regularizer.py 10.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18
from .framework import in_dygraph_mode, _varbase_creator
C
chengduoZH 已提交
19
from . import core
20

Y
yuyang18 已提交
21
__all__ = ['L1Decay', 'L2Decay', 'L1DecayRegularizer', 'L2DecayRegularizer']
22 23


D
dzhwinter 已提交
24
def append_regularization_ops(parameters_and_grads, regularization=None):
25 26 27 28 29 30 31 32 33 34
    """Create and add backward regularization Operators

    Creates and adds backward regularization operators in the BlockDesc.
    This will add gradients of the regularizer function to the gradients
    of the parameters and return these modified gradients. This is the
    same as implementing weight decay in optimizers for regularization.

    Args:
        parameters_and_grads: A list of (parameters, gradients) pairs
                              that need to be regularized.
D
dzhwinter 已提交
35 36
        regularization: A global regularizer. If the parameter is not
                        set. It will be applied with regularizer.
37 38

    Returns:
39 40
        list[(Variable, Variable)]: list of (parameters, gradients) \
        pair with the regularized gradient
41 42 43 44 45 46

    Raises:
        Exception: Unknown regularization type
    """
    params_and_grads = []
    for param, grad in parameters_and_grads:
47 48 49 50
        # If no gradient then we don't need to do anything
        if grad is None:
            params_and_grads.append((param, grad))
            continue
X
Xin Pan 已提交
51 52
        with param.block.program._optimized_guard(
            [param, grad]), framework.name_scope('regularization'):
Y
yuyang18 已提交
53 54 55 56 57 58 59 60 61 62 63 64
            regularization_term = None
            if param.regularizer is not None:
                # Add variable for regularization term in grad block
                regularization_term = param.regularizer(param, grad, grad.block)
            elif regularization is not None:
                regularization_term = regularization(param, grad, grad.block)

            # If no regularization specified, then we don't need to do anything
            if regularization_term is None:
                params_and_grads.append((param, grad))
                continue

C
chengduo 已提交
65 66 67 68 69 70 71 72 73 74 75 76
            new_grad = grad
            if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
                # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
                # the grad's type and name will be changed. But the gradient's name
                # is used in ParallelExecutor Reduce mode, so I add a flag for
                # the new_grad here.
                new_grad = grad.block.create_var(
                    name=grad.name + core.kNewGradSuffix(),
                    dtype=param.dtype,
                    shape=param.shape,
                    lod_level=param.lod_level,
                    type=core.VarDesc.VarType.LOD_TENSOR)
Y
yuyang18 已提交
77

78 79 80 81 82 83
            inputs = {"X": [grad, regularization_term]}
            outputs = {"Out": [new_grad]}
            if in_dygraph_mode():
                core.ops.sum(inputs, {}, outputs)
            else:
                grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
C
chengduo 已提交
84 85

            params_and_grads.append((param, new_grad))
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

    return params_and_grads


class WeightDecayRegularizer(object):
    """Base class for weight decay regularizers

    Defines the common interface of weight-decay regularizers.
    Weight-decay regularizers are added only during the backward
    pass for faster regularization. They add operations to the network
    that correspond to gradient of the regularization function.
    Users should not use this class directly, but need to use one
    of its implementations
    """

    def __init__(self):
        pass

C
chengduoZH 已提交
104
    def __call__(self, param, grad, block):
105 106 107 108
        """Add corresponding weight decay operations to the network
        """
        raise NotImplementedError()

F
fengjiayi 已提交
109 110 111 112 113
    def __str__(self):
        """Debug string
        """
        raise NotImplementedError()

114 115

class L2DecayRegularizer(WeightDecayRegularizer):
116 117
    """ 
    Implement the L2 Weight Decay Regularization, which helps to prevent the model over-fitting.
118

119
    In the implementation, the formula of L2 Weight Decay Regularization is as follows:
120 121 122 123 124 125

    .. math::

        L2WeightDecay = reg\_coeff * parameter

    Args:
126 127
        regularization_coeff(float, optional): regularization coeff.
					       Default:0.0
128 129 130 131

    Examples:
        .. code-block:: python

132
            import paddle.fluid as fluid
133

134 135 136 137 138 139 140 141 142
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                hidden = fluid.layers.fc(input=data, size=128, act='relu')
                prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                avg_loss = fluid.layers.mean(loss)
143 144 145 146
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=1e-4,
                regularization=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=0.1))
147
            optimizer.minimize(avg_loss)
148 149 150 151 152 153 154
    """

    def __init__(self, regularization_coeff=0.0):
        assert regularization_coeff is not None
        super(L2DecayRegularizer, self).__init__()
        self._regularization_coeff = regularization_coeff

C
chengduoZH 已提交
155
    def __call__(self, param, grad, block):
156 157 158 159 160 161 162 163 164 165 166 167 168 169
        """Add L2 weight decay ops to network

        Adds L2 weight decay ops.
        L2WeightDecay = reg_coeff * parameter

        Args:
            param: parameter variable for which regularization is applied
            block: block in which variable is to be created

        Returns:
            new variable for weight decay
        """
        assert isinstance(param, framework.Parameter)
        assert isinstance(block, framework.Block)
C
chengduoZH 已提交
170

171 172 173
        inputs = {"X": [param]}
        attrs = {"scale": self._regularization_coeff}

H
Hongyu Liu 已提交
174
        if framework.in_dygraph_mode():
175 176
            outs = core.ops.scale(inputs, attrs)
            return outs['Out'][0]
H
Hongyu Liu 已提交
177 178 179
        else:
            decay = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level)
C
chengduoZH 已提交
180

181 182 183 184 185 186
            # Append Op to calculate decay
            block.append_op(
                type='scale',
                inputs={"X": param},
                outputs={"Out": decay},
                attrs={"scale": self._regularization_coeff})
187

188
            return decay
189

F
fengjiayi 已提交
190 191 192
    def __str__(self):
        return "L2Decay, regularization_coeff=%f" % self._regularization_coeff

193 194

class L1DecayRegularizer(WeightDecayRegularizer):
195 196 197 198 199
    """
    Implement the L1 Weight Decay Regularization, which encourages the weights to be sparse.
    
    In the implementation, the formula of L1 Weight Decay Regularization is as follows:
	
200 201 202 203 204
    .. math::

        L1WeightDecay = reg\_coeff * sign(parameter)

    Args:
205 206 207
        regularization_coeff(float, optional): regularization coeff.
					       Default:0.0.
	
208 209 210
    Examples:
        .. code-block:: python

211
            import paddle.fluid as fluid
212

213 214 215 216 217 218 219 220 221
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                hidden = fluid.layers.fc(input=data, size=128, act='relu')
                prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                avg_loss = fluid.layers.mean(loss)
X
Xin Pan 已提交
222 223 224 225
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=1e-4,
                regularization=fluid.regularizer.L1DecayRegularizer(
                    regularization_coeff=0.1))
226
            optimizer.minimize(avg_loss)
227 228 229 230 231 232 233
    """

    def __init__(self, regularization_coeff=0.0):
        assert regularization_coeff is not None
        super(L1DecayRegularizer, self).__init__()
        self._regularization_coeff = regularization_coeff

C
chengduoZH 已提交
234
    def __call__(self, param, grad, block):
235 236 237 238 239 240 241 242 243 244 245 246 247 248
        """Add L1 weight decay ops to network

        Adds L1 weight decay ops.
        L1WeightDecay = reg_coeff * sign(parameter)

        Args:
            param: parameter variable for which regularization is applied
            block: block in which variable is to be created

        Returns:
            new variable for weight decay
        """
        assert isinstance(param, framework.Parameter)
        assert isinstance(block, framework.Block)
C
chengduo 已提交
249

H
Hongyu Liu 已提交
250 251 252 253 254
        if framework.in_dygraph_mode():
            decay = block.create_var(dtype=param.dtype, shape=param.shape)
        else:
            decay = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level)
C
chengduoZH 已提交
255

256 257 258 259 260 261 262 263 264 265 266 267
        # Append sign op
        block.append_op(
            type='sign', inputs={"X": param}, outputs={"Out": decay})

        # Append scale op to the output of sign op
        block.append_op(
            type='scale',
            inputs={"X": decay},
            outputs={"Out": decay},
            attrs={"scale": self._regularization_coeff})

        return decay
268

F
fengjiayi 已提交
269 270 271
    def __str__(self):
        return "L1Decay, regularization_coeff=%f" % self._regularization_coeff

272 273 274 275 276 277 278

# We short the class name, since users will use the regulaizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
Y
Yu Yang 已提交
279
#                          param_attr=fluid.regularizer.Xavier())
280 281 282 283
#
# It is no need to add a `Regularizer` as the class suffix
L1Decay = L1DecayRegularizer
L2Decay = L2DecayRegularizer