executor.py 4.6 KB
Newer Older
D
dzhwinter 已提交
1
import numpy as np
Q
Qiao Longfei 已提交
2 3
import paddle.v2.fluid.core as core
from paddle.v2.fluid.framework import Block, Program, g_main_program
Y
Yu Yang 已提交
4

Y
Yu Yang 已提交
5 6
g_scope = core.Scope()

Y
Yu Yang 已提交
7

D
dzhwinter 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
def as_numpy(tensor):
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
    tensor_data = np.array(tensor)
    if len(lod) == 0:
        ans = tensor_data
    else:
        raise RuntimeError("LoD Calculate lacks unit tests and buggy")
    # elif len(lod) == 1:
    #     ans = []
    #     idx = 0
    #     while idx < len(lod) - 1:
    #         ans.append(tensor_data[lod[idx]:lod[idx + 1]])
    #         idx += 1
    # else:
    #     for l in reversed(lod):
    #         ans = []
    #         idx = 0
    #         while idx < len(l) - 1:
    #             ans.append(tensor_data[l[idx]:l[idx + 1]])
    #             idx += 1
    #         tensor_data = ans
    #     ans = tensor_data
    return ans


Y
Yu Yang 已提交
36 37 38 39 40 41 42 43 44 45 46 47
class Executor(object):
    def __init__(self, places):
        if not isinstance(places, list) and not isinstance(places, tuple):
            places = [places]

        act_places = []
        for each in places:
            p = core.Place()
            p.set_place(each)
            act_places.append(p)

        self.executor = core.Executor(act_places)
D
dzhwinter 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        self.places = places

    def aslodtensor(self, data):
        def accumulate(data):
            if not isinstance(data, list):
                return 1
            return sum([accumulate(sub) for sub in data])

        def parselod(data):
            seq_lens = [accumulate(seq) for seq in data]
            cur_len = 0
            lod = [cur_len]
            for l in seq_lens:
                cur_len += l
                lod.append(cur_len)
            return lod

        assert len(self.places) != 0
        if not isinstance(data, list):
            # pure tensor case
            tensor = core.LoDTensor()
            tensor.set(data, self.places[0])
            return tensor
        else:
            raise RuntimeError("Current implementation lacks unittests")
            # lodtensor case
            lod = []
            if not isinstance(data[0], list):
                lod.append(parselod(data))
                flattened_data = np.concatenate(data, axis=0).astype("int64")
            else:
                while isinstance(data[0], list):
                    lod.append(parselod(seq))
                    flattened_data = [item for seq in data for item in seq]
                    data = flattened_data
                flattened_data = np.concatenate(data, axis=0).astype("int64")
            flattened_data = flattened_data.reshape([len(flattened_data), 1])
            tensor = core.LoDTensor()
            tensor.set(flattened_data, self.places[0])
            tensor.set_lod(lod)
            return tensor
Y
Yu Yang 已提交
89 90

    def run(self,
Y
Yu Yang 已提交
91
            program=None,
92 93
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
94
            feed_var_name='feed',
Y
Yu Yang 已提交
95
            fetch_var_name='fetch',
D
dzhwinter 已提交
96 97
            scope=None,
            return_numpy=True):
98 99 100 101 102
        if feed is None:
            feed = {}
        if fetch_list is None:
            fetch_list = []

Y
Yu Yang 已提交
103 104 105
        if program is None:
            program = g_main_program

Y
Yu Yang 已提交
106 107 108
        if not isinstance(program, Program):
            raise TypeError()

Y
Yu Yang 已提交
109 110 111
        if scope is None:
            scope = g_scope

Y
Yu Yang 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125
        program = program.clone()
        global_block = program.global_block()
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
            persistable=True)

        for i, name in enumerate(feed):
            out = global_block.var(name)
            global_block.prepend_op(
                'feed',
                inputs={'X': [feed_var]},
                outputs={'Out': [out]},
                attrs={'col': i})
D
dzhwinter 已提交
126 127 128 129
            cur_feed = feed[name]
            if not isinstance(cur_feed, core.LoDTensor):
                cur_feed = self.aslodtensor(cur_feed)
            core.set_feed_variable(scope, cur_feed, feed_var.name, i)
Y
Yu Yang 已提交
130 131 132 133 134 135 136 137 138 139 140 141

        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
            persistable=True)
        for i, var in enumerate(fetch_list):
            global_block.append_op(
                type='fetch',
                inputs={'X': [var]},
                outputs={'Out': [fetch_var]},
                attrs={'col': i})

Y
Yu Yang 已提交
142
        self.executor.run(program.desc, scope, 0, True)
D
dzhwinter 已提交
143
        outs = [
Y
Yu Yang 已提交
144
            core.get_fetch_variable(scope, fetch_var_name, i)
Y
Yu Yang 已提交
145 146
            for i in xrange(len(fetch_list))
        ]
D
dzhwinter 已提交
147 148 149 150

        if return_numpy:
            outs = as_numpy(outs)
        return outs