test_matmul_v2_op.py 21.5 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
17 18
from op_test import OpTest, convert_float_to_uint16, get_numeric_gradient
from paddle.fluid.tests.unittests.testsuite import create_op
S
ShenLiang 已提交
19 20 21 22
import paddle.fluid.core as core

import paddle
import paddle.fluid as fluid
23
from paddle.fluid.framework import _test_eager_guard
S
ShenLiang 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, ))
        elif X.ndim == 2:
            X = X.T
        else:
            dim = [i for i in range(len(X.shape))]
            dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
            X = np.transpose(X, tuple(dim))
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((Y.size, ))
        else:
            dim = [i for i in range(len(Y.shape))]
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float64")
    return Out


class TestMatMulV2Op(OpTest):
    """
    case 1
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (100, )
        self.trans_x = False
        self.trans_y = False
S
ShenLiang 已提交
67 68

    def init_kernel_type(self):
69
        self.dtype = "float32" if core.is_compiled_with_rocm() else "float64"
S
ShenLiang 已提交
70 71

    def setUp(self):
S
ShenLiang 已提交
72
        self.init_kernel_type()
S
ShenLiang 已提交
73 74
        self.config()
        self.op_type = "matmul_v2"
75 76 77 78 79 80 81 82 83
        if self.is_bfloat16_op():
            x = np.random.random(self.x_shape).astype(np.float32)
            y = np.random.random(self.y_shape).astype(np.float32)
        else:
            x = np.random.random(self.x_shape).astype(self.dtype)
            y = np.random.random(self.y_shape).astype(self.dtype)
            # -0.1 ~ 0.1
            x = -0.1 + 0.2 * x
            y = -0.1 + 0.2 * y
S
ShenLiang 已提交
84
        result = reference_matmul(x, y, self.trans_x, self.trans_y)
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        if self.is_bfloat16_op():
            result = result.astype(np.float32)
            self.inputs = {
                'X': convert_float_to_uint16(x),
                'Y': convert_float_to_uint16(y),
            }
            self.inputs_fp32 = {
                'X': x,
                'Y': y,
            }
        else:
            result = result.astype(self.dtype)
            self.inputs = {
                'X': x,
                'Y': y,
            }
S
ShenLiang 已提交
101 102 103 104
        self.attrs = {'trans_x': self.trans_x, 'trans_y': self.trans_y}
        self.outputs = {'Out': result}

    def test_check_output(self):
105
        self.check_output(check_eager=False)
S
ShenLiang 已提交
106 107

    def test_check_grad(self):
108
        if core.is_compiled_with_rocm():
109 110 111 112
            self.check_grad(['X', 'Y'],
                            'Out',
                            max_relative_error=1e-2,
                            check_eager=False)
113
        else:
114
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
S
ShenLiang 已提交
115 116


117
class TestMatMulOp2(TestMatMulV2Op):
S
ShenLiang 已提交
118 119 120 121 122 123 124 125 126 127 128
    """
    case 2
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (1, 3, 2, 100)
        self.trans_x = False
        self.trans_y = True


129
class TestMatMulOp3(TestMatMulV2Op):
S
ShenLiang 已提交
130 131 132 133 134 135 136 137 138 139 140
    """
    case 3
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (1, 1, 100, 2)
        self.trans_x = False
        self.trans_y = False


141
class TestMatMulOp4(TestMatMulV2Op):
S
ShenLiang 已提交
142 143 144 145 146 147 148 149 150 151 152
    """
    case 4
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (1, 2, 100, 2)
        self.trans_x = False
        self.trans_y = False


153
class TestMatMulOp5(TestMatMulV2Op):
S
ShenLiang 已提交
154 155 156 157 158
    """
    case 5
    """

    def config(self):
S
ShenLiang 已提交
159
        self.x_shape = (1, 1, 100, 1)
S
ShenLiang 已提交
160 161 162 163 164
        self.y_shape = (100, )
        self.trans_x = True
        self.trans_y = False


165
class TestMatMulOp6(TestMatMulV2Op):
S
ShenLiang 已提交
166 167 168 169 170
    """
    case 6
    """

    def config(self):
171 172
        self.x_shape = (1, 2, 102, 1)
        self.y_shape = (102, )
S
ShenLiang 已提交
173 174 175 176
        self.trans_x = True
        self.trans_y = False


177
class TestMatMulOp7(TestMatMulV2Op):
S
ShenLiang 已提交
178 179 180 181 182 183 184 185 186 187 188
    """
    case 7
    """

    def config(self):
        self.x_shape = (1, 2, 1, 100)
        self.y_shape = (100, )
        self.trans_x = False
        self.trans_y = False


189
class TestMatMulOp8(TestMatMulV2Op):
S
ShenLiang 已提交
190 191 192 193 194 195 196 197 198 199 200
    """
    case 8
    """

    def config(self):
        self.x_shape = (1, 1, 2, 100)
        self.y_shape = (1, 1, 100, 2)
        self.trans_x = False
        self.trans_y = False


201
class TestMatMulOp9(TestMatMulV2Op):
S
ShenLiang 已提交
202 203 204 205 206 207 208 209 210 211 212
    """
    case 9
    """

    def config(self):
        self.x_shape = (1, 1, 1, 100)
        self.y_shape = (2, 1, 2, 100)
        self.trans_x = False
        self.trans_y = True


213
class TestMatMulOp10(TestMatMulV2Op):
S
ShenLiang 已提交
214 215 216 217 218
    """
    case 10
    """

    def config(self):
S
ShenLiang 已提交
219 220
        self.x_shape = (1, 1, 25, 4)
        self.y_shape = (1, 2, 4, 25)
S
ShenLiang 已提交
221 222 223 224
        self.trans_x = False
        self.trans_y = False


225
class TestMatMulOp11(TestMatMulV2Op):
S
ShenLiang 已提交
226 227 228 229 230 231 232 233 234 235 236
    """
    case 11
    """

    def config(self):
        self.x_shape = (2, 1, 2, 100)
        self.y_shape = (1, 1, 100, 2)
        self.trans_x = False
        self.trans_y = False


237
class TestMatMulOp12(TestMatMulV2Op):
S
ShenLiang 已提交
238 239 240 241 242
    """
    case 12
    """

    def config(self):
S
ShenLiang 已提交
243 244
        self.x_shape = (2, 1, 4, 25)
        self.y_shape = (1, 1, 4, 25)
S
ShenLiang 已提交
245 246 247 248
        self.trans_x = True
        self.trans_y = False


249
class TestMatMulOp13(TestMatMulV2Op):
S
ShenLiang 已提交
250 251 252 253 254
    """
    case 13
    """

    def config(self):
S
ShenLiang 已提交
255 256
        self.x_shape = (2, 2, 10, 10)
        self.y_shape = (2, 2, 10, 10)
S
ShenLiang 已提交
257 258 259 260
        self.trans_x = True
        self.trans_y = False


261
class TestMatMulOp14(TestMatMulV2Op):
S
ShenLiang 已提交
262 263 264 265 266
    """
    case 14_1
    """

    def config(self):
267 268
        self.x_shape = (3, 1, 6, 6)
        self.y_shape = (1, 2, 6, 9)
S
ShenLiang 已提交
269 270 271 272
        self.trans_x = True
        self.trans_y = False


273
class TestMatMulOp15(TestMatMulV2Op):
S
ShenLiang 已提交
274 275 276 277 278
    """
    case 14_2
    """

    def config(self):
279 280
        self.x_shape = (3, 1, 6, 6)
        self.y_shape = (1, 2, 6, 9)
S
ShenLiang 已提交
281 282 283 284
        self.trans_x = False
        self.trans_y = False


285
class TestMatMulOp16(TestMatMulV2Op):
S
ShenLiang 已提交
286 287 288 289 290 291
    """
    case 16 : to check the gradient for special case
    """

    def config(self):
        self.x_shape = (100)
S
ShenLiang 已提交
292
        self.y_shape = (1, 2, 2, 100, 2)
S
ShenLiang 已提交
293 294 295 296
        self.trans_x = False
        self.trans_y = False


297
class TestMatMulOp17(TestMatMulV2Op):
S
ShenLiang 已提交
298 299 300 301 302 303 304 305 306
    """
    case 17 : to check the gradient for special case
    """

    def config(self):
        self.x_shape = (2, 1, 100)
        self.y_shape = (100)
        self.trans_x = False
        self.trans_y = False
S
ShenLiang 已提交
307 308


309
class TestMatMulOpBroadcast1(TestMatMulV2Op):
310 311 312 313 314 315 316 317 318 319 320
    """
    case 14_3
    """

    def config(self):
        self.x_shape = (3, 1, 10, 10)
        self.y_shape = (1, 2, 10, 10)
        self.trans_x = True
        self.trans_y = True


321
class TestMatMulOpBroadcast2(TestMatMulV2Op):
322 323 324 325 326 327 328 329 330 331 332
    """
    case 14_4
    """

    def config(self):
        self.x_shape = (3, 1, 10, 10)
        self.y_shape = (1, 2, 10, 10)
        self.trans_x = False
        self.trans_y = True


S
ShenLiang 已提交
333 334 335 336
#--------------------test matmul fp16--------------------


def create_test_fp16_class(parent, atol=0.001, max_relative_error=1.0):
337

S
ShenLiang 已提交
338 339 340
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestMatMulOpFp16Case(parent):
341

S
ShenLiang 已提交
342 343 344 345 346 347 348
        def init_kernel_type(self):
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
349 350 351
                    self.check_output_with_place(place,
                                                 atol=atol,
                                                 check_eager=False)
S
ShenLiang 已提交
352 353 354 355 356 357 358

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_grad_with_place(
                    place, ['X', 'Y'],
                    'Out',
359
                    max_relative_error=max_relative_error,
360
                    check_eager=False)
S
ShenLiang 已提交
361 362 363 364 365 366 367

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestMatMulOpFp16Case.__name__ = cls_name
    globals()[cls_name] = TestMatMulOpFp16Case


create_test_fp16_class(TestMatMulV2Op)
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
create_test_fp16_class(TestMatMulOp2)
create_test_fp16_class(TestMatMulOp3)
create_test_fp16_class(TestMatMulOp4)
create_test_fp16_class(TestMatMulOp5)
create_test_fp16_class(TestMatMulOp6)
create_test_fp16_class(TestMatMulOp7)
create_test_fp16_class(TestMatMulOp8)
create_test_fp16_class(TestMatMulOp9)
create_test_fp16_class(TestMatMulOp10)
create_test_fp16_class(TestMatMulOp11)
create_test_fp16_class(TestMatMulOp12)
create_test_fp16_class(TestMatMulOp13)
create_test_fp16_class(TestMatMulOp14)
create_test_fp16_class(TestMatMulOp15)
create_test_fp16_class(TestMatMulOp16)
create_test_fp16_class(TestMatMulOp17)

#--------------------test matmul bf16--------------------


def create_test_bf16_class(parent, atol=0.01):
389

390
    @unittest.skipIf(
391 392
        not core.is_compiled_with_cuda()
        or not core.is_bfloat16_supported(core.CUDAPlace(0)),
393
        "core is not compiled with CUDA and not support the bfloat16")
394
    class TestMatMulOpBf16Case(parent):
395

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        def get_numeric_grad(self, place, check_name):
            scope = core.Scope()
            self._check_grad_helper()
            op = create_op(scope, self.op_type, self.inputs, self.outputs,
                           self.attrs)
            return get_numeric_gradient(place, scope, op, self.inputs_fp32,
                                        check_name, ['Out'])

        def init_kernel_type(self):
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=atol)

        def test_check_grad_x(self):
            place = core.CUDAPlace(0)
            numeric_grads = self.get_numeric_grad(place, 'X')
414 415 416 417
            self.check_grad_with_place(place, ['X'],
                                       'Out',
                                       no_grad_set=set(['Y']),
                                       user_defined_grads=[numeric_grads])
418 419 420 421

        def test_check_grad_y(self):
            place = core.CUDAPlace(0)
            numeric_grads = self.get_numeric_grad(place, 'Y')
422 423 424 425
            self.check_grad_with_place(place, ['Y'],
                                       'Out',
                                       no_grad_set=set(['X']),
                                       user_defined_grads=[numeric_grads])
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestMatMulOpBf16Case.__name__ = cls_name
    globals()[cls_name] = TestMatMulOpBf16Case


create_test_bf16_class(TestMatMulV2Op)
create_test_bf16_class(TestMatMulOp2)
create_test_bf16_class(TestMatMulOp3)
create_test_bf16_class(TestMatMulOp4)
create_test_bf16_class(TestMatMulOp5)
create_test_bf16_class(TestMatMulOp6)
create_test_bf16_class(TestMatMulOp7)
create_test_bf16_class(TestMatMulOp8)
create_test_bf16_class(TestMatMulOp9)
create_test_bf16_class(TestMatMulOp10)
create_test_bf16_class(TestMatMulOp11)
create_test_bf16_class(TestMatMulOp12)
create_test_bf16_class(TestMatMulOp13)
create_test_bf16_class(TestMatMulOp14)
create_test_bf16_class(TestMatMulOp15)
create_test_bf16_class(TestMatMulOp16)
create_test_bf16_class(TestMatMulOp17)
S
ShenLiang 已提交
452 453 454


class TestMatMulV2API(unittest.TestCase):
455

S
ShenLiang 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    def setUp(self):
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = fluid.data(name="input_x", shape=[4, 3], dtype="float32")
            input_y = fluid.data(name="input_y", shape=[3, 4], dtype="float32")

            result = paddle.matmul(input_x, input_y)

            x_np = np.random.random([4, 3]).astype("float32")
            y_np = np.random.random([3, 4]).astype("float32")

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
473 474 475 476
                              feed={
                                  "input_x": x_np,
                                  "input_y": y_np
                              },
S
ShenLiang 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
                              fetch_list=[result])

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_x = np.random.random([4, 3]).astype("float64")
                input_y = np.random.random([3, 4]).astype("float64")
                x = paddle.to_tensor(input_x)
                y = paddle.to_tensor(input_y)
                result = paddle.matmul(x, y)

S
ShenLiang 已提交
492 493 494 495 496 497 498 499 500 501 502
    def test_dygraph_fp16(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                with fluid.dygraph.guard(place):
                    input_x = np.random.random([4, 3]).astype("float16")
                    input_y = np.random.random([3, 4]).astype("float16")
                    x = paddle.to_tensor(input_x)
                    y = paddle.to_tensor(input_y)
                    result = paddle.matmul(x, y)

503 504 505 506 507
    def test_compute_type_fp32(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                with fluid.dygraph.guard(place):
508 509
                    paddle.set_flags(
                        {'FLAGS_gemm_use_half_precision_compute_type': False})
510 511 512 513 514 515 516 517 518 519 520 521 522
                    input_x = np.random.random([2, 8, 16]).astype("float16")
                    input_y = np.random.random([2, 16, 8]).astype("float16")
                    for i in range(0, 16, 2):
                        input_x[:, :, i] += 60000
                        input_x[:, :, i + 1] -= 60000
                    input_y[:, :, :] = 1.5

                    x = paddle.to_tensor(input_x)
                    y = paddle.to_tensor(input_y)
                    result = paddle.matmul(x, y)
                    result_np = np.matmul(input_x, input_y)
                    self.assertTrue(paddle.isfinite(result)[0, 0, 0])
                    self.assertTrue(np.isfinite(result_np)[0, 0, 0])
523
                    np.testing.assert_array_equal(result_np, result.numpy())
524 525
                    paddle.set_flags(
                        {'FLAGS_gemm_use_half_precision_compute_type': True})
526 527 528 529 530 531

    def test_compute_type_fp16_nan(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                with fluid.dygraph.guard(place):
532 533
                    paddle.set_flags(
                        {'FLAGS_gemm_use_half_precision_compute_type': True})
534 535 536 537 538 539 540 541 542 543 544 545 546 547
                    input_x = np.random.random([2, 8, 16]).astype("float16")
                    input_y = np.random.random([2, 16, 8]).astype("float16")
                    for i in range(0, 16, 2):
                        input_x[:, :, i] += 60000
                        input_x[:, :, i + 1] -= 60000
                    input_y[:, :, :] = 1.5

                    x = paddle.to_tensor(input_x)
                    y = paddle.to_tensor(input_y)
                    result = paddle.matmul(x, y)
                    result_np = np.matmul(input_x, input_y)
                    self.assertFalse(
                        paddle.isfinite(result)[0, 0, 0])  # contains nan/inf
                    self.assertTrue(np.isfinite(result_np)[0, 0, 0])
548 549
                    paddle.set_flags(
                        {'FLAGS_gemm_use_half_precision_compute_type': False})
550

551 552 553 554 555
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_dygraph()
            self.test_dygraph_fp16()

S
ShenLiang 已提交
556

C
chentianyu03 已提交
557
class TestComplexMatMulOp(OpTest):
558

C
chentianyu03 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    def setUp(self):
        self.op_type = "matmul_v2"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (10, 10)).astype(self.dtype) + 1J * np.random.random(
                (10, 10)).astype(self.dtype)
        self.y = np.random.random(
            (10, 10)).astype(self.dtype) + 1J * np.random.random(
                (10, 10)).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones((10, 10), self.dtype) + 1J * np.ones(
            (10, 10), self.dtype)
        self.grad_x = np.matmul(self.grad_out, np.conj(self.y).T)
        self.grad_y = np.matmul(np.conj(self.x).T, self.grad_out)

    def test_check_output(self):
591
        self.check_output(check_eager=False)
C
chentianyu03 已提交
592 593

    def test_check_grad_normal(self):
594 595 596 597 598
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
599 600

    def test_check_grad_ingore_x(self):
601 602 603 604 605 606
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
607 608

    def test_check_grad_ingore_y(self):
609 610 611 612 613 614
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
615 616 617


class TestComplexMatMulOpBroadcast(OpTest):
618

C
chentianyu03 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    def setUp(self):
        self.op_type = "matmul_v2"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (10, 2, 5)).astype(self.dtype) + 1J * np.random.random(
                (10, 2, 5)).astype(self.dtype)
        self.y = np.random.random(
            (5, 20)).astype(self.dtype) + 1J * np.random.random(
                (5, 20)).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones((10, 2, 20), self.dtype) + 1J * np.ones(
            (10, 2, 20), self.dtype)
        self.grad_x = np.matmul(self.grad_out, np.conj(self.y).T)
        self.grad_y = np.sum(np.matmul(
            np.conj(self.x).transpose(0, 2, 1), self.grad_out),
                             axis=0)

    def test_check_output(self):
653
        self.check_output(check_eager=False)
C
chentianyu03 已提交
654 655

    def test_check_grad_normal(self):
656 657 658 659 660
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
661 662

    def test_check_grad_ingore_x(self):
663 664 665 666 667 668
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
669 670

    def test_check_grad_ingore_y(self):
671 672 673 674 675 676
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
677 678


C
chentianyu03 已提交
679
class TestMatMulTypePromotion(TestComplexMatMulOp):
680

C
chentianyu03 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694
    def init_input_output(self):
        self.x = np.random.random((10, 10)).astype(self.dtype)
        self.y = np.random.random(
            (10, 10)).astype(self.dtype) + 1J * np.random.random(
                (10, 10)).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones((10, 10), self.dtype) + 1J * np.ones(
            (10, 10), self.dtype)
        self.grad_x = np.matmul(self.grad_out, np.conj(self.y).T).real
        self.grad_y = np.matmul(np.conj(self.x).T, self.grad_out)


S
ShenLiang 已提交
695
if __name__ == "__main__":
C
chentianyu03 已提交
696
    paddle.enable_static()
S
ShenLiang 已提交
697
    unittest.main()