test_stack_op.py 8.5 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
17
import paddle
18
import paddle.fluid as fluid
19 20
from op_test import OpTest, convert_float_to_uint16
import paddle.fluid.core as core
X
Xin Pan 已提交
21 22 23 24 25 26 27


class TestStackOpBase(OpTest):
    def initDefaultParameters(self):
        self.num_inputs = 4
        self.input_dim = (5, 6, 7)
        self.axis = 0
28
        self.dtype = 'float64'
X
Xin Pan 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42

    def initParameters(self):
        pass

    def get_x_names(self):
        x_names = []
        for i in range(self.num_inputs):
            x_names.append('x{}'.format(i))
        return x_names

    def setUp(self):
        self.initDefaultParameters()
        self.initParameters()
        self.op_type = 'stack'
43
        self.python_api = paddle.stack
X
Xin Pan 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
        self.x = []
        for i in range(self.num_inputs):
            self.x.append(
                np.random.random(size=self.input_dim).astype(self.dtype))

        tmp = []
        x_names = self.get_x_names()
        for i in range(self.num_inputs):
            tmp.append((x_names[i], self.x[i]))

        self.inputs = {'X': tmp}
        self.outputs = {'Y': np.stack(self.x, axis=self.axis)}
        self.attrs = {'axis': self.axis}

    def test_check_output(self):
59
        self.check_output(check_eager=True)
X
Xin Pan 已提交
60 61

    def test_check_grad(self):
62
        self.check_grad(self.get_x_names(), 'Y', check_eager=True)
X
Xin Pan 已提交
63 64 65 66


class TestStackOp1(TestStackOpBase):
    def initParameters(self):
67
        self.num_inputs = 8
X
Xin Pan 已提交
68 69 70 71


class TestStackOp2(TestStackOpBase):
    def initParameters(self):
72
        self.num_inputs = 10
X
Xin Pan 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94


class TestStackOp3(TestStackOpBase):
    def initParameters(self):
        self.axis = -1


class TestStackOp4(TestStackOpBase):
    def initParameters(self):
        self.axis = -4


class TestStackOp5(TestStackOpBase):
    def initParameters(self):
        self.axis = 1


class TestStackOp6(TestStackOpBase):
    def initParameters(self):
        self.axis = 3


95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
class TestStackBF16Op(OpTest):
    def initDefaultParameters(self):
        self.num_inputs = 4
        self.input_dim = (5, 6, 7)
        self.axis = 0
        self.dtype = np.uint16

    def initParameters(self):
        pass

    def get_x_names(self):
        x_names = []
        for i in range(self.num_inputs):
            x_names.append('x{}'.format(i))
        return x_names

    def setUp(self):
        self.initDefaultParameters()
        self.initParameters()
        self.op_type = 'stack'
115
        self.python_api = paddle.stack
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        self.x = []
        for i in range(self.num_inputs):
            self.x.append(
                np.random.random(size=self.input_dim).astype(np.float32))

        out = np.stack(self.x, axis=self.axis)

        tmp = []
        x_names = self.get_x_names()
        for i in range(self.num_inputs):
            tmp.append((x_names[i], convert_float_to_uint16(self.x[i])))

        self.inputs = {'X': tmp}
        self.outputs = {'Y': convert_float_to_uint16(out)}
        self.attrs = {'axis': self.axis}

    def test_check_output(self):
133
        self.check_output(check_eager=True)
134 135

    def test_check_grad(self):
136
        self.check_grad(self.get_x_names(), 'Y', check_eager=True)
137 138


139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
class TestStackAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test stack api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
        self.place = fluid.CUDAPlace(0) \
            if fluid.is_compiled_with_cuda() else fluid.CPUPlace()
        self.set_program()

    def set_program(self):
        self.program = fluid.Program()
        with fluid.program_guard(self.program):
            input = fluid.layers.assign(self.x)
            tensor_array = fluid.layers.create_array(dtype='float32')
            zero = fluid.layers.fill_constant(shape=[1], value=0, dtype="int64")

            for i in range(self.iter_num):
                fluid.layers.array_write(input, zero + i, tensor_array)

            self.out_var = fluid.layers.stack(tensor_array, axis=self.axis)

    def test_case(self):
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
        self.assertTrue(
            np.array_equal(
                res[0], np.stack(
                    [self.x] * self.iter_num, axis=self.axis)))


175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
class TestTensorStackAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test stack api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
        self.place = fluid.CUDAPlace(0) \
            if fluid.is_compiled_with_cuda() else fluid.CPUPlace()
        self.set_program()

    def set_program(self):
        self.program = fluid.Program()
        with fluid.program_guard(self.program):
            input = fluid.layers.assign(self.x)
            tensor_array = fluid.layers.create_array(dtype='float32')
            zero = fluid.layers.fill_constant(shape=[1], value=0, dtype="int64")

            for i in range(self.iter_num):
                fluid.layers.array_write(input, zero + i, tensor_array)

            self.out_var = paddle.stack(tensor_array, axis=self.axis)

    def test_case(self):
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
        self.assertTrue(
            np.array_equal(
                res[0], np.stack(
                    [self.x] * self.iter_num, axis=self.axis)))


class API_test(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[1, 2], dtype='float64')
            data2 = fluid.layers.data('data2', shape=[1, 2], dtype='float64')
            data3 = fluid.layers.data('data3', shape=[1, 2], dtype='float64')
            result_stack = paddle.stack([data1, data2, data3], axis=0)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 2]).astype('float64')
            input2 = np.random.random([1, 2]).astype('float64')
            input3 = np.random.random([1, 2]).astype('float64')
            result, = exe.run(
                feed={"data1": input1,
                      "data2": input2,
                      "data3": input3},
                fetch_list=[result_stack])
            expected_result = np.stack([input1, input2, input3], axis=0)
            self.assertTrue(np.allclose(expected_result, result))

L
Leo Chen 已提交
231 232 233 234 235
    def test_single_tensor_error(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = paddle.rand([2, 3])
            self.assertRaises(TypeError, paddle.stack, x)

236 237 238 239 240 241 242 243 244 245

class API_DygraphTest(unittest.TestCase):
    def test_out(self):
        data1 = np.array([[1.0, 2.0]])
        data2 = np.array([[3.0, 4.0]])
        data3 = np.array([[5.0, 6.0]])
        with fluid.dygraph.guard():
            x1 = fluid.dygraph.to_variable(data1)
            x2 = fluid.dygraph.to_variable(data2)
            x3 = fluid.dygraph.to_variable(data3)
L
Leo Chen 已提交
246
            result = paddle.stack([x1, x2, x3])
247
            result_np = result.numpy()
L
Leo Chen 已提交
248
        expected_result = np.stack([data1, data2, data3])
249 250 251 252
        self.assertTrue(np.allclose(expected_result, result_np))

        with fluid.dygraph.guard():
            y1 = fluid.dygraph.to_variable(data1)
L
Leo Chen 已提交
253
            result = paddle.stack([y1], axis=0)
254
            result_np_2 = result.numpy()
L
Leo Chen 已提交
255
        expected_result_2 = np.stack([data1], axis=0)
256 257
        self.assertTrue(np.allclose(expected_result_2, result_np_2))

L
Leo Chen 已提交
258 259 260 261 262
    def test_single_tensor_error(self):
        with fluid.dygraph.guard():
            x = paddle.to_tensor([1, 2, 3])
            self.assertRaises(Exception, paddle.stack, x)

263

X
Xin Pan 已提交
264 265
if __name__ == '__main__':
    unittest.main()