dense_tensor.h 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19 20
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/platform/stream/stream.h"

21 22 23 24 25
#include "paddle/pten/core/allocator.h"
#include "paddle/pten/core/storage.h"
#include "paddle/pten/core/tensor_base.h"
#include "paddle/pten/core/tensor_meta.h"

26 27 28 29 30 31
/* @jim19930609: Move to MKLDNN_Tensor in the future
    */
#ifdef PADDLE_WITH_MKLDNN
#include "dnnl.hpp"
#endif

32 33
namespace pten {

34 35
class CompatibleDenseTensorUtils;

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/* --------------------------- */
/*   From framework::Tensor    */
/* --------------------------- */
/* Temporarily put TensorInplaceVersion inside DenseTensor.
   Will move to AutogradMeta as soon as we switch to Eager Dygraph.
   */
class TensorInplaceVersion {
 public:
  explicit TensorInplaceVersion(uint32_t inplace_version = 0)
      : inplace_version_(inplace_version) {}
  bool IsUnique() const { return inplace_version_ == 0; }
  void Bump() { ++inplace_version_; }
  uint32_t CurrentVersion() const { return inplace_version_; }
  void SetInplaceVersionToZero() { inplace_version_ = 0; }

 private:
  uint32_t inplace_version_;
};

55 56 57 58 59 60 61 62 63 64 65
/// \brief The Dense tensor store values in a contiguous sequential block
/// of memory where all values are represented. Tensors or multi-dimensional
/// arrays are used in math operators.
/// During the entire life cycle of a DenseTensor, its device type and key
/// metadata are set unchanged.
class DenseTensor : public TensorBase,
                    public TypeInfoTraits<TensorBase, DenseTensor> {
 public:
  /// \brief Construct a dense tensor and allocate space.
  /// \param a The allocator used to allocate space.
  /// \param meta The meta data of dense tensor.
66
  DenseTensor(Allocator* a, const DenseTensorMeta& meta);
67 68 69 70

  /// \brief Construct a dense tensor and allocate space.
  /// \param a The allocator used to allocate space.
  /// \param meta The meta data of dense tensor.
71
  DenseTensor(Allocator* a, DenseTensorMeta&& meta);
72

73 74
  DenseTensor(const std::shared_ptr<pten::Allocation>& holder,
              const DenseTensorMeta& meta);
75 76 77 78

  /// \brief Because dense tensor is a kind of container, we give a default
  /// constructor to use for stl container. But the dense tensor created with
  /// the default constructor is not practical.
79
  // DenseTensor() = default;
80 81 82 83 84

  /// \brief Because dense tensor is a resource handle, we provide a default
  /// move constructor to support move semantics.
  DenseTensor(DenseTensor&& other) = default;

85 86
  /// \brief DenseTensor shallow copy constructor.
  DenseTensor(const DenseTensor& other);
87

88 89 90
  /// \brief DenseTensor shallow copy assignment.
  DenseTensor& operator=(const DenseTensor& other);

91 92
  DenseTensor& operator=(DenseTensor&& other);

93 94 95 96 97 98 99 100 101 102
  /// \brief Destroy the tensor object and release exclusive resources.
  virtual ~DenseTensor() = default;

 public:
  /// \brief Returns the name of the class for type traits.
  /// \return The name of the class.
  static const char* name() { return "DenseTensor"; }

  /// \brief Returns the number of elements contained in tensor.
  /// \return The number of elements contained in tensor.
103
  int64_t numel() const override;
104 105 106

  /// \brief Returns the dims of the tensor.
  /// \return The dims of the tensor.
107
  const DDim& dims() const noexcept override { return meta_.dims; }
108 109 110

  /// \brief Returns the lod of the tensor.
  /// \return The lod of the tensor.
111
  const LoD& lod() const noexcept { return meta_.lod; }
112 113 114

  /// \brief Returns the data type of the tensor.
  /// \return The data type of the tensor.
115
  DataType dtype() const noexcept override { return meta_.dtype; }
116 117 118

  /// \brief Returns the data layout of the tensor.
  /// \return The data layout of the tensor.
119
  DataLayout layout() const noexcept override { return meta_.layout; }
120 121 122

  /// \brief Returns the data place of the tensor.
  /// \return The data place of the tensor.
123
  const Place& place() const override;
124 125 126 127 128

  /// \brief Returns the meta information of the tensor.
  /// \return The meta information of the tensor.
  const DenseTensorMeta& meta() const noexcept { return meta_; }

129 130 131 132 133
  /// \brief Sets the meta information of the tensor. Only when the original
  /// attribute of Tensor is incomplete, can it be reset.
  /// \param meta The meta information of the tensor.
  void set_meta(DenseTensorMeta&& meta);

134 135
  void set_meta(const DenseTensorMeta& meta);

136 137
  /// \brief Test whether the metadata is valid.
  /// \return Whether the metadata is valid.
138
  bool valid() const noexcept override { return meta_.valid(); }
139 140 141

  /// \brief Test whether the storage is allocated.
  /// return Whether the storage is allocated.
142
  bool initialized() const override { return holder_ && holder_->ptr(); }
143 144 145 146 147

  /// \brief Check if storage is shared with other objects.
  /// \return Whether the storage is shared with other objects.
  bool IsSharedWith(const DenseTensor& b) const;

148 149
  /// \brief Change the shape information in the metadata. If the new size is
  /// larger than the original value, the storage area will be reallocated.
150
  /// \param dims The new dims of the dense tensor.
151
  /// \param lod The new lod of the dense tensor.
152
  // void Resize(const DDim& dims);
153 154 155
  void ResizeAndAllocate(const DDim& dims);

  DenseTensor& Resize(const DDim& dims);
156 157 158 159

  /// \brief Change the lod information in the metadata.
  /// \param lod The new lod of the dense tensor.
  void ResetLoD(const LoD& lod);
160 161 162 163

  /// \brief Returns the actual storage size occupied by tensor, may be larger
  /// than its shape dims.
  /// \return The actual storage size occupied by tensor.
164
  size_t capacity() const { return holder_->size(); }
165 166 167 168 169 170 171 172 173 174

  /// \brief Get the const data pointer value of type T.
  /// \return The const data pointer value of type T.
  template <typename T>
  const T* data() const;

  /// \brief Get the const data pointer value of raw type.
  /// \return The const data pointer value of raw type.
  const void* data() const;

175 176 177
 private:
  friend class CompatibleDenseTensorUtils;

178
 protected:
179
  DenseTensorMeta meta_;
180
  std::shared_ptr<pten::Allocation> holder_;
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

  /* --------------------------- */
  /*   From framework::Tensor    */
  /* --------------------------- */
  /* The following members & interfaces were copied from framework::Tensor,
     so as to facilitate the unification of different Tensors

     Will be adjusted/removed/moved in the near future
   */
 public:
  /* @jim19930609: The way default constructor handles allocator might change,
     according to
                   the final design of Allocation - Allocator.
   */
  DenseTensor();

  /* @jim19930609: Remove dependency on protobuf after Tensor Unification.
   */
199
  explicit DenseTensor(paddle::framework::proto::VarType::Type dtype);
200

201 202 203 204 205 206 207 208 209 210 211 212 213
  /// \brief Use existing storage space to create dense tensor. This interface
  /// can be used to deliberately create an uninitialized dense tensor.
  /// \param storage The existing storage.
  /// \param meta The meta data of dense tensor.
  DenseTensor(intrusive_ptr<Storage> storage, const DenseTensorMeta& meta);

  /// \brief Use existing storage space to create dense tensor. This interface
  /// can be used to deliberately create an uninitialized dense tensor.
  /// \param storage The existing storage.
  /// \param meta The meta data of dense tensor.
  DenseTensor(intrusive_ptr<Storage> storage, DenseTensorMeta&& meta);

  inline bool IsInitialized() const { return holder_ != nullptr; }
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

  template <typename T>
  T* data();

  void* data();

  template <typename T>
  T* mutable_data(const paddle::platform::Place& place,
                  size_t requested_size = 0);

  template <typename T>
  T* mutable_data(const DDim& dims,
                  const paddle::platform::Place& place,
                  size_t requested_size = 0);

  void* mutable_data(const paddle::platform::Place& place,
                     paddle::framework::proto::VarType::Type type,
                     size_t requested_size = 0);

  void* mutable_data(const paddle::platform::Place& place,
                     size_t requested_size = 0);

  void* mutable_data(const paddle::platform::Place& place,
                     paddle::framework::proto::VarType::Type type,
                     const paddle::platform::Stream& stream);

  /* @jim19930609: Remove dependency on protobuf after Tensor Unification.
   */
  paddle::framework::proto::VarType::Type type() const;

  /* @jim19930609: Remove dependency on protobuf after Tensor Unification.
   */
  paddle::framework::proto::VarType::Type saved_type() const;

  // memory size returns the holding memory size in byte.
  size_t memory_size() const;

  void check_memory_size() const;

  void set_layout(const paddle::framework::DataLayout layout);

  void clear() {
256
    holder_.reset();
257 258 259
    meta_.offset = 0;
  }

260
  void ShareBufferWith(const DenseTensor& tensor);
261 262 263 264 265 266

  void ShareDataTypeWith(const DenseTensor& tensor) {
    meta_.dtype = tensor.meta().dtype;
  }

  bool IsSharedBufferWith(const DenseTensor& src) const {
267
    return holder_ && holder_ == src.Holder();
268 269
  }

270
  const std::shared_ptr<pten::Allocation>& Holder() const { return holder_; }
271 272 273 274

  void set_offset(size_t offset) { meta_.offset = offset; }
  size_t offset() const { return meta_.offset; }

275 276
  std::shared_ptr<pten::Allocation> MoveMemoryHolder() {
    return std::move(holder_);
277 278
  }

279
  void ResetHolder(const std::shared_ptr<pten::Allocation>& holder);
280

281 282
  void ResetHolderWithType(const std::shared_ptr<pten::Allocation>& holder,
                           paddle::framework::proto::VarType::Type type);
283

284
  void set_type(paddle::framework::proto::VarType::Type type);
285 286 287 288 289

  TensorInplaceVersion& InplaceVersionCounter() {
    return *inplace_version_counter_;
  }

290 291 292 293 294 295 296 297 298 299 300 301
  /*! The internal of two tensors share the same memory block. */
  DenseTensor& ShareDataWith(const DenseTensor& src);

  /*! The internal of two tensors share the same inplace version counter. */
  DenseTensor& ShareInplaceVersionCounterWith(const DenseTensor& src);

  DenseTensor Slice(int64_t begin_idx, int64_t end_idx) const;

  std::vector<DenseTensor> Split(int64_t split_size, int64_t axis) const;

  std::vector<DenseTensor> Chunk(int64_t chunks, int64_t axis) const;

302
 protected:
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
  std::shared_ptr<TensorInplaceVersion> inplace_version_counter_;

/* @jim19930609: This is a hack
   In general, it is badly designed to fuse MKLDNN-specific objects into a
   generic Tensor.
   We temporarily leave them here to unblock Tensor Unification progress.
   In the final state, we should come up with a MKLDNN_Tensor and move the
   following codes there.
   */
#ifdef PADDLE_WITH_MKLDNN

 public:
  inline dnnl::memory::format_tag format() const { return format_; }

  inline void set_format(const dnnl::memory::format_tag format) {
    format_ = format;
  }

 protected:
  /**
   * @brief the detail format of memory block which have layout as kMKLDNN
   *
   * @note MKLDNN lib support various memory format like nchw, nhwc, nChw8C,
   *       nChw16c, etc. For a MKLDNN memory block, layout will be set as
   *       DataLayout::kMKLDNN meanwhile detail memory format will be kept in
   *       this field.
   */

  dnnl::memory::format_tag format_ = dnnl::memory::format_tag::undef;
#endif

  /* ------------------------------ */
  /*   From framework::LoDTensor    */
  /* ------------------------------ */
  /* The following members & interfaces were copied from framework::Tensor,
     so as to facilitate the unification of different Tensors

     Will be adjusted/removed/moved in the near future
   */
342
 public:
343 344 345 346 347 348 349 350 351 352 353 354 355 356
  explicit DenseTensor(const LoD& lod);

  void set_lod(const LoD& lod);

  LoD* mutable_lod();

  /*
   * Get the start offset and end offset of an  element from LoD.
   */
  std::pair<size_t, size_t> lod_element(size_t level, size_t elem) const;

  size_t NumLevels() const;

  size_t NumElements(size_t level = 0) const;
357 358 359
};

}  // namespace pten