test_adam_op.py 46.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest
import numpy as np
17
from op_test import OpTest
18 19
from paddle.fluid import core
from paddle.fluid.op import Operator
20
import paddle.fluid as fluid
M
MRXLT 已提交
21
import paddle
C
chentianyu03 已提交
22
from paddle.fluid.framework import _test_eager_guard
23 24 25


class TestAdamOp1(OpTest):
26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    def setUp(self):
        '''Test Adam Op with supplied attributes
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.004
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

56 57
        param_out, moment1_out, \
            moment2_out = adam_step(self.inputs, self.attrs)
58 59 60 61

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
A
Aurelius84 已提交
62 63 64
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
65 66 67 68 69 70 71
        }

    def test_check_output(self):
        self.check_output()


class TestAdamOp2(OpTest):
72

73 74 75
    def set_shape(self):
        self.shape = (102, 105)

76 77 78 79
    def setUp(self):
        '''Test Adam Op with supplied attributes
        '''
        self.op_type = "adam"
80 81 82 83
        self.set_shape()
        param = np.random.uniform(-1, 1, self.shape).astype("float32")
        grad = np.random.uniform(-1, 1, self.shape).astype("float32")
        moment1 = np.random.uniform(-1, 1, self.shape).astype("float32")
84
        # The second moment is positive
85
        moment2 = np.random.random(self.shape).astype("float32")
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

        learning_rate = 0.001
        beta1 = 0.9
        beta2 = 0.999
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        attributes = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

106 107
        param_out, moment1_out, \
            moment2_out = adam_step(self.inputs, attributes)
108 109 110 111

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
A
Aurelius84 已提交
112 113 114
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
115 116 117 118 119 120
        }

    def test_check_output(self):
        self.check_output()


121
class TestAdamOnlyTailOp(TestAdamOp2):
122

123 124 125 126
    def set_shape(self):
        self.shape = (3)


127
class TestAdamOpMultipleSteps(OpTest):
128

129 130 131 132 133 134 135 136 137 138 139 140 141
    def setUp(self):
        '''Test Adam Operator with supplied attributes
        '''
        self.op_type = "adam"
        self.num_steps = 10

        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.001
A
Aurelius84 已提交
142 143
        self.beta1 = 0.9
        self.beta2 = 0.999
144
        epsilon = 1e-8
A
Aurelius84 已提交
145 146
        self.beta1_pow = self.beta1**10
        self.beta2_pow = self.beta2**10
147 148 149 150 151 152 153

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
A
Aurelius84 已提交
154 155
            'Beta1Pow': np.array([self.beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([self.beta2_pow]).astype("float32")
156 157
        }

A
Aurelius84 已提交
158 159 160 161 162
        self.attrs = {
            'epsilon': epsilon,
            'beta1': self.beta1,
            'beta2': self.beta2
        }
163 164 165

    def test_check_output(self):
        for _ in range(self.num_steps):
166 167
            param_out, moment1_out, \
                moment2_out = adam_step(self.inputs, self.attrs)
168

A
Aurelius84 已提交
169 170
            beta1_pow_out = self.inputs['Beta1Pow'] * self.beta1
            beta2_pow_out = self.inputs['Beta2Pow'] * self.beta2
171 172 173
            self.outputs = {
                'Moment1Out': moment1_out,
                'Moment2Out': moment2_out,
A
Aurelius84 已提交
174 175 176
                'ParamOut': param_out,
                'Beta1PowOut': beta1_pow_out,
                'Beta2PowOut': beta2_pow_out
177 178 179 180 181 182 183 184 185
            }

            # Verify output for this step
            self.check_output()

            # Output of this step becomes input for next step
            self.inputs['Param'] = param_out
            self.inputs['Moment1'] = moment1_out
            self.inputs['Moment2'] = moment2_out
186 187

            # Update powers of Beta1 and Beta2 for next time step
A
Aurelius84 已提交
188 189
            self.inputs['Beta1Pow'] = beta1_pow_out
            self.inputs['Beta2Pow'] = beta2_pow_out
190 191 192 193 194

            # Randomize gradient for next step
            self.inputs['Grad'] = np.random.uniform(
                -1, 1, (102, 105)).astype("float32")

C
chentianyu03 已提交
195 196 197 198
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_check_output()

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

def adam_step(inputs, attributes):
    '''
    Simulate one step of the adam optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    epsilon = attributes['epsilon']

218 219 220 221 222 223 224 225 226
    if 'beta1' in attributes:
        beta1 = attributes['beta1']
    else:
        beta1 = inputs['Beta1Tensor'][0]
    if 'beta2' in attributes:
        beta2 = attributes['beta2']
    else:
        beta2 = inputs['Beta2Tensor'][0]

227 228
    moment1_out = beta1 * moment1 + (1 - beta1) * grad
    moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
229
    lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
230
    param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon))
231
    return param_out, moment1_out, moment2_out
232 233


R
Roc 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
def adamw_step(inputs, attributes):
    '''
    Simulate one step of the adam optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    epsilon = attributes['epsilon']
    coeff = attributes["coeff"]
    if attributes.get("with_decay", False):
        decay = 1.0 - lr * coeff
        param2 = param * decay
        param = param2.copy()
    if 'beta1' in attributes:
        beta1 = attributes['beta1']
    else:
        beta1 = inputs['Beta1Tensor'][0]
    if 'beta2' in attributes:
        beta2 = attributes['beta2']
    else:
        beta2 = inputs['Beta2Tensor'][0]

    moment1_out = beta1 * moment1 + (1 - beta1) * grad
    moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
    lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
    param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon))

    return param_out, moment1_out, moment2_out


Q
Qiao Longfei 已提交
273
def adam_step_sparse(inputs, attributes, height, rows, row_numel, np_grad,
Q
Qiao Longfei 已提交
274
                     lazy_mode):
T
wip  
typhoonzero 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    '''
    Simulate one step of the adam optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    # grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    beta1 = attributes['beta1']
    beta2 = attributes['beta2']
    epsilon = attributes['epsilon']

T
typhoonzero 已提交
294 295 296
    moment1_out = np.zeros(shape=[height, row_numel])
    moment2_out = np.zeros(shape=[height, row_numel])
    param_out = np.zeros(shape=[height, row_numel])
T
wip  
typhoonzero 已提交
297

Q
Qiao Longfei 已提交
298
    def update_row(row_id, update_value):
299 300
        moment1_out[row_id] = beta1 * moment1[row_id] + (1 -
                                                         beta1) * update_value
T
wip  
typhoonzero 已提交
301
        moment2_out[row_id] = beta2 * moment2[row_id] + (
Q
Qiao Longfei 已提交
302
            1 - beta2) * np.square(update_value)
T
wip  
typhoonzero 已提交
303
        lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
304 305
        param_out[row_id] = param[row_id] - lr_t * (
            moment1_out[row_id] / (np.sqrt(moment2_out[row_id]) + epsilon))
Q
Qiao Longfei 已提交
306 307 308 309 310 311 312 313 314 315 316

    if lazy_mode:
        for idx, row_id in enumerate(rows):
            update_row(row_id, np_grad[idx])
    else:
        for row_id in range(param_out.shape[0]):
            update_value = np.zeros(np_grad[0].shape).astype("float32")
            if row_id in rows:
                update_value = np_grad[rows.index(row_id)]
            update_row(row_id, update_value)

T
wip  
typhoonzero 已提交
317 318 319 320
    return param_out, moment1_out, moment2_out


class TestSparseAdamOp(unittest.TestCase):
321

Q
Qiao Longfei 已提交
322
    def setup(self, scope, place, lazy_mode):
T
wip  
typhoonzero 已提交
323 324 325
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
A
Aurelius84 已提交
326 327
        beta1_pow = np.array([beta1**10]).astype("float32")
        beta2_pow = np.array([beta2**10]).astype("float32")
T
wip  
typhoonzero 已提交
328 329 330

        height = 10
        rows = [0, 4, 7]
T
typhoonzero 已提交
331
        self.rows = rows
T
wip  
typhoonzero 已提交
332
        row_numel = 12
T
typhoonzero 已提交
333
        self.row_numel = row_numel
T
wip  
typhoonzero 已提交
334
        self.dense_inputs = {
Q
Qiao Longfei 已提交
335 336 337
            "Param": np.full((height, row_numel), 5.0).astype("float32"),
            "Moment1": np.full((height, row_numel), 5.0).astype("float32"),
            "Moment2": np.full((height, row_numel), 5.0).astype("float32"),
A
Aurelius84 已提交
338 339
            'Beta1Pow': beta1_pow,
            'Beta2Pow': beta2_pow,
T
wip  
typhoonzero 已提交
340 341
            "LearningRate": np.full((1), 2.0).astype("float32")
        }
Q
Qiao Longfei 已提交
342
        self.init_output = np.full((height, row_numel), 0.0).astype("float32")
343 344 345 346 347 348
        self.attrs = {
            'epsilon': epsilon,
            'beta1': beta1,
            'beta2': beta2,
            'min_row_size_to_use_multithread': 2
        }
T
wip  
typhoonzero 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        np_array = np.ones((len(rows), row_numel)).astype("float32")
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        self.sparse_inputs = ["Grad"]

Q
Qiao Longfei 已提交
362 363
        param_out, mom1, mom2 = adam_step_sparse(self.dense_inputs, self.attrs,
                                                 height, rows, row_numel,
Q
Qiao Longfei 已提交
364
                                                 np_array, lazy_mode)
T
wip  
typhoonzero 已提交
365
        self.outputs = {
T
typhoonzero 已提交
366
            "ParamOut": param_out,
T
wip  
typhoonzero 已提交
367
            "Moment1Out": mom1,
A
Aurelius84 已提交
368 369 370
            "Moment2Out": mom2,
            'Beta1PowOut': beta1_pow * beta1,
            'Beta2PowOut': beta2_pow * beta2
T
wip  
typhoonzero 已提交
371 372
        }

Q
Qiao Longfei 已提交
373
    def check_with_place(self, place, lazy_mode):
T
wip  
typhoonzero 已提交
374
        scope = core.Scope()
Q
Qiao Longfei 已提交
375
        self.setup(scope, place, lazy_mode)
T
wip  
typhoonzero 已提交
376 377

        op_args = dict()
Q
Qiao Longfei 已提交
378
        op_args['lazy_mode'] = lazy_mode
379
        for key, np_array in self.dense_inputs.items():
T
wip  
typhoonzero 已提交
380 381 382 383 384
            var = scope.var(key).get_tensor()
            var.set(np_array, place)
            op_args[key] = key
        for s in self.sparse_inputs:
            op_args[s] = s
T
typhoonzero 已提交
385 386
        for s in self.outputs:
            var = scope.var(s).get_tensor()
Q
Qiao Longfei 已提交
387
            var.set(self.init_output, place)
T
typhoonzero 已提交
388
            op_args[s] = s
T
wip  
typhoonzero 已提交
389 390 391 392
        for k in self.attrs:
            op_args[k] = self.attrs[k]

        # create and run sgd operator
T
typhoonzero 已提交
393 394
        adam_op = Operator("adam", **op_args)
        adam_op.run(scope, place)
T
wip  
typhoonzero 已提交
395

396
        for key, np_array in self.outputs.items():
T
wip  
typhoonzero 已提交
397 398
            out_var = scope.var(key).get_tensor()
            actual = np.array(out_var)
T
typhoonzero 已提交
399 400
            actual = actual.reshape([actual.size])
            np_array = np_array.reshape([np_array.size])
Q
Qiao Longfei 已提交
401 402 403

            for i in range(np_array.size):
                self.assertLess((actual[i] - np_array[i]), 0.00001)
T
wip  
typhoonzero 已提交
404

Q
Qiao Longfei 已提交
405
    def test_sparse_adam(self):
T
wip  
typhoonzero 已提交
406
        places = [core.CPUPlace()]
407
        if core.is_compiled_with_cuda():
T
wip  
typhoonzero 已提交
408 409
            places.append(core.CUDAPlace(0))
        for place in places:
Q
Qiao Longfei 已提交
410 411
            for lazy_mode in (True, False):
                self.check_with_place(place, lazy_mode)
T
wip  
typhoonzero 已提交
412 413


414
class TestAdamOpBetaVariable(OpTest):
415

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
    def setUp(self):
        '''Test Adam Op with beta as Variable
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")
        beta1 = 0.85
        beta2 = 0.95

        learning_rate = 0.001
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
            "Beta1Tensor": np.array([beta1]).astype("float32"),
            "Beta2Tensor": np.array([beta2]).astype("float32"),
        }

        attributes = {'epsilon': epsilon}

        param_out, moment1_out, \
            moment2_out = adam_step(self.inputs, attributes)

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
A
Aurelius84 已提交
453 454 455
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
456 457 458 459 460 461
        }

    def test_check_output(self):
        self.check_output()


462
class TestAdamOpBetaEpsilonVariable(OpTest):
463

464
    def setUp(self):
465
        '''Test Adam Op with beta/epsilon as Variable
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")
        beta1 = 0.85
        beta2 = 0.95

        learning_rate = 0.001
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
            "Beta1Tensor": np.array([beta1]).astype("float32"),
            "Beta2Tensor": np.array([beta2]).astype("float32"),
            "EpsilonTensor": np.array([epsilon]).astype("float32"),
        }

        attributes = {'epsilon': epsilon}

        param_out, moment1_out, \
            moment2_out = adam_step(self.inputs, attributes)

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
        }

    def test_check_output(self):
        self.check_output()


511
class TestAdamOpWithGlobalBetaPow(OpTest):
512

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
    def setUp(self):
        '''Test Adam Op with global_beta_pow
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")
        beta1 = 0.85
        beta2 = 0.95

        learning_rate = 0.001
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
            "Beta1Tensor": np.array([beta1]).astype("float32"),
            "Beta2Tensor": np.array([beta2]).astype("float32"),
            "EpsilonTensor": np.array([epsilon]).astype("float32"),
        }

        attributes = {'epsilon': epsilon}

        param_out, moment1_out, \
            moment2_out = adam_step(self.inputs, attributes)

        self.attrs = {'use_global_beta_pow': True}

        # use_global_beta_pow=True, Beta1PowOut and Beta2PowOut are empty.
        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out,
            'Beta1PowOut': np.array([]),
            'Beta2PowOut': np.array([])
        }

    def test_check_output(self):
        self.check_output()


563
class TestAdamOpWithSkipUpdate(OpTest):
564

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
    def setUp(self):
        '''Test Adam Op with global_beta_pow
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")
        beta1 = 0.85
        beta2 = 0.95

        learning_rate = 0.001
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
            "Beta1Tensor": np.array([beta1]).astype("float32"),
            "Beta2Tensor": np.array([beta2]).astype("float32"),
            "EpsilonTensor": np.array([epsilon]).astype("float32"),
            "SkipUpdate": np.array([True]).astype("bool"),
        }

        attributes = {'epsilon': epsilon}

        self.attrs = {'use_global_beta_pow': True}

        # use_global_beta_pow=True, Beta1PowOut and Beta2PowOut are empty.
        self.outputs = {
            'Moment1Out': moment1,
            'Moment2Out': moment2,
            'ParamOut': param,
            'Beta1PowOut': self.inputs['Beta1Pow'],
            'Beta2PowOut': self.inputs['Beta2Pow'],
        }

    def test_check_output(self):
        self.check_output()


M
MRXLT 已提交
613
class TestAdamOpV2(unittest.TestCase):
614

M
MRXLT 已提交
615 616
    def test_adam_op(self):
        place = fluid.CPUPlace()
617
        shape = [2, 3, 8, 8]
M
MRXLT 已提交
618 619 620 621 622 623 624 625 626
        exe = fluid.Executor(place)
        train_prog = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(train_prog, startup):
            with fluid.unique_name.guard():
                data = fluid.data(name="data", shape=shape)
                conv = fluid.layers.conv2d(data, 8, 3)
                loss = fluid.layers.reduce_mean(conv)

627 628 629 630 631 632 633 634
                beta1 = fluid.layers.create_global_var(shape=[1],
                                                       value=0.85,
                                                       dtype='float32',
                                                       persistable=True)
                beta2 = fluid.layers.create_global_var(shape=[1],
                                                       value=0.95,
                                                       dtype='float32',
                                                       persistable=True)
M
MRXLT 已提交
635
                betas = [beta1, beta2]
636 637 638 639 640
                opt = paddle.optimizer.Adam(learning_rate=1e-5,
                                            beta1=beta1,
                                            beta2=beta2,
                                            weight_decay=0.01,
                                            epsilon=1e-8)
M
MRXLT 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653
                opt.minimize(loss)

        exe.run(startup)
        data_np = np.random.random(shape).astype('float32')
        rets = exe.run(train_prog, feed={"data": data_np}, fetch_list=[loss])
        assert rets[0] is not None

    def test_adam_op_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = fluid.dygraph.to_variable(value)
        linear = fluid.Linear(13, 5, dtype="float32")

654 655
        adam = paddle.optimizer.Adam(learning_rate=0.01,
                                     parameters=linear.parameters())
M
MRXLT 已提交
656 657 658 659
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()
660
        paddle.enable_static()
M
MRXLT 已提交
661 662 663 664

    def test_adam_op_with_state_dict(self):

        paddle.disable_static()
T
tangwei12 已提交
665
        emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
666 667 668 669 670

        adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
        state_dict = adam.state_dict()
        adam.set_state_dict(state_dict)

671 672
        #learning_rate is LRScheduler
        learning_rate = paddle.optimizer.lr.CosineAnnealingDecay(
673
            learning_rate=0.1, T_max=10)
M
MRXLT 已提交
674 675 676 677 678 679 680 681 682 683 684 685
        adam = paddle.optimizer.Adam(
            learning_rate=learning_rate,
            weight_decay=fluid.regularizer.L2Decay(0.001),
            parameters=emb.parameters())
        lr = adam.get_lr()
        state_dict = adam.state_dict()
        adam.set_state_dict(state_dict)

        #leanrning_rate is Tensor
        with self.assertRaises(TypeError):
            learning_rate = np.array([0.01]).astype("float32")
            learning_rate = paddle.to_tensor(learning_rate)
686 687
            adam = paddle.optimizer.Adam(learning_rate=learning_rate,
                                         parameters=emb.parameters())
M
MRXLT 已提交
688 689 690

        params = adam.get_opti_var_name_list()
        assert (params is not None)
691
        paddle.enable_static()
M
MRXLT 已提交
692 693 694 695 696 697 698

    def test_adam_with_grad_clip(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = fluid.dygraph.to_variable(value)
        linear = fluid.Linear(13, 5, dtype="float32")
        clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0)
699 700 701
        adam = paddle.optimizer.Adam(0.1,
                                     parameters=linear.parameters(),
                                     grad_clip=clip)
M
MRXLT 已提交
702 703 704 705
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()
706
        paddle.enable_static()
M
MRXLT 已提交
707 708 709 710 711 712 713 714 715 716 717

    def test_adam_op_with_set_lr(self):
        paddle.disable_static()
        linear = paddle.nn.Linear(10, 10)
        adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

        lr = 0.01
        adam.set_lr(lr)
        cur_lr = adam.get_lr()
        assert (lr == cur_lr)
        with self.assertRaises(TypeError):
718 719 720
            lr_var = paddle.fluid.layers.create_global_var(shape=[1],
                                                           value=lr,
                                                           dtype='float32')
721
            adam.set_lr(lr_var)
722
        paddle.enable_static()
723

M
MRXLT 已提交
724 725 726 727
    def test_adam_op_invalid_input(self):
        paddle.disable_static()
        linear = paddle.nn.Linear(10, 10)
        with self.assertRaises(ValueError):
728 729 730
            adam = paddle.optimizer.Adam(0.1,
                                         beta1=-1,
                                         parameters=linear.parameters())
M
MRXLT 已提交
731
        with self.assertRaises(ValueError):
732 733 734
            adam = paddle.optimizer.Adam(0.1,
                                         beta2=-1,
                                         parameters=linear.parameters())
M
MRXLT 已提交
735
        with self.assertRaises(ValueError):
736 737 738
            adam = paddle.optimizer.Adam(0.1,
                                         epsilon=-1,
                                         parameters=linear.parameters())
739
        paddle.enable_static()
M
MRXLT 已提交
740

741 742 743 744 745 746
    def test_adam_op_with_sparse_input_and_weight_decay(self):

        paddle.disable_static()
        x_data = np.arange(0, 10).reshape((10, 1)).astype(np.int64)
        x = paddle.to_tensor(x_data, stop_gradient=False)
        emb = paddle.nn.Embedding(10, 10, sparse=True)
747 748 749
        adam = paddle.optimizer.Adam(0.001,
                                     parameters=emb.parameters(),
                                     weight_decay=0.01)
750 751 752 753 754

        with self.assertRaises(RuntimeError):
            out = emb(x)
            out.backward()
            adam.step()
755
        paddle.enable_static()
756

C
chentianyu03 已提交
757 758 759 760 761 762 763 764
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_adam_op_dygraph()
            self.test_adam_op_with_state_dict()
            self.test_adam_with_grad_clip()
            self.test_adam_op_with_set_lr()
            self.test_adam_op_with_sparse_input_and_weight_decay()

765

766
class TestAdamOptimizer(unittest.TestCase):
767

768 769 770 771
    def _test(self,
              place,
              use_tensor=True,
              use_fluid_api=True,
772 773
              use_global_beta_pow=False,
              flatten_param_grads=False):
774 775 776 777 778 779 780
        paddle.enable_static()
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        SEED = 2021
        paddle.seed(SEED)
        np.random.seed(SEED)

781 782 783 784 785 786 787 788 789 790 791 792
        a_np = np.random.random(size=(2, 2)).astype('float32')
        b_np = np.random.random(size=(2, 2)).astype('float32')
        label_np = np.random.randint(2, size=(2, 1)).astype('int64')
        weight_attr1 = paddle.ParamAttr(
            name="weight1",
            initializer=fluid.initializer.Constant(value=1.0),
            trainable=True)
        weight_attr2 = paddle.ParamAttr(
            name="weight2",
            initializer=fluid.initializer.Constant(value=2.0),
            trainable=True)
        clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
793 794

        with paddle.static.program_guard(main_prog, startup_prog):
795 796 797
            with paddle.utils.unique_name.guard():
                a = paddle.static.data(name="a", shape=[2, 2], dtype='float32')
                b = paddle.static.data(name="b", shape=[2, 2], dtype='float32')
798 799 800
                label = paddle.static.data(name="label",
                                           shape=[2, 1],
                                           dtype='int64')
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845

                sum = paddle.add(a, b)
                z = paddle.pow(sum, 2.0)

                fc_1 = fluid.layers.fc(input=z, size=2, param_attr=weight_attr1)
                prediction = fluid.layers.fc(input=fc_1,
                                             size=2,
                                             param_attr=weight_attr2,
                                             act='softmax')

                cost = fluid.layers.cross_entropy(input=prediction, label=label)
                loss = fluid.layers.reduce_mean(cost)
                beta1_init = 0.9
                beta2_init = 0.999
                epsilon_init = 1e-8
                if use_tensor:
                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        persistable=True,
                        name="beta2")
                    epsilon = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        persistable=True,
                        name="epsilon")
                    if use_fluid_api:
                        adam = fluid.optimizer.Adam(
                            learning_rate=0.01,
                            beta1=beta1,
                            beta2=beta2,
                            epsilon=epsilon,
                            use_global_beta_pow=use_global_beta_pow,
                            flatten_param_grads=flatten_param_grads,
                            align_size=256,
                            grad_clip=clip)
                    else:
846 847 848 849 850
                        adam = paddle.optimizer.Adam(learning_rate=0.01,
                                                     beta1=beta1,
                                                     beta2=beta2,
                                                     epsilon=epsilon,
                                                     grad_clip=clip)
851
                else:
852 853 854 855 856 857 858 859 860 861 862
                    if use_fluid_api:
                        adam = fluid.optimizer.Adam(
                            learning_rate=0.01,
                            beta1=beta1_init,
                            beta2=beta2_init,
                            epsilon=epsilon_init,
                            use_global_beta_pow=use_global_beta_pow,
                            flatten_param_grads=flatten_param_grads,
                            align_size=256,
                            grad_clip=clip)
                    else:
863 864 865 866 867
                        adam = fluid.optimizer.Adam(learning_rate=0.01,
                                                    beta1=beta1_init,
                                                    beta2=beta2_init,
                                                    epsilon=epsilon_init,
                                                    grad_clip=clip)
868 869 870 871 872 873 874 875 876 877

                adam.minimize(loss)

        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe = paddle.static.Executor(place)
            exe.run(startup_prog)

            print("Start run on {}".format(place))
            for epoch in range(10):
878 879 880 881 882 883 884
                pred_res, loss_res = exe.run(main_prog,
                                             feed={
                                                 "a": a_np,
                                                 "b": b_np,
                                                 "label": label_np
                                             },
                                             fetch_list=[prediction, loss])
885 886 887 888
                print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
                    epoch, pred_res[0], loss_res))
            paddle.disable_static()
            return pred_res, loss_res
889 890 891 892 893 894 895

    def _test_with_place(self, place):
        preds = []
        losses = []

        for use_tensor in [True, False]:
            for use_fluid_api in [True, False]:
896
                for use_global_beta_pow in [True, False]:
897
                    for flatten_param_grads in [True, False]:
898 899 900 901
                        pred, loss = self._test(place, use_tensor,
                                                use_fluid_api,
                                                use_global_beta_pow,
                                                flatten_param_grads)
902 903
                        preds.append(pred)
                        losses.append(loss)
904
        for pred in preds:
905
            np.testing.assert_allclose(pred, preds[0], rtol=1e-05)
906
        for loss in losses:
907
            np.testing.assert_allclose(loss, losses[0], rtol=1e-05)
908 909 910 911 912 913 914

    def test_adam_api(self):
        # NOTE(zhiqiu): cpu and gpu has different seed, so should compare separatly.
        self._test_with_place(paddle.CPUPlace())
        if core.is_compiled_with_cuda():
            self._test_with_place(paddle.CUDAPlace(0))

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
    def test_adam_flatten_param_grads_with_regularizer(self):
        # flatten_param_grads + regularizer is not supported yet.
        paddle.enable_static()
        main = fluid.Program()
        weight_attr = paddle.ParamAttr(
            name="weight1",
            initializer=fluid.initializer.Constant(value=1.0),
            regularizer=fluid.regularizer.L1DecayRegularizer(
                regularization_coeff=0.1),
            trainable=True)
        with fluid.program_guard(main):
            x = fluid.data(name='x', shape=[None, 13], dtype='float32')
            y = fluid.data(name='y', shape=[None, 1], dtype='float32')
            y_predict = fluid.layers.fc(input=x,
                                        size=1,
                                        act=None,
                                        param_attr=weight_attr)
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
933
            avg_cost = paddle.mean(cost)
934

935 936 937
            adam = fluid.optimizer.AdamOptimizer(0.01,
                                                 flatten_param_grads=True,
                                                 align_size=256)
938 939 940 941 942
            adam.minimize(avg_cost)
            paddle.disable_static()

            self.assertEqual(adam._flatten_param_grads, False)

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
    def test_adam_exception(self):
        paddle.enable_static()
        a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
        b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
        label = paddle.static.data(name="label", shape=[32, 1], dtype='int64')

        sum = paddle.add(a, b)
        z = paddle.pow(sum, 2.0)

        fc_1 = fluid.layers.fc(input=z, size=128)
        prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')

        cost = fluid.layers.cross_entropy(input=prediction, label=label)
        loss = fluid.layers.reduce_mean(cost)
        adam = fluid.optimizer.Adam(use_global_beta_pow=True)
        adam.minimize(loss)
        self.assertRaises(Exception, adam._get_global_accumulator, 'tmp')
960 961
        adam._add_global_accumulator('tmp',
                                     type=core.VarDesc.VarType.LOD_TENSOR)
962
        adam._get_global_accumulator('tmp')
963 964 965 966
        self.assertRaises(Exception,
                          adam._add_global_accumulator,
                          adam._beta1_pow_acc_str,
                          type=core.VarDesc.VarType.LOD_TENSOR)
967 968 969 970 971 972 973 974 975 976
        paddle.disable_static()

    def test_adam_save_load(self):
        paddle.disable_static()
        a = paddle.rand([4, 10])
        linear = paddle.nn.Linear(10, 10)
        b = linear(a)
        state_dict = linear.state_dict()
        fluid.save_dygraph(state_dict, "paddle_dy")

977 978 979 980 981 982
        scheduler = paddle.optimizer.lr.NoamDecay(d_model=0.01,
                                                  warmup_steps=100,
                                                  verbose=True)
        adam = paddle.fluid.optimizer.Adam(learning_rate=scheduler,
                                           parameter_list=linear.parameters(),
                                           use_global_beta_pow=True)
983 984 985
        adam.minimize(b)
        state_dict = adam.state_dict()
        fluid.save_dygraph(state_dict, "paddle_dy")
986 987
        para_state_dict, opt_state_dict = fluid.load_dygraph("paddle_dy")
        adam.set_state_dict(opt_state_dict)
988 989 990

        paddle.enable_static()

991 992 993 994 995 996 997 998 999 1000 1001 1002
    def test_adam_save_load_error(self):
        paddle.disable_static()

        def get_opt(dtype, shape):
            with paddle.utils.unique_name.guard():
                paddle.set_default_dtype(dtype)
                a = paddle.rand([4, 10])
                linear = paddle.nn.Linear(10, 10)
                b = linear(a)
                state_dict = linear.state_dict()
                fluid.save_dygraph(state_dict, "paddle_dy")

1003 1004 1005
                scheduler = paddle.optimizer.lr.NoamDecay(d_model=0.01,
                                                          warmup_steps=100,
                                                          verbose=True)
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
                adam = paddle.fluid.optimizer.Adam(
                    learning_rate=scheduler,
                    parameter_list=linear.parameters(),
                    use_global_beta_pow=True)
                adam.minimize(b)
                return adam

        adam = get_opt('float32', [10, 10])

        state_dict = adam.state_dict()
        fluid.save_dygraph(state_dict, "paddle_dy")
        para_state_dict, opt_state_dict = fluid.load_dygraph("paddle_dy")
        adam.set_state_dict(opt_state_dict)

        adam2 = get_opt('float64', [10, 10])  # dtype not match
        self.assertRaises(AssertionError, adam2.set_state_dict, opt_state_dict)

        adam3 = get_opt('float32', [10, 10])  # shape not match
1024 1025
        opt_state_dict['beta1_pow_acc_0'] = np.array([0.9, 0.9],
                                                     dtype='float32')
1026 1027 1028
        self.assertRaises(AssertionError, adam3.set_state_dict, opt_state_dict)
        paddle.enable_static()

1029

1030
class TestAdamOpV2Group(TestAdamOpV2):
1031

1032 1033 1034 1035 1036 1037 1038
    def test_adam_op(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        # This can be any optimizer supported by dygraph.
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
        adam = paddle.optimizer.Adam(learning_rate=0.01,
                                     parameters=[{
                                         'params': linear_1.parameters()
                                     }, {
                                         'params': linear_2.parameters(),
                                         'weight_decay': 0.001,
                                         'beta1': 0.1,
                                         'beta2': 0.99
                                     }],
                                     weight_decay=0.1)
1049 1050 1051 1052 1053 1054 1055
        out = linear_1(a)
        out = linear_2(out)
        out.backward()
        adam.step()
        adam.clear_gradients()


Z
zhangbo9674 已提交
1056
class TestMultiTensorAdam(unittest.TestCase):
1057

Z
zhangbo9674 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
    def _adam_optimize_dygraph(self,
                               place,
                               use_param_attr=False,
                               use_param_group=False,
                               use_amp=False,
                               use_multi_tensor=False):
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device(place)

        input = paddle.randn((5, 5))

        weight_attr = paddle.ParamAttr(
            learning_rate=0.5,
            regularizer=paddle.regularizer.L2Decay(1.0),
            trainable=True)
        if use_param_attr:
            model = paddle.nn.Linear(5, 5, weight_attr)
        else:
            model = paddle.nn.Linear(5, 5)

        if not use_param_group:
1080 1081 1082
            optimizer = paddle.optimizer.Adam(parameters=model.parameters(),
                                              use_multi_tensor=use_multi_tensor,
                                              multi_precision=use_amp)
Z
zhangbo9674 已提交
1083
        else:
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
            optimizer = paddle.optimizer.Adam(parameters=[{
                'params':
                model.parameters(),
                'weight_decay':
                0.001,
                'beta1':
                0.1,
                'beta2':
                0.99
            }],
                                              use_multi_tensor=use_multi_tensor,
                                              multi_precision=use_amp)
Z
zhangbo9674 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

        for idx in range(2):
            if place == 'gpu' and use_amp == True:
                model = paddle.amp.decorate(models=model, level='O2')
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

            if place == 'gpu' and use_amp == True:
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.step(optimizer)
                optimizer.clear_grad()
            else:
                output = model(input)
                loss = paddle.mean(output)
                loss.backward()
                optimizer.step()
                optimizer.clear_grad()

        return output, model.parameters()

    def _adam_optimize_static(self,
                              place,
                              use_amp=False,
                              use_multi_tensor=False):
        paddle.enable_static()
        paddle.seed(10)
        np.random.seed(10)
        if place == 'cpu':
            use_amp = False
        exe = paddle.static.Executor(place=place)
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
1131 1132
        optimizer = paddle.optimizer.Adam(multi_precision=use_amp,
                                          use_multi_tensor=use_multi_tensor)
Z
zhangbo9674 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141
        if use_amp:
            optimizer = paddle.static.amp.decorate(
                optimizer,
                init_loss_scaling=128.0,
                use_dynamic_loss_scaling=True,
                use_pure_fp16=True,
                use_fp16_guard=False)
        with paddle.static.program_guard(train_program, startup_program):
            if use_amp:
1142 1143 1144
                data = paddle.static.data(shape=[2, 2],
                                          name='X',
                                          dtype='float16')
Z
zhangbo9674 已提交
1145
            else:
1146 1147 1148
                data = paddle.static.data(shape=[2, 2],
                                          name='X',
                                          dtype='float32')
Z
zhangbo9674 已提交
1149
            hidden = paddle.static.nn.fc(x=data, size=10)
1150
            loss = paddle.mean(hidden)
Z
zhangbo9674 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
            optimizer.minimize(loss)
        exe.run(startup_program)
        if use_amp:
            optimizer.amp_init(place=place, scope=paddle.static.global_scope())
            x = np.random.random(size=(2, 2)).astype('float16')
        else:
            x = np.random.random(size=(2, 2)).astype('float32')
        out = []
        for idx in range(5):
            loss_data, = exe.run(train_program,
                                 feed={"X": x},
                                 fetch_list=[loss.name])
            out.append(loss_data)
        return out

    def _get_places(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        return places

    def _check_with_place_amp(self, place, use_amp):
        # test dygraph mode
        output_dygraph1, params_dygraph1 = self._adam_optimize_dygraph(
            place=place, use_amp=use_amp, use_multi_tensor=True)
        output_dygraph2, params_dygraph2 = self._adam_optimize_dygraph(
            place=place, use_amp=use_amp, use_multi_tensor=False)
1178
        np.testing.assert_allclose(output_dygraph1, output_dygraph2, rtol=1e-05)
Z
zhangbo9674 已提交
1179
        for idx in range(len(params_dygraph1)):
1180 1181 1182
            np.testing.assert_allclose(params_dygraph1[idx],
                                       params_dygraph2[idx],
                                       rtol=1e-05)
Z
zhangbo9674 已提交
1183
        # test static mode
1184 1185 1186 1187 1188 1189
        output_static1 = self._adam_optimize_static(place=place,
                                                    use_amp=use_amp,
                                                    use_multi_tensor=True)
        output_static2 = self._adam_optimize_static(place=place,
                                                    use_amp=use_amp,
                                                    use_multi_tensor=False)
Z
zhangbo9674 已提交
1190
        for idx in range(len(output_static1)):
1191 1192 1193
            np.testing.assert_allclose(output_static1[idx],
                                       output_static2[idx],
                                       rtol=1e-05)
Z
zhangbo9674 已提交
1194 1195

    def _check_with_param_arrt(self, place, use_amp):
1196 1197 1198 1199 1200 1201 1202 1203
        output1, params1 = self._adam_optimize_dygraph(place=place,
                                                       use_amp=use_amp,
                                                       use_param_attr=True,
                                                       use_multi_tensor=True)
        output2, params2 = self._adam_optimize_dygraph(place=place,
                                                       use_amp=use_amp,
                                                       use_param_attr=True,
                                                       use_multi_tensor=False)
Z
zhangbo9674 已提交
1204

1205
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
Z
zhangbo9674 已提交
1206
        for idx in range(len(params1)):
1207
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
Z
zhangbo9674 已提交
1208 1209

    def _check_with_param_group(self, place, use_amp):
1210 1211 1212 1213 1214 1215 1216 1217
        output1, params1 = self._adam_optimize_dygraph(place=place,
                                                       use_amp=use_amp,
                                                       use_param_group=True,
                                                       use_multi_tensor=True)
        output2, params2 = self._adam_optimize_dygraph(place=place,
                                                       use_amp=use_amp,
                                                       use_param_group=True,
                                                       use_multi_tensor=False)
Z
zhangbo9674 已提交
1218

1219
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
Z
zhangbo9674 已提交
1220
        for idx in range(len(params1)):
1221
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
Z
zhangbo9674 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230

    def test_main(self):
        for place in self._get_places():
            use_amp_list = [True, False]
            for use_amp in use_amp_list:
                self._check_with_place_amp(place, use_amp)
                self._check_with_param_arrt(place, use_amp)
                self._check_with_param_group(place, use_amp)

1231 1232 1233 1234
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_main()

Z
zhangbo9674 已提交
1235

1236
if __name__ == "__main__":
H
hong 已提交
1237
    paddle.enable_static()
1238
    unittest.main()