test_parallel_dygraph_dataparallel.py 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import time
import paddle.fluid as fluid
18 19 20
import copy
import os
import subprocess
21

R
Roc 已提交
22
from paddle.distributed.utils.launch_utils import find_free_ports, watch_local_trainers, get_cluster, TrainerProc
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44


def get_cluster_from_args(selected_gpus):
    cluster_node_ips = '127.0.0.1'
    node_ip = '127.0.0.1'

    node_ips = [x.strip() for x in cluster_node_ips.split(',')]

    node_ips.index(node_ip)

    free_ports = None

    free_ports = find_free_ports(len(selected_gpus))
    if free_ports is not None:
        free_ports = list(free_ports)

    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
    return get_cluster(node_ips, node_ip, trainer_endpoints, selected_gpus)


S
ShenLiang 已提交
45 46 47 48 49
def get_gpus(selected_gpus):
    selected_gpus = [x.strip() for x in selected_gpus.split(',')]
    return selected_gpus


X
xiongkun 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
def start_local_trainers_cpu(trainer_endpoints,
                             training_script,
                             training_script_args,
                             log_dir=None):
    current_env = copy.copy(os.environ.copy())
    current_env.pop("http_proxy", None)
    current_env.pop("https_proxy", None)

    procs = []
    n_rank = len(trainer_endpoints)
    print(trainer_endpoints)
    for rank_id, endpoint in enumerate(trainer_endpoints):
        proc_env = {
            "PADDLE_DISTRI_BACKEND": "gloo",
            "PADDLE_TRAINER_ID": "%d" % rank_id,
            "PADDLE_CURRENT_ENDPOINT": "%s" % endpoint,
            "PADDLE_TRAINERS_NUM": "%d" % n_rank,
            "PADDLE_TRAINER_ENDPOINTS": ",".join(trainer_endpoints)
        }

        current_env.update(proc_env)

        print("trainer proc env:{}".format(current_env))

        assert os.getenv('WITH_COVERAGE',
                         'OFF') == 'OFF', "Gloo don't support WITH_COVERAGE."
        cmd = "python -u " + training_script

        print("start trainer proc:{} env:{}".format(cmd, proc_env))

        fn = None

        proc = subprocess.Popen(cmd.split(" "), env=current_env)

        tp = TrainerProc()
        tp.proc = proc
        tp.rank = rank_id
        tp.log_fn = fn
        tp.cmd = cmd

        procs.append(tp)

    return procs


95 96 97 98
def start_local_trainers(cluster,
                         pod,
                         training_script,
                         training_script_args,
99
                         eager_mode=True,
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
                         log_dir=None):
    current_env = copy.copy(os.environ.copy())
    #paddle broadcast ncclUniqueId use socket, and
    #proxy maybe make trainers unreachable, so delete them.
    #if we set them to "", grpc will log error message "bad uri"
    #so just delete them.
    current_env.pop("http_proxy", None)
    current_env.pop("https_proxy", None)

    procs = []
    for t in pod.trainers:
        proc_env = {
            "FLAGS_selected_gpus": "%s" % ",".join([str(g) for g in t.gpus]),
            "PADDLE_TRAINER_ID": "%d" % t.rank,
            "PADDLE_CURRENT_ENDPOINT": "%s" % t.endpoint,
            "PADDLE_TRAINERS_NUM": "%d" % cluster.trainers_nranks(),
            "PADDLE_TRAINER_ENDPOINTS": ",".join(cluster.trainers_endpoints())
        }

119 120 121
        if not eager_mode:
            proc_env["FLAGS_enable_eager_mode"] = "%d" % 0

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
        current_env.update(proc_env)

        print("trainer proc env:{}".format(current_env))

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            cmd = "python -m coverage run --branch -p " + training_script
        else:
            cmd = "python -u " + training_script

        print("start trainer proc:{} env:{}".format(cmd, proc_env))

        fn = None

        proc = subprocess.Popen(cmd.split(" "), env=current_env)

        tp = TrainerProc()
        tp.proc = proc
        tp.rank = t.rank
        tp.log_fn = fn
        tp.cmd = cmd

        procs.append(tp)

    return procs


148
class TestMultipleGpus(unittest.TestCase):
149

150
    def run_mnist_2gpu(self, target_file_name, eager_mode=True):
151 152 153 154 155 156 157 158 159 160
        if not fluid.core.is_compiled_with_cuda(
        ) or fluid.core.get_cuda_device_count() == 0:
            return

        selected_gpus = get_gpus('0,1')
        cluster = None
        pod = None

        cluster, pod = get_cluster_from_args(selected_gpus)

161 162 163 164 165
        procs = start_local_trainers(cluster,
                                     pod,
                                     eager_mode=eager_mode,
                                     training_script=target_file_name,
                                     training_script_args=[])
166

X
xiongkun 已提交
167 168 169 170 171 172 173 174 175 176
        while True:
            alive = watch_local_trainers(procs, cluster.trainers_endpoints())

            if not alive:
                print("Local procs complete, POD info:{}".format(pod))
                break
            time.sleep(3)


class TestMultipleWithGloo(unittest.TestCase):
177

X
xiongkun 已提交
178 179 180 181 182
    def run_mnist_2cpu(self, target_file_name):

        cluster, pod = get_cluster_from_args(
            [0, 1])  #tmp use. for getting trainer_nranks()

183 184 185
        procs = start_local_trainers_cpu(cluster.trainers_endpoints(),
                                         training_script=target_file_name,
                                         training_script_args=[])
X
xiongkun 已提交
186

187 188 189 190 191 192 193 194
        while True:
            alive = watch_local_trainers(procs, cluster.trainers_nranks())

            if not alive:
                print("Local procs complete, POD info:{}".format(pod))
                break
            time.sleep(3)

J
JZ-LIANG 已提交
195 196

class TestDataParallelGradientCheck(TestMultipleGpus):
197

198
    def test_multiple_gpus_dynamic(self):
199 200
        self.run_mnist_2gpu('parallel_dygraph_gradient_check.py',
                            eager_mode=False)
201 202


203
class TestDataParallelWithPyLayer(TestMultipleGpus):
204

205 206
    def test_parallel_dygraph_dataparallel_with_pylayer(self):
        self.run_mnist_2gpu('parallel_dygraph_dataparallel_with_pylayer.py')
207 208
        self.run_mnist_2gpu('parallel_dygraph_dataparallel_with_pylayer.py',
                            eager_mode=False)
209 210


211
class TestGradientCheckInEagerMode(TestMultipleGpus):
212

213 214 215 216
    def test_multiple_gpus_dynamic(self):
        self.run_mnist_2gpu('parallel_dygraph_gradient_check_in_eager_mode.py')


217
if __name__ == "__main__":
218
    os.environ["FLAGS_enable_eager_mode"] = "1"
219
    unittest.main()