test_profiler.py 8.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16
import os
17
import tempfile
18
import numpy as np
19
import paddle
20
import paddle.utils as utils
21 22 23 24
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.layers as layers
import paddle.fluid.core as core
25
import paddle.fluid.proto.profiler.profiler_pb2 as profiler_pb2
D
dangqingqing 已提交
26 27


28
class TestProfiler(unittest.TestCase):
29

30 31 32 33
    @classmethod
    def setUpClass(cls):
        os.environ['CPU_NUM'] = str(4)

34
    def build_program(self, compile_program=True):
35 36 37 38
        startup_program = fluid.Program()
        main_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            image = fluid.layers.data(name='x', shape=[784], dtype='float32')
X
Xin Pan 已提交
39 40
            hidden1 = fluid.layers.fc(input=image, size=64, act='relu')
            i = layers.zeros(shape=[1], dtype='int64')
41 42 43
            counter = fluid.layers.zeros(shape=[1],
                                         dtype='int64',
                                         force_cpu=True)
X
Xin Pan 已提交
44 45 46 47 48 49 50 51 52 53 54 55
            until = layers.fill_constant([1], dtype='int64', value=10)
            data_arr = layers.array_write(hidden1, i)
            cond = fluid.layers.less_than(x=counter, y=until)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                hidden_n = fluid.layers.fc(input=hidden1, size=64, act='relu')
                layers.array_write(hidden_n, i, data_arr)
                fluid.layers.increment(x=counter, value=1, in_place=True)
                layers.less_than(x=counter, y=until, cond=cond)

            hidden_n = layers.array_read(data_arr, i)
            hidden2 = fluid.layers.fc(input=hidden_n, size=64, act='relu')
56 57 58
            predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
            label = fluid.layers.data(name='y', shape=[1], dtype='int64')
            cost = fluid.layers.cross_entropy(input=predict, label=label)
59
            avg_cost = paddle.mean(cost)
F
fengjiayi 已提交
60
            batch_size = fluid.layers.create_tensor(dtype='int64')
61 62 63
            batch_acc = fluid.layers.accuracy(input=predict,
                                              label=label,
                                              total=batch_size)
64

65
        optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
66 67
        opts = optimizer.minimize(avg_cost, startup_program=startup_program)

68
        if compile_program:
69 70 71 72
            # TODO(luotao): profiler tool may have bug with multi-thread parallel executor.
            # https://github.com/PaddlePaddle/Paddle/pull/25200#issuecomment-650483092
            exec_strategy = fluid.ExecutionStrategy()
            exec_strategy.num_threads = 1
73
            train_program = fluid.compiler.CompiledProgram(
74 75
                main_program).with_data_parallel(loss_name=avg_cost.name,
                                                 exec_strategy=exec_strategy)
76 77 78 79 80 81 82 83 84 85
        else:
            train_program = main_program
        return train_program, startup_program, avg_cost, batch_size, batch_acc

    def get_profile_path(self):
        profile_path = os.path.join(tempfile.gettempdir(), "profile")
        open(profile_path, "w").write("")
        return profile_path

    def check_profile_result(self, profile_path):
86
        data = open(profile_path, 'rb').read()
87 88 89 90 91 92 93 94 95 96 97 98
        if (len(data) > 0):
            profile_pb = profiler_pb2.Profile()
            profile_pb.ParseFromString(data)
            self.assertGreater(len(profile_pb.events), 0)
            for event in profile_pb.events:
                if event.type == profiler_pb2.Event.GPUKernel:
                    if not event.detail_info and not event.name.startswith(
                            "MEM"):
                        raise Exception(
                            "Kernel %s missing event. Has this kernel been recorded by RecordEvent?"
                            % event.name)
                elif event.type == profiler_pb2.Event.CPU and (
99 100
                        event.name.startswith("Driver API")
                        or event.name.startswith("Runtime API")):
101
                    print("Warning: unregister", event.name)
102

T
Tao Luo 已提交
103
    def run_iter(self, exe, main_program, fetch_list):
104 105 106
        x = np.random.random((32, 784)).astype("float32")
        y = np.random.randint(0, 10, (32, 1)).astype("int64")
        outs = exe.run(main_program,
107 108 109 110
                       feed={
                           'x': x,
                           'y': y
                       },
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
                       fetch_list=fetch_list)

    def net_profiler(self,
                     exe,
                     state,
                     tracer_option,
                     batch_range=None,
                     use_parallel_executor=False,
                     use_new_api=False):
        main_program, startup_program, avg_cost, batch_size, batch_acc = self.build_program(
            compile_program=use_parallel_executor)
        exe.run(startup_program)

        profile_path = self.get_profile_path()
        if not use_new_api:
            with profiler.profiler(state, 'total', profile_path, tracer_option):
                for iter in range(10):
                    if iter == 2:
                        profiler.reset_profiler()
                    self.run_iter(exe, main_program,
T
Tao Luo 已提交
131
                                  [avg_cost, batch_acc, batch_size])
132
        else:
133 134 135 136 137 138 139 140 141
            options = utils.ProfilerOptions(
                options={
                    'state': state,
                    'sorted_key': 'total',
                    'tracer_level': tracer_option,
                    'batch_range':
                    [0, 10] if batch_range is None else batch_range,
                    'profile_path': profile_path
                })
142 143 144
            with utils.Profiler(enabled=True, options=options) as prof:
                for iter in range(10):
                    self.run_iter(exe, main_program,
T
Tao Luo 已提交
145
                                  [avg_cost, batch_acc, batch_size])
146 147 148
                    utils.get_profiler().record_step()
                    if batch_range is None and iter == 2:
                        utils.get_profiler().reset()
149 150 151
        # TODO(luotao): check why nccl kernel in profile result.
        # https://github.com/PaddlePaddle/Paddle/pull/25200#issuecomment-650483092
        # self.check_profile_result(profile_path)
152

D
dangqingqing 已提交
153
    def test_cpu_profiler(self):
154 155
        exe = fluid.Executor(fluid.CPUPlace())
        for use_new_api in [False, True]:
156 157 158 159 160
            self.net_profiler(exe,
                              'CPU',
                              "Default",
                              batch_range=[5, 10],
                              use_new_api=use_new_api)
161

162 163
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
D
dangqingqing 已提交
164
    def test_cuda_profiler(self):
165 166
        exe = fluid.Executor(fluid.CUDAPlace(0))
        for use_new_api in [False, True]:
167 168 169 170 171
            self.net_profiler(exe,
                              'GPU',
                              "OpDetail",
                              batch_range=[0, 10],
                              use_new_api=use_new_api)
172

173 174
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
175
    def test_all_profiler(self):
176 177
        exe = fluid.Executor(fluid.CUDAPlace(0))
        for use_new_api in [False, True]:
178 179 180 181 182
            self.net_profiler(exe,
                              'All',
                              "AllOpDetail",
                              batch_range=None,
                              use_new_api=use_new_api)
183 184 185


class TestProfilerAPIError(unittest.TestCase):
186

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    def test_errors(self):
        options = utils.ProfilerOptions()
        self.assertTrue(options['profile_path'] is None)
        self.assertTrue(options['timeline_path'] is None)

        options = options.with_state('All')
        self.assertTrue(options['state'] == 'All')
        try:
            print(options['test'])
        except ValueError:
            pass

        global_profiler = utils.get_profiler()
        with utils.Profiler(enabled=True) as prof:
            self.assertTrue(utils.get_profiler() == prof)
            self.assertTrue(global_profiler != prof)
203

D
dangqingqing 已提交
204

205
if __name__ == '__main__':
206
    paddle.enable_static()
207
    unittest.main()