executor.py 5.6 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
D
dzhwinter 已提交
14
import numpy as np
Y
Yang Yu 已提交
15 16
import contextlib
from framework import Program, default_main_program
17 18
from . import core

Y
Yang Yu 已提交
19
__all__ = ['Executor', 'global_scope', 'scope_guard', 'switch_scope']
Y
Yu Yang 已提交
20

Y
Yu Yang 已提交
21 22
g_scope = core.Scope()

Y
Yu Yang 已提交
23

Y
Yang Yu 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
def global_scope():
    return g_scope


def switch_scope(scope):
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


@contextlib.contextmanager
def scope_guard(scope):
    ex = switch_scope(scope)
    yield
    switch_scope(ex)


D
dzhwinter 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
def as_numpy(tensor):
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
    tensor_data = np.array(tensor)
    if len(lod) == 0:
        ans = tensor_data
    else:
        raise RuntimeError("LoD Calculate lacks unit tests and buggy")
    # elif len(lod) == 1:
    #     ans = []
    #     idx = 0
    #     while idx < len(lod) - 1:
    #         ans.append(tensor_data[lod[idx]:lod[idx + 1]])
    #         idx += 1
    # else:
    #     for l in reversed(lod):
    #         ans = []
    #         idx = 0
    #         while idx < len(l) - 1:
    #             ans.append(tensor_data[l[idx]:l[idx + 1]])
    #             idx += 1
    #         tensor_data = ans
    #     ans = tensor_data
    return ans


Y
Yu Yang 已提交
70 71 72 73 74 75 76 77 78 79 80
class Executor(object):
    def __init__(self, places):
        if not isinstance(places, list) and not isinstance(places, tuple):
            places = [places]

        act_places = []
        for each in places:
            p = core.Place()
            p.set_place(each)
            act_places.append(p)

D
dzhwinter 已提交
81 82
        # TODO(dzhwinter) : only use the first place
        self.executor = core.Executor(act_places[0])
D
dzhwinter 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        self.places = places

    def aslodtensor(self, data):
        def accumulate(data):
            if not isinstance(data, list):
                return 1
            return sum([accumulate(sub) for sub in data])

        def parselod(data):
            seq_lens = [accumulate(seq) for seq in data]
            cur_len = 0
            lod = [cur_len]
            for l in seq_lens:
                cur_len += l
                lod.append(cur_len)
            return lod

        assert len(self.places) != 0
        if not isinstance(data, list):
            # pure tensor case
            tensor = core.LoDTensor()
            tensor.set(data, self.places[0])
            return tensor
        else:
            raise RuntimeError("Current implementation lacks unittests")
            # lodtensor case
            lod = []
            if not isinstance(data[0], list):
                lod.append(parselod(data))
                flattened_data = np.concatenate(data, axis=0).astype("int64")
            else:
                while isinstance(data[0], list):
                    lod.append(parselod(seq))
                    flattened_data = [item for seq in data for item in seq]
                    data = flattened_data
                flattened_data = np.concatenate(data, axis=0).astype("int64")
            flattened_data = flattened_data.reshape([len(flattened_data), 1])
            tensor = core.LoDTensor()
            tensor.set(flattened_data, self.places[0])
            tensor.set_lod(lod)
            return tensor
Y
Yu Yang 已提交
124 125

    def run(self,
Y
Yu Yang 已提交
126
            program=None,
127 128
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
129
            feed_var_name='feed',
Y
Yu Yang 已提交
130
            fetch_var_name='fetch',
D
dzhwinter 已提交
131 132
            scope=None,
            return_numpy=True):
133 134 135 136 137
        if feed is None:
            feed = {}
        if fetch_list is None:
            fetch_list = []

Y
Yu Yang 已提交
138
        if program is None:
Y
Yu Yang 已提交
139
            program = default_main_program()
Y
Yu Yang 已提交
140

Y
Yu Yang 已提交
141 142 143
        if not isinstance(program, Program):
            raise TypeError()

Y
Yu Yang 已提交
144
        if scope is None:
Y
Yang Yu 已提交
145
            scope = global_scope()
Y
Yu Yang 已提交
146

Y
Yu Yang 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160
        program = program.clone()
        global_block = program.global_block()
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
            persistable=True)

        for i, name in enumerate(feed):
            out = global_block.var(name)
            global_block.prepend_op(
                'feed',
                inputs={'X': [feed_var]},
                outputs={'Out': [out]},
                attrs={'col': i})
D
dzhwinter 已提交
161 162 163 164
            cur_feed = feed[name]
            if not isinstance(cur_feed, core.LoDTensor):
                cur_feed = self.aslodtensor(cur_feed)
            core.set_feed_variable(scope, cur_feed, feed_var.name, i)
Y
Yu Yang 已提交
165 166 167 168 169 170 171 172 173 174 175 176

        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
            persistable=True)
        for i, var in enumerate(fetch_list):
            global_block.append_op(
                type='fetch',
                inputs={'X': [var]},
                outputs={'Out': [fetch_var]},
                attrs={'col': i})

T
typhoonzero 已提交
177
        self.executor.run(program.desc, scope, 0, True, True)
D
dzhwinter 已提交
178
        outs = [
Y
Yu Yang 已提交
179
            core.get_fetch_variable(scope, fetch_var_name, i)
Y
Yu Yang 已提交
180 181
            for i in xrange(len(fetch_list))
        ]
D
dzhwinter 已提交
182 183 184 185

        if return_numpy:
            outs = as_numpy(outs)
        return outs