roi_align_op.h 17.1 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <limits>
15
#include <numeric>
F
FDInSky 已提交
16
#include <vector>
J
jerrywgz 已提交
17 18 19 20 21 22 23 24 25
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

26 27 28 29
namespace {
constexpr size_t get_offset(size_t x, size_t y, size_t width) {
  return y * width + x;
}
J
jerrywgz 已提交
30

J
jerrywgz 已提交
31
template <class T>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
struct offsets_and_ratios {
  offsets_and_ratios() = default;
  offsets_and_ratios(std::size_t xy, std::size_t xY, std::size_t Xy,
                     std::size_t XY, T xy_ratio, T xY_ratio, T Xy_ratio,
                     T XY_ratio)
      : xy(xy),
        xY(xY),
        Xy(Xy),
        XY(XY),
        xy_ratio(xy_ratio),
        xY_ratio(xY_ratio),
        Xy_ratio(Xy_ratio),
        XY_ratio(XY_ratio){};

  std::size_t xy = 0;
  std::size_t xY = 0;
  std::size_t Xy = 0;
  std::size_t XY = 0;
  T xy_ratio = 0.0f;
  T xY_ratio = 0.0f;
  T Xy_ratio = 0.0f;
  T XY_ratio = 0.0f;
};

template <typename T>
std::vector<offsets_and_ratios<T>> get_indexes_and_ratios(
    std::size_t width, std::size_t height, const T roi_width,
    const T roi_height, const T roi_xmin, const T roi_ymin,
    std::size_t pooled_width, std::size_t roi_bin_grid_w,
    std::size_t pooled_height, std::size_t roi_bin_grid_h) {
  const auto ind_num =
      pooled_width * roi_bin_grid_w * pooled_height * roi_bin_grid_h;

  std::vector<offsets_and_ratios<T>> interpolation_cords;
  interpolation_cords.reserve(ind_num);

  const auto bin_w = roi_width / pooled_width;
  const auto bin_h = roi_height / pooled_height;

  for (std::size_t py = 0; py < pooled_height; py++) {
    for (std::size_t px = 0; px < pooled_width; px++) {
      for (std::size_t iy = 0; iy < roi_bin_grid_h; iy++) {
        // calculate x of sample points
        auto y =
            roi_ymin +
            bin_h * (py +
                     static_cast<T>(iy + .5f) / static_cast<T>(roi_bin_grid_h));
        for (std::size_t ix = 0; ix < roi_bin_grid_w; ix++) {
          // calculate x of sample points
          auto x = roi_xmin +
                   bin_w * (px +
                            static_cast<T>(ix + .5f) /
                                static_cast<T>(roi_bin_grid_w));

J
jerrywgz 已提交
86 87
          // deal with elements out of map
          if (y < -1.0 || y > height || x < -1.0 || x > width) {
88
            interpolation_cords.emplace_back();
J
jerrywgz 已提交
89 90
            continue;
          }
J
jerrywgz 已提交
91 92
          y = y <= 0 ? 0 : y;
          x = x <= 0 ? 0 : x;
J
jerrywgz 已提交
93

94 95 96 97 98
          std::size_t x_low_index = static_cast<std::size_t>(x);
          std::size_t x_high_index;
          if (x_low_index >= width - 1) {
            x_high_index = x_low_index = width - 1;
            x = static_cast<T>(x_low_index);
J
jerrywgz 已提交
99
          } else {
100
            x_high_index = x_low_index + 1;
J
jerrywgz 已提交
101
          }
102 103 104 105 106 107 108
          T x_ratio = x_high_index - x;

          std::size_t y_low_index = static_cast<std::size_t>(y);
          std::size_t y_high_index;
          if (y_low_index >= height - 1) {
            y_high_index = y_low_index = height - 1;
            y = static_cast<T>(y_low_index);
J
jerrywgz 已提交
109
          } else {
110
            y_high_index = y_low_index + 1;
J
jerrywgz 已提交
111
          }
112 113 114 115 116 117 118 119 120 121 122 123 124 125
          T y_ratio = y_high_index - y;

          auto xy = get_offset(x_low_index, y_low_index, width);
          auto xY = get_offset(x_low_index, y_high_index, width);
          auto Xy = get_offset(x_high_index, y_low_index, width);
          auto XY = get_offset(x_high_index, y_high_index, width);

          auto xy_ratio = x_ratio * y_ratio;
          auto xY_ratio = x_ratio * (1 - y_ratio);
          auto Xy_ratio = (1 - x_ratio) * y_ratio;
          auto XY_ratio = (1 - x_ratio) * (1 - y_ratio);

          interpolation_cords.emplace_back(xy, xY, Xy, XY, xy_ratio, xY_ratio,
                                           Xy_ratio, XY_ratio);
J
jerrywgz 已提交
126 127 128 129
        }
      }
    }
  }
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
  return interpolation_cords;
}

template <typename T>
void interpolate(std::vector<T>& interpolated_values,
                 const std::vector<offsets_and_ratios<T>>& interpolation_cords,
                 const T* data) {
  for (auto& ic : interpolation_cords) {
    auto xlyl_offset = ic.xy;
    auto xhyl_offset = ic.Xy;
    auto xlyh_offset = ic.xY;
    auto xhyh_offset = ic.XY;

    auto xlyl_ratio = ic.xy_ratio;
    auto xhyl_ratio = ic.Xy_ratio;
    auto xlyh_ratio = ic.xY_ratio;
    auto xhyh_ratio = ic.XY_ratio;

    interpolated_values.emplace_back(
        xlyl_ratio * data[xlyl_offset] + xhyl_ratio * data[xhyl_offset] +
        xlyh_ratio * data[xlyh_offset] + xhyh_ratio * data[xhyh_offset]);
  }
}

template <typename T>
void avg_pool(const std::vector<T>& interpolated_values, T* output_data,
              int roi_bin_grid_w, int roi_bin_grid_h, int pooled_width,
              int pooled_height) {
  const auto data_amount = pooled_width * pooled_height;
  const auto grid_points = roi_bin_grid_w * roi_bin_grid_h;
  const T count = 1.0 / grid_points;
  auto val_begin = interpolated_values.cbegin();
  for (auto i = 0; i < data_amount; ++i) {
    T sum = 0.0;
    auto val_end = val_begin + grid_points;
    sum = std::accumulate(val_begin, val_end, sum);
    val_begin = val_end;
    output_data[i] = sum * count;
  }
}
J
jerrywgz 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182
}

template <class T>
void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
                                   const T out_grad_this_bin, const T count,
                                   T* batch_grad_data) {
  int x_low, y_low, x_high, y_high;
  T w1, w2, w3, w4;
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    w1 = w2 = w3 = w4 = 0;
    x_low = x_high = y_low = y_high = -1;
    return;
  }
J
jerrywgz 已提交
183 184
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
J
jerrywgz 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  y_low = static_cast<int>(y);
  x_low = static_cast<int>(x);
  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = static_cast<T>(y_low);
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = static_cast<T>(x_low);
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low, lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;
  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
  T diff1 = out_grad_this_bin * w1 / count;
  T diff2 = out_grad_this_bin * w2 / count;
  T diff3 = out_grad_this_bin * w3 / count;
  T diff4 = out_grad_this_bin * w4 / count;
  if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
    *(batch_grad_data + y_low * width + x_low) += diff1;
    *(batch_grad_data + y_low * width + x_high) += diff2;
    *(batch_grad_data + y_high * width + x_low) += diff3;
    *(batch_grad_data + y_high * width + x_high) += diff4;
  }
}

template <typename DeviceContext, typename T>
class CPUROIAlignOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<framework::Tensor>("X");
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
    auto* out = ctx.Output<framework::Tensor>("Out");
    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
227
    auto aligned = ctx.Attr<bool>("aligned");
J
jerrywgz 已提交
228 229

    auto in_dims = in->dims();
J
jerrywgz 已提交
230 231 232 233 234
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];
    int rois_num = rois->dims()[0];
J
jerrywgz 已提交
235 236 237 238 239 240 241 242 243 244

    auto in_stride = framework::stride(in_dims);
    auto roi_stride = framework::stride(rois->dims());
    auto out_stride = framework::stride(out->dims());

    const T* input_data = in->data<T>();
    framework::Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
F
FDInSky 已提交
245
    int rois_batch_size;
246 247 248
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<framework::Tensor>("RoisNum");
      rois_batch_size = rois_num_t->numel();
F
FDInSky 已提交
249
      PADDLE_ENFORCE_EQ(
250
          rois_batch_size, batch_size,
F
FDInSky 已提交
251
          platform::errors::InvalidArgument(
252 253 254
              "The batch size of rois and the batch size of images "
              " must be the same. But received the batch size of rois is %d, "
              "and the batch size of images is %d",
F
FDInSky 已提交
255
              rois_batch_size, batch_size));
256 257 258 259
      auto* rois_num_data = rois_num_t->data<int>();
      int start = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (int i = start; i < start + rois_num_data[n]; ++i) {
F
FDInSky 已提交
260 261
          roi_batch_id_data[i] = n;
        }
262
        start += rois_num_data[n];
F
FDInSky 已提交
263 264 265
      }
    } else {
      auto lod = rois->lod();
266 267 268 269
      PADDLE_ENFORCE_EQ(lod.empty(), false,
                        platform::errors::InvalidArgument(
                            "Input(ROIs) Tensor of ROIAlignOp "
                            "does not contain LoD information."));
F
FDInSky 已提交
270 271 272 273 274 275 276 277 278 279
      auto rois_lod = lod.back();
      int rois_batch_size = rois_lod.size() - 1;
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
          platform::errors::InvalidArgument(
              "The rois_batch_size and imgs "
              "batch_size must be the same. But received rois_batch_size = %d, "
              "batch_size = %d",
              rois_batch_size, batch_size));
      int rois_num_with_lod = rois_lod[rois_batch_size];
280 281 282 283 284 285 286 287
      PADDLE_ENFORCE_EQ(
          rois_num, rois_num_with_lod,
          platform::errors::InvalidArgument(
              "The actual number of rois and the number of rois "
              "provided from Input(RoIsLoD) in RoIAlign must be the same."
              " But received actual number of rois is %d, and the number "
              "of rois from RoIsLoD is %d",
              rois_num, rois_num_with_lod));
F
FDInSky 已提交
288
      for (int n = 0; n < rois_batch_size; ++n) {
289
        for (std::size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
F
FDInSky 已提交
290 291
          roi_batch_id_data[i] = n;
        }
J
jerrywgz 已提交
292 293 294 295
      }
    }
    T* output_data = out->mutable_data<T>(ctx.GetPlace());
    const T* rois_data = rois->data<T>();
296
    T roi_offset = aligned ? T(0.5) : 0;
J
jerrywgz 已提交
297 298
    for (int n = 0; n < rois_num; ++n) {
      int roi_batch_id = roi_batch_id_data[n];
299 300 301 302 303 304 305
      T roi_xmin = rois_data[0] * spatial_scale - roi_offset;
      T roi_ymin = rois_data[1] * spatial_scale - roi_offset;
      T roi_xmax = rois_data[2] * spatial_scale - roi_offset;
      T roi_ymax = rois_data[3] * spatial_scale - roi_offset;

      T roi_width = roi_xmax - roi_xmin;
      T roi_height = roi_ymax - roi_ymin;
306 307 308 309
      if (!aligned) {
        roi_width = std::max(roi_width, static_cast<T>(1.));
        roi_height = std::max(roi_height, static_cast<T>(1.));
      }
J
jerrywgz 已提交
310 311 312 313 314 315 316 317 318

      const T* batch_data = input_data + roi_batch_id * in_stride[0];

      int roi_bin_grid_h = (sampling_ratio > 0)
                               ? sampling_ratio
                               : ceil(roi_height / pooled_height);
      int roi_bin_grid_w = (sampling_ratio > 0)
                               ? sampling_ratio
                               : ceil(roi_width / pooled_width);
319 320 321 322 323 324 325 326 327 328 329

      auto interpolation_cords = get_indexes_and_ratios(
          width, height, roi_width, roi_height, roi_xmin, roi_ymin,
          pooled_width, roi_bin_grid_w, pooled_height, roi_bin_grid_h);

      std::vector<T> interpolated_values;
      interpolated_values.reserve(interpolation_cords.size());
      for (auto channel = 0; channel < channels; ++channel) {
        interpolate(interpolated_values, interpolation_cords, batch_data);
        avg_pool(interpolated_values, output_data, roi_bin_grid_w,
                 roi_bin_grid_h, pooled_width, pooled_height);
J
jerrywgz 已提交
330 331
        batch_data += in_stride[1];
        output_data += out_stride[1];
332
        interpolated_values.clear();
J
jerrywgz 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
      }
      rois_data += roi_stride[0];
    }
  }
};

template <typename DeviceContext, typename T>
class CPUROIAlignGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<framework::Tensor>("X");
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* in_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
    auto in_dims = in->dims();
354
    auto aligned = ctx.Attr<bool>("aligned");
355

J
jerrywgz 已提交
356 357 358 359
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];
    int rois_num = rois->dims()[0];
360 361 362 363

    if (!in_grad) {
      return;
    }
J
jerrywgz 已提交
364 365 366 367
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
J
jerrywgz 已提交
368

F
FDInSky 已提交
369
    int rois_batch_size;
370 371 372 373 374 375 376
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<framework::Tensor>("RoisNum");
      rois_batch_size = rois_num_t->numel();
      auto* rois_num_data = rois_num_t->data<int>();
      int start = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (int i = start; i < start + rois_num_data[n]; ++i) {
F
FDInSky 已提交
377 378
          roi_batch_id_data[i] = n;
        }
379
        start += rois_num_data[n];
F
FDInSky 已提交
380 381 382 383 384
      }
    } else {
      auto rois_lod = rois->lod().back();
      rois_batch_size = rois_lod.size() - 1;
      for (int n = 0; n < rois_batch_size; ++n) {
385
        for (std::size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
F
FDInSky 已提交
386 387
          roi_batch_id_data[i] = n;
        }
J
jerrywgz 已提交
388
      }
J
jerrywgz 已提交
389
    }
390 391 392 393 394 395 396 397 398 399
    in_grad->mutable_data<T>(ctx.GetPlace());
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(dev_ctx, in_grad, static_cast<T>(0));

    int output_grad_size = out_grad->numel();

    if ((!out_grad->IsInitialized()) || (output_grad_size <= 0)) {
      return;
    }
J
jerrywgz 已提交
400

J
jerrywgz 已提交
401 402 403
    const T* rois_data = rois->data<T>();
    const T* out_grad_data = out_grad->data<T>();
    T* in_grad_data = in_grad->mutable_data<T>(ctx.GetPlace());
J
jerrywgz 已提交
404

J
jerrywgz 已提交
405 406 407
    auto in_stride = framework::stride(in->dims());
    auto roi_stride = framework::stride(rois->dims());
    auto out_stride = framework::stride(out_grad->dims());
J
jerrywgz 已提交
408

409
    T roi_offset = aligned ? T(0.5) : 0;
J
jerrywgz 已提交
410 411
    for (int n = 0; n < rois_num; ++n) {
      int roi_batch_idx = roi_batch_id_data[n];
412 413 414 415 416 417 418
      T roi_xmin = rois_data[0] * spatial_scale - roi_offset;
      T roi_ymin = rois_data[1] * spatial_scale - roi_offset;
      T roi_xmax = rois_data[2] * spatial_scale - roi_offset;
      T roi_ymax = rois_data[3] * spatial_scale - roi_offset;

      T roi_width = roi_xmax - roi_xmin;
      T roi_height = roi_ymax - roi_ymin;
419 420
      roi_width = std::max(roi_width, static_cast<T>(1.));
      roi_height = std::max(roi_height, static_cast<T>(1.));
421 422 423 424
      if (!aligned) {
        roi_width = std::max(roi_width, static_cast<T>(1.));
        roi_height = std::max(roi_height, static_cast<T>(1.));
      }
425

J
jerrywgz 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
      T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
      T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
      for (int c = 0; c < channels; ++c) {
        T* batch_grad_data =
            in_grad_data + roi_batch_idx * in_stride[0] + c * in_stride[1];
        const T* batch_out_grad_data =
            out_grad_data + n * out_stride[0] + c * out_stride[1];
        for (int ph = 0; ph < pooled_height; ++ph) {
          for (int pw = 0; pw < pooled_width; ++pw) {
            int pool_index = ph * pooled_width + pw;
            T out_grad_this_bin = batch_out_grad_data[pool_index];
            int roi_bin_grid_h = (sampling_ratio > 0)
                                     ? sampling_ratio
                                     : ceil(roi_height / pooled_height);
            int roi_bin_grid_w = (sampling_ratio > 0)
                                     ? sampling_ratio
                                     : ceil(roi_width / pooled_width);
            T count = roi_bin_grid_h * roi_bin_grid_w;
            for (int iy = 0; iy < roi_bin_grid_h; iy++) {
              const T y = roi_ymin + ph * bin_size_h +
                          static_cast<T>(iy + .5f) * bin_size_h /
                              static_cast<T>(roi_bin_grid_h);
              for (int ix = 0; ix < roi_bin_grid_w; ix++) {
                const T x = roi_xmin + pw * bin_size_w +
                            static_cast<T>(ix + .5f) * bin_size_w /
                                static_cast<T>(roi_bin_grid_w);
                bilinear_interpolate_gradient(height, width, y, x,
                                              out_grad_this_bin, count,
                                              batch_grad_data);
J
jerrywgz 已提交
455 456 457 458 459
              }
            }
          }
        }
      }
J
jerrywgz 已提交
460
      rois_data += roi_stride[0];
J
jerrywgz 已提交
461 462 463 464 465
    }
  }
};
}  // namespace operators
}  // namespace paddle