roi_align_op.h 15.4 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <limits>
F
FDInSky 已提交
15
#include <vector>
J
jerrywgz 已提交
16 17 18 19 20 21 22 23 24
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

J
jerrywgz 已提交
25 26
static constexpr int kROISize = 4;

J
jerrywgz 已提交
27
template <class T>
J
jerrywgz 已提交
28
void PreCalcForBilinearInterpolate(
J
jerrywgz 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    const platform::DeviceContext& ctx, const int height, const int width,
    const int pooled_height, const int pooled_width, const int iy_upper,
    const int ix_upper, T roi_ymin, T roi_xmin, T bin_size_h, T bin_size_w,
    int roi_bin_grid_h, int roi_bin_grid_w, Tensor* pre_pos, Tensor* pre_w) {
  int pre_calc_index = 0;
  int* pre_pos_data = pre_pos->mutable_data<int>(ctx.GetPlace());
  T* pre_w_data = pre_w->mutable_data<T>(ctx.GetPlace());
  for (int ph = 0; ph < pooled_height; ph++) {
    for (int pw = 0; pw < pooled_width; pw++) {
      for (int iy = 0; iy < iy_upper; iy++) {
        // calculate y of sample points
        T y = roi_ymin + ph * bin_size_h +
              static_cast<T>(iy + .5f) * bin_size_h /
                  static_cast<T>(roi_bin_grid_h);
        // calculate x of samle points
        for (int ix = 0; ix < ix_upper; ix++) {
          T x = roi_xmin + pw * bin_size_w +
                static_cast<T>(ix + .5f) * bin_size_w /
                    static_cast<T>(roi_bin_grid_w);
          // deal with elements out of map
          if (y < -1.0 || y > height || x < -1.0 || x > width) {
J
jerrywgz 已提交
50 51 52
            for (int i = 0; i < kROISize; ++i) {
              pre_pos_data[i + pre_calc_index * kROISize] = 0;
              pre_w_data[i + pre_calc_index * kROISize] = 0;
J
jerrywgz 已提交
53 54 55 56
            }
            pre_calc_index += 1;
            continue;
          }
J
jerrywgz 已提交
57 58
          y = y <= 0 ? 0 : y;
          x = x <= 0 ? 0 : x;
J
jerrywgz 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

          int y_low = static_cast<int>(y);
          int x_low = static_cast<int>(x);
          int y_high;
          int x_high;
          if (y_low >= height - 1) {
            y_high = y_low = height - 1;
            y = static_cast<T>(y_low);
          } else {
            y_high = y_low + 1;
          }
          if (x_low >= width - 1) {
            x_high = x_low = width - 1;
            x = static_cast<T>(x_low);
          } else {
            x_high = x_low + 1;
          }
          T ly = y - y_low, lx = x - x_low;
          T hy = 1. - ly, hx = 1. - lx;
J
jerrywgz 已提交
78 79 80 81 82 83 84 85
          pre_pos_data[pre_calc_index * kROISize] = y_low * width + x_low;
          pre_pos_data[pre_calc_index * kROISize + 1] = y_low * width + x_high;
          pre_pos_data[pre_calc_index * kROISize + 2] = y_high * width + x_low;
          pre_pos_data[pre_calc_index * kROISize + 3] = y_high * width + x_high;
          pre_w_data[pre_calc_index * kROISize] = hy * hx;
          pre_w_data[pre_calc_index * kROISize + 1] = hy * lx;
          pre_w_data[pre_calc_index * kROISize + 2] = ly * hx;
          pre_w_data[pre_calc_index * kROISize + 3] = ly * lx;
J
jerrywgz 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
          pre_calc_index += 1;
        }
      }
    }
  }
}

template <class T>
void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
                                   const T out_grad_this_bin, const T count,
                                   T* batch_grad_data) {
  int x_low, y_low, x_high, y_high;
  T w1, w2, w3, w4;
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    w1 = w2 = w3 = w4 = 0;
    x_low = x_high = y_low = y_high = -1;
    return;
  }
J
jerrywgz 已提交
104 105
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
J
jerrywgz 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
  y_low = static_cast<int>(y);
  x_low = static_cast<int>(x);
  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = static_cast<T>(y_low);
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = static_cast<T>(x_low);
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low, lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;
  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
  T diff1 = out_grad_this_bin * w1 / count;
  T diff2 = out_grad_this_bin * w2 / count;
  T diff3 = out_grad_this_bin * w3 / count;
  T diff4 = out_grad_this_bin * w4 / count;
  if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
    *(batch_grad_data + y_low * width + x_low) += diff1;
    *(batch_grad_data + y_low * width + x_high) += diff2;
    *(batch_grad_data + y_high * width + x_low) += diff3;
    *(batch_grad_data + y_high * width + x_high) += diff4;
  }
}

template <typename DeviceContext, typename T>
class CPUROIAlignOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<framework::Tensor>("X");
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
    auto* out = ctx.Output<framework::Tensor>("Out");
    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");

    auto& dev_ctx = ctx.template device_context<DeviceContext>();

    auto in_dims = in->dims();
J
jerrywgz 已提交
152 153 154 155 156
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];
    int rois_num = rois->dims()[0];
J
jerrywgz 已提交
157 158 159 160 161 162 163 164 165 166

    auto in_stride = framework::stride(in_dims);
    auto roi_stride = framework::stride(rois->dims());
    auto out_stride = framework::stride(out->dims());

    const T* input_data = in->data<T>();
    framework::Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
F
FDInSky 已提交
167
    int rois_batch_size;
168 169 170
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<framework::Tensor>("RoisNum");
      rois_batch_size = rois_num_t->numel();
F
FDInSky 已提交
171
      PADDLE_ENFORCE_EQ(
172
          rois_batch_size, batch_size,
F
FDInSky 已提交
173
          platform::errors::InvalidArgument(
174 175 176
              "The batch size of rois and the batch size of images "
              " must be the same. But received the batch size of rois is %d, "
              "and the batch size of images is %d",
F
FDInSky 已提交
177
              rois_batch_size, batch_size));
178 179 180 181
      auto* rois_num_data = rois_num_t->data<int>();
      int start = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (int i = start; i < start + rois_num_data[n]; ++i) {
F
FDInSky 已提交
182 183
          roi_batch_id_data[i] = n;
        }
184
        start += rois_num_data[n];
F
FDInSky 已提交
185 186 187
      }
    } else {
      auto lod = rois->lod();
188 189 190 191
      PADDLE_ENFORCE_EQ(lod.empty(), false,
                        platform::errors::InvalidArgument(
                            "Input(ROIs) Tensor of ROIAlignOp "
                            "does not contain LoD information."));
F
FDInSky 已提交
192 193 194 195 196 197 198 199 200 201
      auto rois_lod = lod.back();
      int rois_batch_size = rois_lod.size() - 1;
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
          platform::errors::InvalidArgument(
              "The rois_batch_size and imgs "
              "batch_size must be the same. But received rois_batch_size = %d, "
              "batch_size = %d",
              rois_batch_size, batch_size));
      int rois_num_with_lod = rois_lod[rois_batch_size];
202 203 204 205 206 207 208 209
      PADDLE_ENFORCE_EQ(
          rois_num, rois_num_with_lod,
          platform::errors::InvalidArgument(
              "The actual number of rois and the number of rois "
              "provided from Input(RoIsLoD) in RoIAlign must be the same."
              " But received actual number of rois is %d, and the number "
              "of rois from RoIsLoD is %d",
              rois_num, rois_num_with_lod));
F
FDInSky 已提交
210 211 212 213
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
J
jerrywgz 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
      }
    }
    T* output_data = out->mutable_data<T>(ctx.GetPlace());
    const T* rois_data = rois->data<T>();
    for (int n = 0; n < rois_num; ++n) {
      int roi_batch_id = roi_batch_id_data[n];
      T roi_xmin = rois_data[0] * spatial_scale;
      T roi_ymin = rois_data[1] * spatial_scale;
      T roi_xmax = rois_data[2] * spatial_scale;
      T roi_ymax = rois_data[3] * spatial_scale;

      T roi_width = std::max(roi_xmax - roi_xmin, static_cast<T>(1.));
      T roi_height = std::max(roi_ymax - roi_ymin, static_cast<T>(1.));
      T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
      T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
      const T* batch_data = input_data + roi_batch_id * in_stride[0];

      int roi_bin_grid_h = (sampling_ratio > 0)
                               ? sampling_ratio
                               : ceil(roi_height / pooled_height);
      int roi_bin_grid_w = (sampling_ratio > 0)
                               ? sampling_ratio
                               : ceil(roi_width / pooled_width);
      const T count = roi_bin_grid_h * roi_bin_grid_w;
      Tensor pre_pos;
      Tensor pre_w;
      int pre_size = count * out_stride[1];
J
jerrywgz 已提交
241 242
      pre_pos.Resize({pre_size, kROISize});
      pre_w.Resize({pre_size, kROISize});
J
jerrywgz 已提交
243

J
jerrywgz 已提交
244
      PreCalcForBilinearInterpolate(
J
jerrywgz 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257
          dev_ctx, height, width, pooled_height, pooled_width, roi_bin_grid_h,
          roi_bin_grid_w, roi_ymin, roi_xmin, bin_size_h, bin_size_w,
          roi_bin_grid_h, roi_bin_grid_w, &pre_pos, &pre_w);
      const int* pre_pos_data = pre_pos.data<int>();
      const T* pre_w_data = pre_w.data<T>();
      for (int c = 0; c < channels; c++) {
        int pre_calc_index = 0;
        for (int ph = 0; ph < pooled_height; ph++) {
          for (int pw = 0; pw < pooled_width; pw++) {
            const int pool_index = ph * pooled_width + pw;
            T output_val = 0;
            for (int iy = 0; iy < roi_bin_grid_h; iy++) {
              for (int ix = 0; ix < roi_bin_grid_w; ix++) {
J
jerrywgz 已提交
258 259 260
                for (int i = 0; i < kROISize; i++) {
                  int pos = pre_pos_data[pre_calc_index * kROISize + i];
                  T w = pre_w_data[pre_calc_index * kROISize + i];
J
jerrywgz 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
                  output_val += w * batch_data[pos];
                }
                pre_calc_index += 1;
              }
            }
            output_val /= count;
            output_data[pool_index] = output_val;
          }
        }
        batch_data += in_stride[1];
        output_data += out_stride[1];
      }
      rois_data += roi_stride[0];
    }
  }
};

template <typename DeviceContext, typename T>
class CPUROIAlignGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<framework::Tensor>("X");
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* in_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
    auto in_dims = in->dims();
293

J
jerrywgz 已提交
294 295 296 297
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];
    int rois_num = rois->dims()[0];
298 299 300 301

    if (!in_grad) {
      return;
    }
J
jerrywgz 已提交
302 303 304 305
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
J
jerrywgz 已提交
306

F
FDInSky 已提交
307
    int rois_batch_size;
308 309 310 311 312 313 314
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<framework::Tensor>("RoisNum");
      rois_batch_size = rois_num_t->numel();
      auto* rois_num_data = rois_num_t->data<int>();
      int start = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (int i = start; i < start + rois_num_data[n]; ++i) {
F
FDInSky 已提交
315 316
          roi_batch_id_data[i] = n;
        }
317
        start += rois_num_data[n];
F
FDInSky 已提交
318 319 320 321 322 323 324 325
      }
    } else {
      auto rois_lod = rois->lod().back();
      rois_batch_size = rois_lod.size() - 1;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
J
jerrywgz 已提交
326
      }
J
jerrywgz 已提交
327
    }
328 329 330 331 332 333 334 335 336 337
    in_grad->mutable_data<T>(ctx.GetPlace());
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(dev_ctx, in_grad, static_cast<T>(0));

    int output_grad_size = out_grad->numel();

    if ((!out_grad->IsInitialized()) || (output_grad_size <= 0)) {
      return;
    }
J
jerrywgz 已提交
338

J
jerrywgz 已提交
339 340 341
    const T* rois_data = rois->data<T>();
    const T* out_grad_data = out_grad->data<T>();
    T* in_grad_data = in_grad->mutable_data<T>(ctx.GetPlace());
J
jerrywgz 已提交
342

J
jerrywgz 已提交
343 344 345
    auto in_stride = framework::stride(in->dims());
    auto roi_stride = framework::stride(rois->dims());
    auto out_stride = framework::stride(out_grad->dims());
J
jerrywgz 已提交
346

J
jerrywgz 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    for (int n = 0; n < rois_num; ++n) {
      int roi_batch_idx = roi_batch_id_data[n];
      T roi_xmin = rois_data[0] * spatial_scale;
      T roi_ymin = rois_data[1] * spatial_scale;
      T roi_xmax = rois_data[2] * spatial_scale;
      T roi_ymax = rois_data[3] * spatial_scale;
      T roi_width = std::max(roi_xmax - roi_xmin, static_cast<T>(1.));
      T roi_height = std::max(roi_ymax - roi_ymin, static_cast<T>(1.));
      T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
      T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
      for (int c = 0; c < channels; ++c) {
        T* batch_grad_data =
            in_grad_data + roi_batch_idx * in_stride[0] + c * in_stride[1];
        const T* batch_out_grad_data =
            out_grad_data + n * out_stride[0] + c * out_stride[1];
        for (int ph = 0; ph < pooled_height; ++ph) {
          for (int pw = 0; pw < pooled_width; ++pw) {
            int pool_index = ph * pooled_width + pw;
            T out_grad_this_bin = batch_out_grad_data[pool_index];
            int roi_bin_grid_h = (sampling_ratio > 0)
                                     ? sampling_ratio
                                     : ceil(roi_height / pooled_height);
            int roi_bin_grid_w = (sampling_ratio > 0)
                                     ? sampling_ratio
                                     : ceil(roi_width / pooled_width);
            T count = roi_bin_grid_h * roi_bin_grid_w;
            for (int iy = 0; iy < roi_bin_grid_h; iy++) {
              const T y = roi_ymin + ph * bin_size_h +
                          static_cast<T>(iy + .5f) * bin_size_h /
                              static_cast<T>(roi_bin_grid_h);
              for (int ix = 0; ix < roi_bin_grid_w; ix++) {
                const T x = roi_xmin + pw * bin_size_w +
                            static_cast<T>(ix + .5f) * bin_size_w /
                                static_cast<T>(roi_bin_grid_w);
                bilinear_interpolate_gradient(height, width, y, x,
                                              out_grad_this_bin, count,
                                              batch_grad_data);
J
jerrywgz 已提交
384 385 386 387 388
              }
            }
          }
        }
      }
J
jerrywgz 已提交
389
      rois_data += roi_stride[0];
J
jerrywgz 已提交
390 391 392 393 394
    }
  }
};
}  // namespace operators
}  // namespace paddle