dataloader_iter.py 31.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import sys
import time
import signal
20
import numbers
21 22 23 24 25
import logging
import itertools
import threading
import numpy as np
import multiprocessing
26
from collections import namedtuple
27
from paddle.fluid.framework import _set_expected_place, _current_expected_place, set_flags
28 29

# NOTE: queue has a different name in python2 and python3
T
tianshuo78520a 已提交
30
import queue
31

32 33
import paddle
from .. import core, layers
34
from ..framework import in_dygraph_mode
35
from ..multiprocess_utils import _set_SIGCHLD_handler, MP_STATUS_CHECK_INTERVAL, CleanupFuncRegistrar
36
from .fetcher import _IterableDatasetFetcher, _MapDatasetFetcher
37
from .batch_sampler import _InfiniteIterableSampler
38 39
from .collate import default_collate_fn, default_convert_fn
from .worker import ParentWatchDog, get_worker_info, _worker_loop, \
K
Kaipeng Deng 已提交
40 41
        _DatasetKind, _IterableDatasetStopIteration, _WorkerException, \
        _ResumeIteration
42
from .flat import _flatten_batch, _restore_batch
43 44

__all__ = ['get_worker_info']
45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
# NOTE: fix `terminate called without an active exception`
# if for loop break and program exit immediately(with no model
# layers processing) after iterate **the first few data** in
# distributed lauch mode, distributed launch will call
# terminate() to kill main process on each devices, but thread
# is still iterating to fullfill blocking queue caches, which
# may cause thread error `terminate called without an active
# exception` for terminate is a strong singal and `__del__`
# of DataLoader may not be called, so we add a global link to
# the last DataLoader instance to call `__del__` to clean up
# resources
# NOTE: cannot simply as `__del__` to CleanupFuncRegistrar,
# for this will remain a link to each DataLoader instance in
# global, and will precludes GC to auto collect DataLoader
# instance and will cause memory leak
_loader = None


def _clear_loader():
    global _loader
    if _loader is not None:
        try:
            _loader.__del__()
            del _loader
        except:
            pass


CleanupFuncRegistrar.register(_clear_loader)

76

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
class _DataLoaderIterBase(object):
    """
    Iterator implement of DataLoader, will load and feed mini-batch
    data by setting in given dataloader.

    Args:
        loader(instance of DataLoader): instance of `fluid.io.DataLoader`
    """

    def __init__(self, loader):
        self._dataset = loader.dataset
        self._feed_list = loader.feed_list or []
        self._places = loader.places
        self._return_list = loader.return_list
        self._batch_sampler = loader.batch_sampler
92
        self._drop_last = loader.drop_last
93
        self._auto_collate_batch = loader.auto_collate_batch
94 95 96
        self._num_workers = loader.num_workers
        self._use_buffer_reader = loader.use_buffer_reader
        self._use_shared_memory = loader.use_shared_memory
97
        self._timeout = loader.timeout if loader.timeout > 0 else MP_STATUS_CHECK_INTERVAL
98
        self._worker_init_fn = loader.worker_init_fn
99
        self._dataset_kind = loader.dataset_kind
100
        self._pin_memory = loader.pin_memory
101

K
Kaipeng Deng 已提交
102
        self._sampler_iter = iter(self._index_sampler)
103 104 105
        if self._auto_collate_batch:
            self._collate_fn = loader.collate_fn or default_collate_fn
        else:
106
            self._collate_fn = loader.collate_fn or default_convert_fn
107

108 109 110 111 112 113 114 115 116
        # LoDTensorBlockingQueue instance for create_py_reader and a thread
        # to put mini-batch data to self._blocking_queue, mini-batch data
        # will be get from:
        # 1. multi-process mode: get data from workers' result queue
        # 2. single-process mode: read mini-batch data in main process
        self._blocking_queue = None
        self._thread = None
        self._thread_done_event = threading.Event()

K
Kaipeng Deng 已提交
117 118 119 120 121 122 123 124 125 126
    @property
    def _index_sampler(self):
        if self._auto_collate_batch:
            return self._batch_sampler
        else:
            if self._dataset_kind == _DatasetKind.MAP:
                return list(range(len(self._dataset)))
            else:
                return _InfiniteIterableSampler(self._dataset, 1)

127 128 129 130 131 132
    def __iter__(self):
        return self

    def __len__(self):
        return len(self._batch_sampler)

133 134 135 136 137 138 139 140 141 142
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        if self._blocking_queue:
            self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        if self._blocking_queue:
            self._blocking_queue.kill()

143 144 145 146 147 148 149 150 151 152

class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
    """
    Single process implement of DataLoaderIter, loading data from
    loader.data in main process
    """

    def __init__(self, loader):
        super(_DataLoaderIterSingleProcess, self).__init__(loader)

153
        self._dataset_fetcher = _DatasetKind.create_fetcher(
154
            self._dataset_kind, self._dataset, self._auto_collate_batch,
155
            self._collate_fn, self._drop_last)
156

157 158 159 160 161 162 163 164
        # NOTE: _structrue_infos used to record the data structure of
        # batch to restore batch structure after reading Tensor
        # from blocking_queue in single-process mode. Note that
        # only single process is used in single-process mode, we
        # can record the data structure sequencely in a list without
        # recording the send and recv index
        self._structure_infos = []

165 166 167
        # NOTE: len(self._places) batch data compose as an output
        # iteration, set blocking_queue can cache 2 iteration datas
        # at most here
168
        self._blocking_queue_capacity = 1 * len(self._places)
169 170

        self._init_thread()
171 172 173 174
        self._shutdown = False

        global _loader
        _loader = self
175 176 177 178 179 180 181 182

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
183
        # if only 1 place, do not need to keep order
184
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
185 186
            core.Variable(), self._blocking_queue_capacity,
            len(self._places) > 1)
187 188
        self._reader = core.create_py_reader(
            self._blocking_queue, self._var_names, self._shapes, self._dtypes,
189 190
            self._need_check_feed, self._places, self._use_buffer_reader, True,
            self._pin_memory)
191

192 193
        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(), ))
194 195 196
        self._thread.daemon = True
        self._thread.start()

197
    def _thread_loop(self, legacy_expected_place):
198 199 200 201 202 203 204
        #NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda 
        # APIs in this thread.
        _set_expected_place(legacy_expected_place)

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        # NOTE(chenweihang): [ Why need to set not to execute pten kernel here? ]
        # Now, in order to ensure that the execution performance of the dynamic
        # graph mode in pten compatible state does not decline significantly,
        # we have adopted the approach of caching a KernelContext globally for
        # the dynamic graph tracer to reduce the construction and deconstruction
        # overhead of data interfaces such as the compatible state DenseTensor.
        # The static graph is each op caches a KernelContext, but the op of
        # the dynamic graph will be constructed and destroyed every round of
        # execution, so it is impossible to cache KernelContext for each op.
        # However, it is not thread-safe if using only one global kernel context in
        # dynamic graph. If the pten op of paddle is used in the DataLoader thread,
        # it may cause access errors. We temporarily do not execute pten kernel
        # in this scenario and will find a better solution later and remove
        # this setting.
        set_flags({'FLAGS_run_pten_kernel': False})

221 222 223 224 225 226
        while not self._thread_done_event.is_set():
            try:
                indices = next(self._sampler_iter)

                # read data from dataset in mini-batch
                # with paddle.fluid.dygraph.guard(place=paddle.CPUPlace()):
227
                # read data from dataset in mini-batch
228 229 230 231 232 233 234 235 236 237 238
                batch = self._dataset_fetcher.fetch(indices,
                                                    self._thread_done_event)
            except StopIteration:
                self._exit_thread_expectedly()
                return

            if batch is None or self._thread_done_event.is_set(): break

            # flat batch and record structure infos
            batch, structure = _flatten_batch(batch)
            self._structure_infos.append(structure)
239

240
            if self._thread_done_event.is_set(): break
241

242
            try:
243 244 245
                # pack as LoDTensorArray
                array = core.LoDTensorArray()
                for slot in batch:
K
Kaipeng Deng 已提交
246 247 248
                    if isinstance(slot, paddle.Tensor):
                        slot = slot.value().get_tensor()
                    elif not isinstance(slot, core.LoDTensor):
249 250 251 252 253 254
                        tmp = core.LoDTensor()
                        tmp.set(slot, core.CPUPlace())
                        slot = tmp

                    array.append(slot)

255
                if self._thread_done_event.is_set(): break
256

257 258 259 260
                try:
                    self._blocking_queue.push(array)
                except:
                    self._exit_thread_expectedly()
261

262 263 264 265 266
            except:
                self._exit_thread_unexpectedly()
                six.reraise(*sys.exc_info())

        self._exit_thread_expectedly()
267 268 269 270

    def __next__(self):
        try:
            if in_dygraph_mode():
271 272
                data = self._reader.read_next_var_list()
                data = _restore_batch(data, self._structure_infos.pop(0))
273 274
            else:
                if self._return_list:
275 276 277 278 279 280 281 282
                    data = self._reader.read_next_list()
                    data = [
                        _restore_batch(d, s)
                        for d, s in zip(data, self._structure_infos[:len(
                            self._places)])
                    ]
                    self._structure_infos = self._structure_infos[len(
                        self._places):]
283 284 285 286
                    # static graph organized data on multi-device with list, if
                    # place number is 1, there is only 1 device, extra the data
                    # from list for devices to be compatible with dygraph mode
                    if len(self._places) == 1:
287
                        data = data[0]
288
                else:
289 290 291
                    data = self._reader.read_next()

            return data
292
        except StopIteration:
293
            self._reader.shutdown()
294
            self._try_shutdown_all()
295 296
            six.reraise(*sys.exc_info())

297 298 299
    def _shutdown_thread(self):
        if self._thread:
            self._thread_done_event.set()
300 301 302 303 304 305 306 307 308 309 310
            # NOTE: we wait for _thread exit for 3 seconds, if
            #       thread not exit normally, force kill it
            for _ in range(3):
                if self._thread.is_alive():
                    time.sleep(1)
                else:
                    break
            else:
                if self._thread is not threading.current_thread():
                    self._thread.join()

311
            self._thread = None
312

313 314 315 316
    # python2 compatibility
    def next(self):
        return self.__next__()

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    def _try_shutdown_all(self):
        if not self._shutdown:
            try:
                # # _blocking_queue in keep order mode holds sub-threads
                # # need to release thread resources on unexpected exit
                if self._blocking_queue:
                    self._blocking_queue.close()
                    self._blocking_queue = None
                # NOTE: blocking queue should be closed firstly for
                # blocking queue read may hang and _thread_done_event
                # cannot be checked
                self._shutdown_thread()
            finally:
                self._shutdown = True

332
    def __del__(self):
333
        self._try_shutdown_all()
334

335 336 337 338 339

class _DataLoaderIterMultiProcess(_DataLoaderIterBase):
    def __init__(self, loader):
        super(_DataLoaderIterMultiProcess, self).__init__(loader)

K
Kaipeng Deng 已提交
340 341 342
        self._persistent_workers = loader._persistent_workers
        self._resume_worker_cnt = 0

343 344 345 346 347 348 349 350
        assert self._num_workers > 0,  "Multi-process DataLoader " \
                    "invalid num_workers({})".format(self._num_workers)

        # subprocess wrokers' result queue
        self._data_queue = None

        # data get from _data_queue will be reordered by _rcvd_idx
        # for data order keeping, data index not equal _rcvd_idx 
351
        # will be cached in _task_infos
352 353 354
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
355
        self._task_infos = {}
356
        self._structure_infos = []
357 358 359 360 361 362 363 364 365 366

        # indices outstand as _outstanding_capacity at first, and
        # blocking_queue capacity is also _outstanding_capacity.
        # _outstanding_capacity here to make sure each indices_queue
        # has at least 2 indices, and outstanding batch cached
        # output data for at least 2 iterations(Note that len(_places)
        # batches will be composed as an iteration output)
        self._outstanding_capacity = 2 * max(self._num_workers,
                                             len(self._places))

367 368 369
        # see _try_put_indices
        self._thread_lock = threading.Lock()

370
        # init workers and indices queues and put 2 indices in each indices queue
371 372 373 374
        self._init_workers()
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

375 376 377
        self._init_thread()
        self._shutdown = False

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    def _init_workers(self):
        # multiprocess worker and indice queue list initial as empty
        self._workers = []
        self._worker_status = []
        self._indices_queues = []
        self._workers_idx_cycle = itertools.cycle(range(self._num_workers))

        # create data_queue for workers
        self._data_queue = multiprocessing.Queue()

        # event for workers and thread, thread event is only need 
        # in multi-processing mode
        self._workers_done_event = multiprocessing.Event()
        self._thread_done_event = threading.Event()

        for i in range(self._num_workers):
            indices_queue = multiprocessing.Queue()
            self._indices_queues.append(indices_queue)
            worker = multiprocessing.Process(
397
                target=_worker_loop,
398 399
                args=(self._dataset, self._dataset_kind, indices_queue,
                      self._data_queue, self._workers_done_event,
400
                      self._auto_collate_batch, self._collate_fn,
401 402
                      self._drop_last, self._worker_init_fn, i,
                      self._num_workers, self._use_shared_memory))
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
            worker.daemon = True
            worker.start()
            self._workers.append(worker)
            self._worker_status.append(True)

        core._set_process_pids(id(self), tuple(w.pid for w in self._workers))
        _set_SIGCHLD_handler()

    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except:
                    self._data_queue.cancel_join_thread()
                    self._data_queue.close()
                    break

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
428
        # if only 1 place, do not need to keep order
429
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
430
            core.Variable(), self._outstanding_capacity, len(self._places) > 1)
431 432
        self._reader = core.create_py_reader(
            self._blocking_queue, self._var_names, self._shapes, self._dtypes,
433 434
            self._need_check_feed, self._places, self._use_buffer_reader, True,
            self._pin_memory)
435 436

        self._thread_done_event = threading.Event()
K
Kaipeng Deng 已提交
437
        # thread event is only need in multi-processing mode
438 439
        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(), ))
440 441 442
        self._thread.daemon = True
        self._thread.start()

K
Kaipeng Deng 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    def _reset(self):
        # resume iteration in following steps
        # 1. Resume workers, clear worker caches
        # put _ResumeIteration to all worker as resume iteration flag
        with self._thread_lock:
            self._resume_worker_cnt = self._num_workers
            for worker_id in range(self._num_workers):
                self._indices_queues[worker_id].put(_ResumeIteration())
                self._batches_outstanding += 1
        # all flag will be check in _thread_loop, simply wait here
        while self._resume_worker_cnt > 0:
            time.sleep(0.5)

        # 2. clear blocking_queue caches
        # in order not to restart the thread, we just clear
        # the blocking_queue cachees instead of recreating one
        while self._blocking_queue.size() >= len(self._places):
            if in_dygraph_mode():
                self._reader.read_next_var_list()
            elif self._return_list:
                self._reader.read_next_list()
            else:
                data = self._reader.read_next()

        # 3. reset all states
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
        self._task_infos = {}
        self._structure_infos = []

        # set all worker status available
        self._worker_status = [True] * self._num_workers

        # 4. reset _sampler_iter and put prefetch indices to start next epoch
        # init workers and indices queues and put 2 indices in each indices queue
        self._sampler_iter = iter(self._index_sampler)
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

    def _shutdown_worker(self, worker_id, shutdown=False):
        if self._worker_status[worker_id] or (self._persistent_workers and
                                              shutdown):
486 487 488
            self._indices_queues[worker_id].put(None)
            self._worker_status[worker_id] = False

489
    def _try_shutdown_all(self, timeout=None):
490 491 492 493 494 495 496 497 498 499
        if not self._shutdown:
            try:
                self._exit_thread_expectedly()
                self._clear_and_remove_data_queue()

                # set _workers_done_event should be set before put None
                # to indices_queue, workers wll exit on reading None from
                # indices_queue
                self._workers_done_event.set()
                for i in range(self._num_workers):
K
Kaipeng Deng 已提交
500
                    self._shutdown_worker(i, shutdown=True)
501

502 503 504 505 506 507
                if not self._shutdown:
                    for w in self._workers:
                        w.join(timeout)
                    for q in self._indices_queues:
                        q.cancel_join_thread()
                        q.close()
508 509 510 511
            finally:
                core._erase_process_pids(id(self))
                self._shutdown = True

512 513 514 515 516 517 518 519
    def _thread_loop(self, legacy_expected_place):
        #NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda 
        # APIs in this thread.
        _set_expected_place(legacy_expected_place)

520 521 522
        # NOTE(chenweihang): See Note [ Why need to set not to execute pten kernel here? ]
        set_flags({'FLAGS_run_pten_kernel': False})

523 524 525 526 527 528
        while not self._thread_done_event.is_set():
            batch = self._get_data()
            if not self._thread_done_event.is_set():
                if batch is None:
                    self._exit_thread_expectedly()
                else:
K
Kaipeng Deng 已提交
529 530 531 532
                    if isinstance(batch, _ResumeIteration):
                        assert self._resume_worker_cnt > 0
                        self._resume_worker_cnt -= 1
                        continue
533 534 535 536 537 538 539 540 541 542
                    try:
                        # pack as LoDTensorArray
                        array = core.LoDTensorArray()
                        if self._use_shared_memory:
                            for tensor in batch:
                                array.append(tensor)
                        else:
                            # LoDTensor not in shared memory is not
                            # serializable, cannot be create in workers
                            for slot in batch:
K
Kaipeng Deng 已提交
543 544 545
                                if isinstance(slot, paddle.Tensor):
                                    slot = slot.value().get_tensor()
                                elif not isinstance(slot, core.LoDTensor):
546 547 548 549 550 551 552
                                    tmp = core.LoDTensor()
                                    tmp.set(slot, core.CPUPlace())
                                    slot = tmp
                                array.append(slot)

                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
K
Kaipeng Deng 已提交
553
                    except Exception as e:
554 555 556 557 558 559 560
                        self._exit_thread_unexpectedly()
                        six.reraise(*sys.exc_info())
                    finally:
                        self._rcvd_idx += 1

    def _get_data(self):
        while not self._thread_done_event.is_set():
561 562 563 564 565 566
            # For IterableDataset, batch indices is generated infinitely
            # for each worker to raise StopIteration, but a StopIteration
            # raising process will discard a batch indices which is count
            # in _send_idx but will not increase _rcvd_idx, so we check 
            # whether the worker is still alive here to skip the discarded
            # batch indices and increase _rcvd_idx
567 568 569
            if self._dataset_kind == _DatasetKind.ITER:
                while self._rcvd_idx < self._send_idx:
                    info = self._task_infos[self._rcvd_idx]
570
                    if len(info) == 3 or self._worker_status[info[0]]:
571 572 573 574 575
                        break
                    del self._task_infos[self._rcvd_idx]
                    self._rcvd_idx += 1
                    self._batches_outstanding -= 1
                else:
K
Kaipeng Deng 已提交
576 577 578 579 580 581 582 583 584 585
                    # NOTE: in persistent workers mode, do not check data
                    #       drained here, simply let it go to _data_queue
                    #       reading to get _ResumeIteration
                    if not self._persistent_workers:
                        # NOTE: _rcvd_idx and _send_idx only record batches among
                        #       workers, if batches among workers drained, there
                        #       may also be data in blocking queue
                        if self._batches_outstanding < len(self._places):
                            return None
                        continue
586 587

            if self._rcvd_idx in self._task_infos and \
588 589 590 591
                    len(self._task_infos[self._rcvd_idx]) == 3:
                info = self._task_infos.pop(self._rcvd_idx)
                self._structure_infos.append(info[2])
                return info[1]
592

593 594 595
            try:
                # [ avoid hang ]: main process may blocking at _reader.read_next when
                # KeyboardInterrupt, we do following tradeoff:
596
                # 1. get data with timeout, MP_STATUS_CHECK_INTERVAL(5s) as timeout
597 598 599 600 601 602 603
                #    default, if KeyboardInterrupt blocking, failed workers will be
                #    checked and raise RuntimeError to quit DataLoader in timeout
                #    exception handling.
                # 2. if get data timeout and check workers all alive, continue to
                #    get data again
                data = self._data_queue.get(timeout=self._timeout)
            except Exception as e:
604 605 606 607 608
                # check if thread done event set when waiting data
                if self._thread_done_event.is_set():
                    continue

                # check failed workers
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
                failed_workers = []
                for i, w in enumerate(self._workers):
                    if self._worker_status[i] and not w.is_alive():
                        failed_workers.append(w)
                        self._shutdown_worker(i)
                if len(failed_workers) > 0:
                    self._exit_thread_unexpectedly()
                    pids = ', '.join(str(w.pid) for w in failed_workers)
                    raise RuntimeError("DataLoader {} workers exit unexpectedly, " \
                                "pids: {}".format(len(failed_workers), pids))

                # get(timeout) will call _poll(timeout) and may raise IOError
                if isinstance(e, queue.Empty) or isinstance(e, IOError):
                    # continue on timeout to keep getting data from queue
                    continue

                self._exit_thread_unexpectedly()
                logging.error("DataLoader reader thread failed({}) to read data from " \
                              "workers' result queue.".format(e))
                six.reraise(*sys.exc_info())
            else:
630 631 632 633 634 635 636
                if self._dataset_kind == _DatasetKind.ITER and isinstance(
                        data, _IterableDatasetStopIteration):
                    # if a worker get StopIteraion, we shutdown this worker,
                    # note that this batch indices to trigger StopIteration
                    # is discard, outstanding batch number should be decrease
                    # and another indices should be put for other workers
                    # may still working.
K
Kaipeng Deng 已提交
637 638 639 640 641
                    if self._persistent_workers:
                        self._worker_status[data.worker_id] = False
                    else:
                        self._shutdown_worker(data.worker_id)
                        self._batches_outstanding -= 1
642 643 644
                    self._try_put_indices()
                    continue

645
                idx, batch, structure = data
K
Kaipeng Deng 已提交
646 647 648 649 650

                if isinstance(idx, _ResumeIteration) and batch is None \
                        and structure is None:
                    return idx

651 652 653 654
                if isinstance(batch, _WorkerException):
                    self._exit_thread_unexpectedly()
                    batch.reraise()

655
                if idx == self._rcvd_idx:
656
                    del self._task_infos[idx]
657
                    self._structure_infos.append(structure)
658 659
                    return batch
                else:
660
                    self._task_infos[idx] += (batch, structure)
661 662 663
                    continue

    def _try_put_indices(self):
664
        assert self._batches_outstanding <= self._outstanding_capacity, \
665
                    "too many indices have been put to queue"
666 667 668 669 670 671 672 673 674 675 676 677 678 679
        # In multi-process mode for IterableDataset, _try_put_indices will
        # be called both in main process(for our implement has blocking queue,
        # and blocking queue read is in main process) and thread, which may
        # cause error following error
        #   1. "ValueError: generator already executing" in next(self._sampler_iter)
        #   2. re-enter in increase _send_idx
        # add a lock for threading save, for _try_put_indices is only a slight
        # function which is not in data reading pipeline, this lock almost no
        # influence on performance
        with self._thread_lock:
            try:
                indices = next(self._sampler_iter)
            except StopIteration:
                return
680

681 682 683 684 685 686
            for i in range(self._num_workers):
                worker_idx = next(self._workers_idx_cycle)
                if self._worker_status[worker_idx]:
                    break
            else:
                return
687

688 689 690 691
            self._indices_queues[worker_idx].put((self._send_idx, indices))
            self._task_infos[self._send_idx] = (worker_idx, )
            self._batches_outstanding += 1
            self._send_idx += 1
692 693 694 695

    def __del__(self):
        self._try_shutdown_all()

696 697 698
    def _shutdown_on_exit(self):
        self._try_shutdown_all(1)

699 700 701 702 703 704 705 706 707 708
    def __next__(self):
        try:
            # _batches_outstanding here record the total batch data number
            # in 'from after _try_put_indices to beforeoutput data', this
            # value should be _outstanding_capacity if data is not drained,
            # if _batches_outstanding is less than _places number, there are
            # no enough data to generate next output, close blocking_queue and
            # set _thread_done_event here, py_reader will raise StopIteration,
            # end workers and indices_queues in StopIteration handling
            if self._batches_outstanding < len(self._places):
K
Kaipeng Deng 已提交
709 710 711 712 713
                if self._persistent_workers:
                    raise StopIteration
                else:
                    self._thread_done_event.set()
                    self._blocking_queue.close()
714 715 716

            if in_dygraph_mode():
                data = self._reader.read_next_var_list()
717
                data = _restore_batch(data, self._structure_infos.pop(0))
718 719 720
            else:
                if self._return_list:
                    data = self._reader.read_next_list()
721 722 723 724 725 726 727
                    data = [
                        _restore_batch(d, s)
                        for d, s in zip(data, self._structure_infos[:len(
                            self._places)])
                    ]
                    self._structure_infos = self._structure_infos[len(
                        self._places):]
728 729 730 731 732 733 734 735 736 737
                    # static graph organized data on multi-device with list, if
                    # place number is 1, there is only 1 device, extra the data
                    # from list for devices to be compatible with dygraph mode
                    if len(self._places) == 1:
                        data = data[0]
                else:
                    data = self._reader.read_next()
            self._on_output_batch()
            return data
        except StopIteration:
K
Kaipeng Deng 已提交
738 739 740
            if not self._persistent_workers:
                self._reader.shutdown()
                self._try_shutdown_all()
741 742 743 744 745 746 747 748 749 750
            six.reraise(*sys.exc_info())

    # python2 compatibility
    def next(self):
        return self.__next__()

    def _on_output_batch(self):
        for _ in range(len(self._places)):
            self._batches_outstanding -= 1
            self._try_put_indices()