var.shape
        assert box.shape[1] == 4
Y
Yuan Gao 已提交
267
        assert mbox_locs.shape[1] == mbox_confs.shape[1]
C
chengduoZH 已提交
268 269

    def multi_box_head_output(self, data_shape):
270 271 272
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32'
        )
273 274 275 276 277
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        conv2 = fluid.layers.conv2d(conv1, 3, 3, 2)
        conv3 = fluid.layers.conv2d(conv2, 3, 3, 2)
        conv4 = fluid.layers.conv2d(conv3, 3, 3, 2)
        conv5 = fluid.layers.conv2d(conv4, 3, 3, 2)
C
chengduoZH 已提交
278

C
chengduoZH 已提交
279
        mbox_locs, mbox_confs, box, var = layers.multi_box_head(
C
chengduoZH 已提交
280 281
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
C
chengduoZH 已提交
282
            num_classes=21,
C
chengduoZH 已提交
283 284
            min_ratio=20,
            max_ratio=90,
285 286 287 288 289 290 291 292
            aspect_ratios=[
                [2.0],
                [2.0, 3.0],
                [2.0, 3.0],
                [2.0, 3.0],
                [2.0],
                [2.0],
            ],
C
chengduoZH 已提交
293 294 295
            base_size=300,
            offset=0.5,
            flip=True,
296 297
            clip=True,
        )
C
chengduoZH 已提交
298

C
chengduoZH 已提交
299
        return mbox_locs, mbox_confs, box, var
C
chengduoZH 已提交
300 301


302
class TestGenerateProposals(LayerTest):
303
    def test_generate_proposals(self):
304 305 306
        scores_np = np.random.rand(2, 3, 4, 4).astype('float32')
        bbox_deltas_np = np.random.rand(2, 12, 4, 4).astype('float32')
        im_info_np = np.array([[8, 8, 0.5], [6, 6, 0.5]]).astype('float32')
307 308 309
        anchors_np = np.reshape(np.arange(4 * 4 * 3 * 4), [4, 4, 3, 4]).astype(
            'float32'
        )
310 311 312
        variances_np = np.ones((4, 4, 3, 4)).astype('float32')

        with self.static_graph():
313 314 315 316 317 318
            scores = fluid.data(
                name='scores', shape=[2, 3, 4, 4], dtype='float32'
            )
            bbox_deltas = fluid.data(
                name='bbox_deltas', shape=[2, 12, 4, 4], dtype='float32'
            )
319
            im_info = fluid.data(name='im_info', shape=[2, 3], dtype='float32')
320 321 322 323 324 325
            anchors = fluid.data(
                name='anchors', shape=[4, 4, 3, 4], dtype='float32'
            )
            variances = fluid.data(
                name='var', shape=[4, 4, 3, 4], dtype='float32'
            )
326 327 328 329 330 331 332 333
            rois, roi_probs, rois_num = fluid.layers.generate_proposals(
                scores,
                bbox_deltas,
                im_info,
                anchors,
                variances,
                pre_nms_top_n=10,
                post_nms_top_n=5,
334 335 336 337 338 339 340
                return_rois_num=True,
            )
            (
                rois_stat,
                roi_probs_stat,
                rois_num_stat,
            ) = self.get_static_graph_result(
341 342 343 344 345
                feed={
                    'scores': scores_np,
                    'bbox_deltas': bbox_deltas_np,
                    'im_info': im_info_np,
                    'anchors': anchors_np,
346
                    'var': variances_np,
347 348
                },
                fetch_list=[rois, roi_probs, rois_num],
349 350
                with_lod=False,
            )
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

        with self.dynamic_graph():
            scores_dy = base.to_variable(scores_np)
            bbox_deltas_dy = base.to_variable(bbox_deltas_np)
            im_info_dy = base.to_variable(im_info_np)
            anchors_dy = base.to_variable(anchors_np)
            variances_dy = base.to_variable(variances_np)
            rois, roi_probs, rois_num = fluid.layers.generate_proposals(
                scores_dy,
                bbox_deltas_dy,
                im_info_dy,
                anchors_dy,
                variances_dy,
                pre_nms_top_n=10,
                post_nms_top_n=5,
366 367
                return_rois_num=True,
            )
368 369 370 371
            rois_dy = rois.numpy()
            roi_probs_dy = roi_probs.numpy()
            rois_num_dy = rois_num.numpy()

372 373 374
        np.testing.assert_array_equal(np.array(rois_stat), rois_dy)
        np.testing.assert_array_equal(np.array(roi_probs_stat), roi_probs_dy)
        np.testing.assert_array_equal(np.array(rois_num_stat), rois_num_dy)
375 376


J
jerrywgz 已提交
377 378 379 380
class TestBoxClip(unittest.TestCase):
    def test_box_clip(self):
        program = Program()
        with program_guard(program):
381 382 383
            input_box = layers.data(
                name='input_box', shape=[7, 4], dtype='float32', lod_level=1
            )
J
jerrywgz 已提交
384 385 386 387
            im_info = layers.data(name='im_info', shape=[3], dtype='float32')
            out = layers.box_clip(input_box, im_info)
            self.assertIsNotNone(out)

J
jerrywgz 已提交
388

J
jerrywgz 已提交
389 390 391 392
class TestMulticlassNMS(unittest.TestCase):
    def test_multiclass_nms(self):
        program = Program()
        with program_guard(program):
393 394 395
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32'
            )
J
jerrywgz 已提交
396
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
J
jerrywgz 已提交
397
            output = layers.multiclass_nms(bboxes, scores, 0.3, 400, 200, 0.7)
J
jerrywgz 已提交
398 399
            self.assertIsNotNone(output)

400 401 402
    def test_multiclass_nms_error(self):
        program = Program()
        with program_guard(program):
403 404 405 406 407 408 409 410 411
            bboxes1 = fluid.data(
                name='bboxes1', shape=[10, 10, 4], dtype='int32'
            )
            scores1 = fluid.data(
                name='scores1', shape=[10, 10], dtype='float32'
            )
            bboxes2 = fluid.data(
                name='bboxes2', shape=[10, 10, 4], dtype='float32'
            )
412
            scores2 = fluid.data(name='scores2', shape=[10, 10], dtype='int32')
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
            self.assertRaises(
                TypeError,
                layers.multiclass_nms,
                bboxes=bboxes1,
                scores=scores1,
                score_threshold=0.5,
                nms_top_k=400,
                keep_top_k=200,
            )
            self.assertRaises(
                TypeError,
                layers.multiclass_nms,
                bboxes=bboxes2,
                scores=scores2,
                score_threshold=0.5,
                nms_top_k=400,
                keep_top_k=200,
            )
431

J
jerrywgz 已提交
432

433 434 435 436
class TestMulticlassNMS2(unittest.TestCase):
    def test_multiclass_nms2(self):
        program = Program()
        with program_guard(program):
437 438 439
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32'
            )
440
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
441 442 443 444 445 446
            output = fluid.contrib.multiclass_nms2(
                bboxes, scores, 0.3, 400, 200, 0.7
            )
            output2, index = fluid.contrib.multiclass_nms2(
                bboxes, scores, 0.3, 400, 200, 0.7, return_index=True
            )
447 448 449 450 451
            self.assertIsNotNone(output)
            self.assertIsNotNone(output2)
            self.assertIsNotNone(index)


452
class TestCollectFpnPropsals(LayerTest):
453
    def test_collect_fpn_proposals(self):
454 455 456 457 458 459 460 461 462 463 464 465
        multi_bboxes_np = []
        multi_scores_np = []
        rois_num_per_level_np = []
        for i in range(4):
            bboxes_np = np.random.rand(5, 4).astype('float32')
            scores_np = np.random.rand(5, 1).astype('float32')
            rois_num = np.array([2, 3]).astype('int32')
            multi_bboxes_np.append(bboxes_np)
            multi_scores_np.append(scores_np)
            rois_num_per_level_np.append(rois_num)

        with self.static_graph():
466 467
            multi_bboxes = []
            multi_scores = []
468
            rois_num_per_level = []
469
            for i in range(4):
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
                bboxes = fluid.data(
                    name='rois' + str(i),
                    shape=[5, 4],
                    dtype='float32',
                    lod_level=1,
                )
                scores = fluid.data(
                    name='scores' + str(i),
                    shape=[5, 1],
                    dtype='float32',
                    lod_level=1,
                )
                rois_num = fluid.data(
                    name='rois_num' + str(i), shape=[None], dtype='int32'
                )
485

486 487
                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
488 489 490 491 492 493 494 495
                rois_num_per_level.append(rois_num)

            fpn_rois, rois_num = layers.collect_fpn_proposals(
                multi_bboxes,
                multi_scores,
                2,
                5,
                10,
496 497
                rois_num_per_level=rois_num_per_level,
            )
498 499 500 501 502 503
            feed = {}
            for i in range(4):
                feed['rois' + str(i)] = multi_bboxes_np[i]
                feed['scores' + str(i)] = multi_scores_np[i]
                feed['rois_num' + str(i)] = rois_num_per_level_np[i]
            fpn_rois_stat, rois_num_stat = self.get_static_graph_result(
504 505
                feed=feed, fetch_list=[fpn_rois, rois_num], with_lod=True
            )
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
            fpn_rois_stat = np.array(fpn_rois_stat)
            rois_num_stat = np.array(rois_num_stat)

        with self.dynamic_graph():
            multi_bboxes_dy = []
            multi_scores_dy = []
            rois_num_per_level_dy = []
            for i in range(4):
                bboxes_dy = base.to_variable(multi_bboxes_np[i])
                scores_dy = base.to_variable(multi_scores_np[i])
                rois_num_dy = base.to_variable(rois_num_per_level_np[i])
                multi_bboxes_dy.append(bboxes_dy)
                multi_scores_dy.append(scores_dy)
                rois_num_per_level_dy.append(rois_num_dy)
            fpn_rois_dy, rois_num_dy = fluid.layers.collect_fpn_proposals(
                multi_bboxes_dy,
                multi_scores_dy,
                2,
                5,
                10,
526 527
                rois_num_per_level=rois_num_per_level_dy,
            )
528 529 530
            fpn_rois_dy = fpn_rois_dy.numpy()
            rois_num_dy = rois_num_dy.numpy()

531 532
        np.testing.assert_array_equal(fpn_rois_stat, fpn_rois_dy)
        np.testing.assert_array_equal(rois_num_stat, rois_num_dy)
533

534 535 536 537 538
    def test_collect_fpn_proposals_error(self):
        def generate_input(bbox_type, score_type, name):
            multi_bboxes = []
            multi_scores = []
            for i in range(4):
539 540 541 542 543 544 545 546 547 548 549 550
                bboxes = fluid.data(
                    name='rois' + name + str(i),
                    shape=[10, 4],
                    dtype=bbox_type,
                    lod_level=1,
                )
                scores = fluid.data(
                    name='scores' + name + str(i),
                    shape=[10, 1],
                    dtype=score_type,
                    lod_level=1,
                )
551 552 553 554 555 556
                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
            return multi_bboxes, multi_scores

        program = Program()
        with program_guard(program):
557 558 559 560 561 562
            bbox1 = fluid.data(
                name='rois', shape=[5, 10, 4], dtype='float32', lod_level=1
            )
            score1 = fluid.data(
                name='scores', shape=[5, 10, 1], dtype='float32', lod_level=1
            )
563
            bbox2, score2 = generate_input('int32', 'float32', '2')
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
            self.assertRaises(
                TypeError,
                layers.collect_fpn_proposals,
                multi_rois=bbox1,
                multi_scores=score1,
                min_level=2,
                max_level=5,
                post_nms_top_n=2000,
            )
            self.assertRaises(
                TypeError,
                layers.collect_fpn_proposals,
                multi_rois=bbox2,
                multi_scores=score2,
                min_level=2,
                max_level=5,
                post_nms_top_n=2000,
            )
582

583

584
class TestDistributeFpnProposals(LayerTest):
585
    def test_distribute_fpn_proposals(self):
586 587 588 589 590
        rois_np = np.random.rand(10, 4).astype('float32')
        rois_num_np = np.array([4, 6]).astype('int32')
        with self.static_graph():
            rois = fluid.data(name='rois', shape=[10, 4], dtype='float32')
            rois_num = fluid.data(name='rois_num', shape=[None], dtype='int32')
591 592 593 594 595
            (
                multi_rois,
                restore_ind,
                rois_num_per_level,
            ) = layers.distribute_fpn_proposals(
596 597 598 599 600
                fpn_rois=rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224,
601 602
                rois_num=rois_num,
            )
603
            fetch_list = multi_rois + [restore_ind] + rois_num_per_level
604 605 606 607 608
            output_stat = self.get_static_graph_result(
                feed={'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=fetch_list,
                with_lod=True,
            )
609 610 611 612 613 614 615 616 617
            output_stat_np = []
            for output in output_stat:
                output_np = np.array(output)
                if len(output_np) > 0:
                    output_stat_np.append(output_np)

        with self.dynamic_graph():
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
618 619 620 621 622
            (
                multi_rois_dy,
                restore_ind_dy,
                rois_num_per_level_dy,
            ) = layers.distribute_fpn_proposals(
623
                fpn_rois=rois_dy,
624 625 626
                min_level=2,
                max_level=5,
                refer_level=4,
627
                refer_scale=224,
628 629
                rois_num=rois_num_dy,
            )
H
hong 已提交
630
            print(type(multi_rois_dy))
631 632 633 634 635 636 637 638
            output_dy = multi_rois_dy + [restore_ind_dy] + rois_num_per_level_dy
            output_dy_np = []
            for output in output_dy:
                output_np = output.numpy()
                if len(output_np) > 0:
                    output_dy_np.append(output_np)

        for res_stat, res_dy in zip(output_stat_np, output_dy_np):
639
            np.testing.assert_array_equal(res_stat, res_dy)
640

641 642 643
    def test_distribute_fpn_proposals_error(self):
        program = Program()
        with program_guard(program):
644 645 646 647 648 649 650 651 652 653 654 655
            fpn_rois = fluid.data(
                name='data_error', shape=[10, 4], dtype='int32', lod_level=1
            )
            self.assertRaises(
                TypeError,
                layers.distribute_fpn_proposals,
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224,
            )
656 657 658 659 660 661 662 663


class TestBoxDecoderAndAssign(unittest.TestCase):
    def test_box_decoder_and_assign(self):
        program = Program()
        with program_guard(program):
            pb = fluid.data(name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[4], dtype='float32')
664 665 666 667 668 669 670 671 672 673
            loc = fluid.data(
                name='target_box', shape=[None, 4 * 81], dtype='float32'
            )
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32'
            )
            (
                decoded_box,
                output_assign_box,
            ) = fluid.layers.box_decoder_and_assign(pb, pbv, loc, scores, 4.135)
674 675 676 677 678
            self.assertIsNotNone(decoded_box)
            self.assertIsNotNone(output_assign_box)

    def test_box_decoder_and_assign_error(self):
        def generate_input(pb_type, pbv_type, loc_type, score_type, name):
679 680 681 682 683 684 685 686 687 688 689 690
            pb = fluid.data(
                name='prior_box' + name, shape=[None, 4], dtype=pb_type
            )
            pbv = fluid.data(
                name='prior_box_var' + name, shape=[4], dtype=pbv_type
            )
            loc = fluid.data(
                name='target_box' + name, shape=[None, 4 * 81], dtype=loc_type
            )
            scores = fluid.data(
                name='scores' + name, shape=[None, 81], dtype=score_type
            )
691 692 693 694
            return pb, pbv, loc, scores

        program = Program()
        with program_guard(program):
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
            pb1, pbv1, loc1, scores1 = generate_input(
                'int32', 'float32', 'float32', 'float32', '1'
            )
            pb2, pbv2, loc2, scores2 = generate_input(
                'float32', 'float32', 'int32', 'float32', '2'
            )
            pb3, pbv3, loc3, scores3 = generate_input(
                'float32', 'float32', 'float32', 'int32', '3'
            )
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb1,
                prior_box_var=pbv1,
                target_box=loc1,
                box_score=scores1,
                box_clip=4.0,
            )
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb2,
                prior_box_var=pbv2,
                target_box=loc2,
                box_score=scores2,
                box_clip=4.0,
            )
            self.assertRaises(
                TypeError,
                layers.box_decoder_and_assign,
                prior_box=pb3,
                prior_box_var=pbv3,
                target_box=loc3,
                box_score=scores3,
                box_clip=4.0,
            )
731

732

733
if __name__ == '__main__':
H
hong 已提交
734
    paddle.enable_static()
735
    unittest.main()