test_adam_op.py 43.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
20 21
from paddle.fluid import core
from paddle.fluid.op import Operator
22
import paddle.fluid as fluid
M
MRXLT 已提交
23
import paddle
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55


class TestAdamOp1(OpTest):
    def setUp(self):
        '''Test Adam Op with supplied attributes
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.004
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

56 57
        param_out, moment1_out, \
            moment2_out = adam_step(self.inputs, self.attrs)
58 59 60 61

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
A
Aurelius84 已提交
62 63 64
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        }

    def test_check_output(self):
        self.check_output()


class TestAdamOp2(OpTest):
    def setUp(self):
        '''Test Adam Op with supplied attributes
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.001
        beta1 = 0.9
        beta2 = 0.999
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        attributes = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}

101 102
        param_out, moment1_out, \
            moment2_out = adam_step(self.inputs, attributes)
103 104 105 106

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
A
Aurelius84 已提交
107 108 109
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        }

    def test_check_output(self):
        self.check_output()


class TestAdamOpMultipleSteps(OpTest):
    def setUp(self):
        '''Test Adam Operator with supplied attributes
        '''
        self.op_type = "adam"
        self.num_steps = 10

        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.001
A
Aurelius84 已提交
130 131
        self.beta1 = 0.9
        self.beta2 = 0.999
132
        epsilon = 1e-8
A
Aurelius84 已提交
133 134
        self.beta1_pow = self.beta1**10
        self.beta2_pow = self.beta2**10
135 136 137 138 139 140 141

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
A
Aurelius84 已提交
142 143
            'Beta1Pow': np.array([self.beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([self.beta2_pow]).astype("float32")
144 145
        }

A
Aurelius84 已提交
146 147 148 149 150
        self.attrs = {
            'epsilon': epsilon,
            'beta1': self.beta1,
            'beta2': self.beta2
        }
151 152 153

    def test_check_output(self):
        for _ in range(self.num_steps):
154 155
            param_out, moment1_out, \
                moment2_out = adam_step(self.inputs, self.attrs)
156

A
Aurelius84 已提交
157 158
            beta1_pow_out = self.inputs['Beta1Pow'] * self.beta1
            beta2_pow_out = self.inputs['Beta2Pow'] * self.beta2
159 160 161
            self.outputs = {
                'Moment1Out': moment1_out,
                'Moment2Out': moment2_out,
A
Aurelius84 已提交
162 163 164
                'ParamOut': param_out,
                'Beta1PowOut': beta1_pow_out,
                'Beta2PowOut': beta2_pow_out
165 166 167 168 169 170 171 172 173
            }

            # Verify output for this step
            self.check_output()

            # Output of this step becomes input for next step
            self.inputs['Param'] = param_out
            self.inputs['Moment1'] = moment1_out
            self.inputs['Moment2'] = moment2_out
174 175

            # Update powers of Beta1 and Beta2 for next time step
A
Aurelius84 已提交
176 177
            self.inputs['Beta1Pow'] = beta1_pow_out
            self.inputs['Beta2Pow'] = beta2_pow_out
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

            # Randomize gradient for next step
            self.inputs['Grad'] = np.random.uniform(
                -1, 1, (102, 105)).astype("float32")


def adam_step(inputs, attributes):
    '''
    Simulate one step of the adam optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    epsilon = attributes['epsilon']

202 203 204 205 206 207 208 209 210
    if 'beta1' in attributes:
        beta1 = attributes['beta1']
    else:
        beta1 = inputs['Beta1Tensor'][0]
    if 'beta2' in attributes:
        beta2 = attributes['beta2']
    else:
        beta2 = inputs['Beta2Tensor'][0]

211 212
    moment1_out = beta1 * moment1 + (1 - beta1) * grad
    moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
213
    lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
214
    param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon))
215
    return param_out, moment1_out, moment2_out
216 217


R
Roc 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
def adamw_step(inputs, attributes):
    '''
    Simulate one step of the adam optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    epsilon = attributes['epsilon']
    coeff = attributes["coeff"]
    if attributes.get("with_decay", False):
        decay = 1.0 - lr * coeff
        param2 = param * decay
        param = param2.copy()
    if 'beta1' in attributes:
        beta1 = attributes['beta1']
    else:
        beta1 = inputs['Beta1Tensor'][0]
    if 'beta2' in attributes:
        beta2 = attributes['beta2']
    else:
        beta2 = inputs['Beta2Tensor'][0]

    moment1_out = beta1 * moment1 + (1 - beta1) * grad
    moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
    lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
    param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon))

    return param_out, moment1_out, moment2_out


Q
Qiao Longfei 已提交
257
def adam_step_sparse(inputs, attributes, height, rows, row_numel, np_grad,
Q
Qiao Longfei 已提交
258
                     lazy_mode):
T
wip  
typhoonzero 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    '''
    Simulate one step of the adam optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    # grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    beta1 = attributes['beta1']
    beta2 = attributes['beta2']
    epsilon = attributes['epsilon']

T
typhoonzero 已提交
278 279 280
    moment1_out = np.zeros(shape=[height, row_numel])
    moment2_out = np.zeros(shape=[height, row_numel])
    param_out = np.zeros(shape=[height, row_numel])
T
wip  
typhoonzero 已提交
281

Q
Qiao Longfei 已提交
282
    def update_row(row_id, update_value):
T
wip  
typhoonzero 已提交
283
        moment1_out[row_id] = beta1 * moment1[row_id] + (1 - beta1
Q
Qiao Longfei 已提交
284
                                                         ) * update_value
T
wip  
typhoonzero 已提交
285
        moment2_out[row_id] = beta2 * moment2[row_id] + (
Q
Qiao Longfei 已提交
286
            1 - beta2) * np.square(update_value)
T
wip  
typhoonzero 已提交
287
        lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
T
typhoonzero 已提交
288 289
        param_out[row_id] = param[row_id] - lr_t * (moment1_out[row_id] / (
            np.sqrt(moment2_out[row_id]) + epsilon))
Q
Qiao Longfei 已提交
290 291 292 293 294 295 296 297 298 299 300

    if lazy_mode:
        for idx, row_id in enumerate(rows):
            update_row(row_id, np_grad[idx])
    else:
        for row_id in range(param_out.shape[0]):
            update_value = np.zeros(np_grad[0].shape).astype("float32")
            if row_id in rows:
                update_value = np_grad[rows.index(row_id)]
            update_row(row_id, update_value)

T
wip  
typhoonzero 已提交
301 302 303 304
    return param_out, moment1_out, moment2_out


class TestSparseAdamOp(unittest.TestCase):
Q
Qiao Longfei 已提交
305
    def setup(self, scope, place, lazy_mode):
T
wip  
typhoonzero 已提交
306 307 308
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
A
Aurelius84 已提交
309 310
        beta1_pow = np.array([beta1**10]).astype("float32")
        beta2_pow = np.array([beta2**10]).astype("float32")
T
wip  
typhoonzero 已提交
311 312 313

        height = 10
        rows = [0, 4, 7]
T
typhoonzero 已提交
314
        self.rows = rows
T
wip  
typhoonzero 已提交
315
        row_numel = 12
T
typhoonzero 已提交
316
        self.row_numel = row_numel
T
wip  
typhoonzero 已提交
317
        self.dense_inputs = {
Q
Qiao Longfei 已提交
318 319 320
            "Param": np.full((height, row_numel), 5.0).astype("float32"),
            "Moment1": np.full((height, row_numel), 5.0).astype("float32"),
            "Moment2": np.full((height, row_numel), 5.0).astype("float32"),
A
Aurelius84 已提交
321 322
            'Beta1Pow': beta1_pow,
            'Beta2Pow': beta2_pow,
T
wip  
typhoonzero 已提交
323 324
            "LearningRate": np.full((1), 2.0).astype("float32")
        }
Q
Qiao Longfei 已提交
325
        self.init_output = np.full((height, row_numel), 0.0).astype("float32")
326 327 328 329 330 331
        self.attrs = {
            'epsilon': epsilon,
            'beta1': beta1,
            'beta2': beta2,
            'min_row_size_to_use_multithread': 2
        }
T
wip  
typhoonzero 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        np_array = np.ones((len(rows), row_numel)).astype("float32")
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        self.sparse_inputs = ["Grad"]

Q
Qiao Longfei 已提交
345 346
        param_out, mom1, mom2 = adam_step_sparse(self.dense_inputs, self.attrs,
                                                 height, rows, row_numel,
Q
Qiao Longfei 已提交
347
                                                 np_array, lazy_mode)
T
wip  
typhoonzero 已提交
348
        self.outputs = {
T
typhoonzero 已提交
349
            "ParamOut": param_out,
T
wip  
typhoonzero 已提交
350
            "Moment1Out": mom1,
A
Aurelius84 已提交
351 352 353
            "Moment2Out": mom2,
            'Beta1PowOut': beta1_pow * beta1,
            'Beta2PowOut': beta2_pow * beta2
T
wip  
typhoonzero 已提交
354 355
        }

Q
Qiao Longfei 已提交
356
    def check_with_place(self, place, lazy_mode):
T
wip  
typhoonzero 已提交
357
        scope = core.Scope()
Q
Qiao Longfei 已提交
358
        self.setup(scope, place, lazy_mode)
T
wip  
typhoonzero 已提交
359 360

        op_args = dict()
Q
Qiao Longfei 已提交
361
        op_args['lazy_mode'] = lazy_mode
362
        for key, np_array in self.dense_inputs.items():
T
wip  
typhoonzero 已提交
363 364 365 366 367
            var = scope.var(key).get_tensor()
            var.set(np_array, place)
            op_args[key] = key
        for s in self.sparse_inputs:
            op_args[s] = s
T
typhoonzero 已提交
368 369
        for s in self.outputs:
            var = scope.var(s).get_tensor()
Q
Qiao Longfei 已提交
370
            var.set(self.init_output, place)
T
typhoonzero 已提交
371
            op_args[s] = s
T
wip  
typhoonzero 已提交
372 373 374 375
        for k in self.attrs:
            op_args[k] = self.attrs[k]

        # create and run sgd operator
T
typhoonzero 已提交
376 377
        adam_op = Operator("adam", **op_args)
        adam_op.run(scope, place)
T
wip  
typhoonzero 已提交
378

379
        for key, np_array in self.outputs.items():
T
wip  
typhoonzero 已提交
380 381
            out_var = scope.var(key).get_tensor()
            actual = np.array(out_var)
T
typhoonzero 已提交
382 383
            actual = actual.reshape([actual.size])
            np_array = np_array.reshape([np_array.size])
Q
Qiao Longfei 已提交
384 385 386

            for i in range(np_array.size):
                self.assertLess((actual[i] - np_array[i]), 0.00001)
T
wip  
typhoonzero 已提交
387

Q
Qiao Longfei 已提交
388
    def test_sparse_adam(self):
T
wip  
typhoonzero 已提交
389
        places = [core.CPUPlace()]
390
        if core.is_compiled_with_cuda():
T
wip  
typhoonzero 已提交
391 392
            places.append(core.CUDAPlace(0))
        for place in places:
Q
Qiao Longfei 已提交
393 394
            for lazy_mode in (True, False):
                self.check_with_place(place, lazy_mode)
T
wip  
typhoonzero 已提交
395 396


397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
class TestAdamOpBetaVariable(OpTest):
    def setUp(self):
        '''Test Adam Op with beta as Variable
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")
        beta1 = 0.85
        beta2 = 0.95

        learning_rate = 0.001
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
            "Beta1Tensor": np.array([beta1]).astype("float32"),
            "Beta2Tensor": np.array([beta2]).astype("float32"),
        }

        attributes = {'epsilon': epsilon}

        param_out, moment1_out, \
            moment2_out = adam_step(self.inputs, attributes)

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
A
Aurelius84 已提交
435 436 437
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
438 439 440 441 442 443
        }

    def test_check_output(self):
        self.check_output()


444 445
class TestAdamOpBetaEpsilonVariable(OpTest):
    def setUp(self):
446
        '''Test Adam Op with beta/epsilon as Variable
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")
        beta1 = 0.85
        beta2 = 0.95

        learning_rate = 0.001
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
            "Beta1Tensor": np.array([beta1]).astype("float32"),
            "Beta2Tensor": np.array([beta2]).astype("float32"),
            "EpsilonTensor": np.array([epsilon]).astype("float32"),
        }

        attributes = {'epsilon': epsilon}

        param_out, moment1_out, \
            moment2_out = adam_step(self.inputs, attributes)

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
        }

    def test_check_output(self):
        self.check_output()


492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
class TestAdamOpWithGlobalBetaPow(OpTest):
    def setUp(self):
        '''Test Adam Op with global_beta_pow
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")
        beta1 = 0.85
        beta2 = 0.95

        learning_rate = 0.001
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
            "Beta1Tensor": np.array([beta1]).astype("float32"),
            "Beta2Tensor": np.array([beta2]).astype("float32"),
            "EpsilonTensor": np.array([epsilon]).astype("float32"),
        }

        attributes = {'epsilon': epsilon}

        param_out, moment1_out, \
            moment2_out = adam_step(self.inputs, attributes)

        self.attrs = {'use_global_beta_pow': True}

        # use_global_beta_pow=True, Beta1PowOut and Beta2PowOut are empty.
        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out,
            'Beta1PowOut': np.array([]),
            'Beta2PowOut': np.array([])
        }

    def test_check_output(self):
        self.check_output()


543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
class TestAdamOpWithSkipUpdate(OpTest):
    def setUp(self):
        '''Test Adam Op with global_beta_pow
        '''
        self.op_type = "adam"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")
        beta1 = 0.85
        beta2 = 0.95

        learning_rate = 0.001
        epsilon = 1e-8
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
            "Beta1Tensor": np.array([beta1]).astype("float32"),
            "Beta2Tensor": np.array([beta2]).astype("float32"),
            "EpsilonTensor": np.array([epsilon]).astype("float32"),
            "SkipUpdate": np.array([True]).astype("bool"),
        }

        attributes = {'epsilon': epsilon}

        self.attrs = {'use_global_beta_pow': True}

        # use_global_beta_pow=True, Beta1PowOut and Beta2PowOut are empty.
        self.outputs = {
            'Moment1Out': moment1,
            'Moment2Out': moment2,
            'ParamOut': param,
            'Beta1PowOut': self.inputs['Beta1Pow'],
            'Beta2PowOut': self.inputs['Beta2Pow'],
        }

    def test_check_output(self):
        self.check_output()


M
MRXLT 已提交
592 593 594
class TestAdamOpV2(unittest.TestCase):
    def test_adam_op(self):
        place = fluid.CPUPlace()
595
        shape = [2, 3, 8, 8]
M
MRXLT 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
        exe = fluid.Executor(place)
        train_prog = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(train_prog, startup):
            with fluid.unique_name.guard():
                data = fluid.data(name="data", shape=shape)
                conv = fluid.layers.conv2d(data, 8, 3)
                loss = fluid.layers.reduce_mean(conv)

                beta1 = fluid.layers.create_global_var(
                    shape=[1], value=0.85, dtype='float32', persistable=True)
                beta2 = fluid.layers.create_global_var(
                    shape=[1], value=0.95, dtype='float32', persistable=True)
                betas = [beta1, beta2]
                opt = paddle.optimizer.Adam(
                    learning_rate=1e-5,
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01,
                    epsilon=1e-8)
                opt.minimize(loss)

        exe.run(startup)
        data_np = np.random.random(shape).astype('float32')
        rets = exe.run(train_prog, feed={"data": data_np}, fetch_list=[loss])
        assert rets[0] is not None

    def test_adam_op_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = fluid.dygraph.to_variable(value)
        linear = fluid.Linear(13, 5, dtype="float32")

        adam = paddle.optimizer.Adam(
            learning_rate=0.01, parameters=linear.parameters())
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()
635
        paddle.enable_static()
M
MRXLT 已提交
636 637 638 639

    def test_adam_op_with_state_dict(self):

        paddle.disable_static()
T
tangwei12 已提交
640
        emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
641 642 643 644 645

        adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
        state_dict = adam.state_dict()
        adam.set_state_dict(state_dict)

646 647
        #learning_rate is LRScheduler
        learning_rate = paddle.optimizer.lr.CosineAnnealingDecay(
648
            learning_rate=0.1, T_max=10)
M
MRXLT 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
        adam = paddle.optimizer.Adam(
            learning_rate=learning_rate,
            weight_decay=fluid.regularizer.L2Decay(0.001),
            parameters=emb.parameters())
        lr = adam.get_lr()
        state_dict = adam.state_dict()
        adam.set_state_dict(state_dict)

        #leanrning_rate is Tensor
        with self.assertRaises(TypeError):
            learning_rate = np.array([0.01]).astype("float32")
            learning_rate = paddle.to_tensor(learning_rate)
            adam = paddle.optimizer.Adam(
                learning_rate=learning_rate, parameters=emb.parameters())

        params = adam.get_opti_var_name_list()
        assert (params is not None)
666
        paddle.enable_static()
M
MRXLT 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679

    def test_adam_with_grad_clip(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = fluid.dygraph.to_variable(value)
        linear = fluid.Linear(13, 5, dtype="float32")
        clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0)
        adam = paddle.optimizer.Adam(
            0.1, parameters=linear.parameters(), grad_clip=clip)
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()
680
        paddle.enable_static()
M
MRXLT 已提交
681 682 683 684 685 686 687 688 689 690 691

    def test_adam_op_with_set_lr(self):
        paddle.disable_static()
        linear = paddle.nn.Linear(10, 10)
        adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

        lr = 0.01
        adam.set_lr(lr)
        cur_lr = adam.get_lr()
        assert (lr == cur_lr)
        with self.assertRaises(TypeError):
692
            lr_var = paddle.fluid.layers.create_global_var(
693 694
                shape=[1], value=lr, dtype='float32')
            adam.set_lr(lr_var)
695
        paddle.enable_static()
696

M
MRXLT 已提交
697 698 699 700 701 702 703 704 705 706 707 708
    def test_adam_op_invalid_input(self):
        paddle.disable_static()
        linear = paddle.nn.Linear(10, 10)
        with self.assertRaises(ValueError):
            adam = paddle.optimizer.Adam(
                0.1, beta1=-1, parameters=linear.parameters())
        with self.assertRaises(ValueError):
            adam = paddle.optimizer.Adam(
                0.1, beta2=-1, parameters=linear.parameters())
        with self.assertRaises(ValueError):
            adam = paddle.optimizer.Adam(
                0.1, epsilon=-1, parameters=linear.parameters())
709
        paddle.enable_static()
M
MRXLT 已提交
710

711 712 713 714 715 716 717 718 719 720 721 722 723
    def test_adam_op_with_sparse_input_and_weight_decay(self):

        paddle.disable_static()
        x_data = np.arange(0, 10).reshape((10, 1)).astype(np.int64)
        x = paddle.to_tensor(x_data, stop_gradient=False)
        emb = paddle.nn.Embedding(10, 10, sparse=True)
        adam = paddle.optimizer.Adam(
            0.001, parameters=emb.parameters(), weight_decay=0.01)

        with self.assertRaises(RuntimeError):
            out = emb(x)
            out.backward()
            adam.step()
724
        paddle.enable_static()
725

726

727
class TestAdamOptimizer(unittest.TestCase):
728 729 730 731
    def _test(self,
              place,
              use_tensor=True,
              use_fluid_api=True,
732 733
              use_global_beta_pow=False,
              flatten_param_grads=False):
734 735 736 737 738 739 740
        paddle.enable_static()
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        SEED = 2021
        paddle.seed(SEED)
        np.random.seed(SEED)

741 742 743 744 745 746 747 748 749 750 751 752
        a_np = np.random.random(size=(2, 2)).astype('float32')
        b_np = np.random.random(size=(2, 2)).astype('float32')
        label_np = np.random.randint(2, size=(2, 1)).astype('int64')
        weight_attr1 = paddle.ParamAttr(
            name="weight1",
            initializer=fluid.initializer.Constant(value=1.0),
            trainable=True)
        weight_attr2 = paddle.ParamAttr(
            name="weight2",
            initializer=fluid.initializer.Constant(value=2.0),
            trainable=True)
        clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
753 754

        with paddle.static.program_guard(main_prog, startup_prog):
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
            with paddle.utils.unique_name.guard():
                a = paddle.static.data(name="a", shape=[2, 2], dtype='float32')
                b = paddle.static.data(name="b", shape=[2, 2], dtype='float32')
                label = paddle.static.data(
                    name="label", shape=[2, 1], dtype='int64')

                sum = paddle.add(a, b)
                z = paddle.pow(sum, 2.0)

                fc_1 = fluid.layers.fc(input=z, size=2, param_attr=weight_attr1)
                prediction = fluid.layers.fc(input=fc_1,
                                             size=2,
                                             param_attr=weight_attr2,
                                             act='softmax')

                cost = fluid.layers.cross_entropy(input=prediction, label=label)
                loss = fluid.layers.reduce_mean(cost)
                beta1_init = 0.9
                beta2_init = 0.999
                epsilon_init = 1e-8
                if use_tensor:
                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        persistable=True,
                        name="beta2")
                    epsilon = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        persistable=True,
                        name="epsilon")
                    if use_fluid_api:
                        adam = fluid.optimizer.Adam(
                            learning_rate=0.01,
                            beta1=beta1,
                            beta2=beta2,
                            epsilon=epsilon,
                            use_global_beta_pow=use_global_beta_pow,
                            flatten_param_grads=flatten_param_grads,
                            align_size=256,
                            grad_clip=clip)
                    else:
                        adam = paddle.optimizer.Adam(
                            learning_rate=0.01,
                            beta1=beta1,
                            beta2=beta2,
                            epsilon=epsilon,
                            grad_clip=clip)
811
                else:
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
                    if use_fluid_api:
                        adam = fluid.optimizer.Adam(
                            learning_rate=0.01,
                            beta1=beta1_init,
                            beta2=beta2_init,
                            epsilon=epsilon_init,
                            use_global_beta_pow=use_global_beta_pow,
                            flatten_param_grads=flatten_param_grads,
                            align_size=256,
                            grad_clip=clip)
                    else:
                        adam = fluid.optimizer.Adam(
                            learning_rate=0.01,
                            beta1=beta1_init,
                            beta2=beta2_init,
                            epsilon=epsilon_init,
                            grad_clip=clip)

                adam.minimize(loss)

        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe = paddle.static.Executor(place)
            exe.run(startup_prog)

            print("Start run on {}".format(place))
            for epoch in range(10):
                pred_res, loss_res = exe.run(
                    main_prog,
                    feed={"a": a_np,
                          "b": b_np,
                          "label": label_np},
                    fetch_list=[prediction, loss])
                print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
                    epoch, pred_res[0], loss_res))
            paddle.disable_static()
            return pred_res, loss_res
849 850 851 852 853 854 855

    def _test_with_place(self, place):
        preds = []
        losses = []

        for use_tensor in [True, False]:
            for use_fluid_api in [True, False]:
856
                for use_global_beta_pow in [True, False]:
857 858 859 860 861 862
                    for flatten_param_grads in [True, False]:
                        pred, loss = self._test(
                            place, use_tensor, use_fluid_api,
                            use_global_beta_pow, flatten_param_grads)
                        preds.append(pred)
                        losses.append(loss)
863 864 865 866 867 868 869 870 871 872 873
        for pred in preds:
            self.assertTrue(np.allclose(pred, preds[0]))
        for loss in losses:
            self.assertTrue(np.allclose(loss, losses[0]))

    def test_adam_api(self):
        # NOTE(zhiqiu): cpu and gpu has different seed, so should compare separatly.
        self._test_with_place(paddle.CPUPlace())
        if core.is_compiled_with_cuda():
            self._test_with_place(paddle.CUDAPlace(0))

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
    def test_adam_flatten_param_grads_with_regularizer(self):
        # flatten_param_grads + regularizer is not supported yet.
        paddle.enable_static()
        main = fluid.Program()
        weight_attr = paddle.ParamAttr(
            name="weight1",
            initializer=fluid.initializer.Constant(value=1.0),
            regularizer=fluid.regularizer.L1DecayRegularizer(
                regularization_coeff=0.1),
            trainable=True)
        with fluid.program_guard(main):
            x = fluid.data(name='x', shape=[None, 13], dtype='float32')
            y = fluid.data(name='y', shape=[None, 1], dtype='float32')
            y_predict = fluid.layers.fc(input=x,
                                        size=1,
                                        act=None,
                                        param_attr=weight_attr)
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_cost = fluid.layers.mean(cost)

            adam = fluid.optimizer.AdamOptimizer(
                0.01, flatten_param_grads=True, align_size=256)
            adam.minimize(avg_cost)
            paddle.disable_static()

            self.assertEqual(adam._flatten_param_grads, False)

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
    def test_adam_exception(self):
        paddle.enable_static()
        a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
        b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
        label = paddle.static.data(name="label", shape=[32, 1], dtype='int64')

        sum = paddle.add(a, b)
        z = paddle.pow(sum, 2.0)

        fc_1 = fluid.layers.fc(input=z, size=128)
        prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')

        cost = fluid.layers.cross_entropy(input=prediction, label=label)
        loss = fluid.layers.reduce_mean(cost)
        adam = fluid.optimizer.Adam(use_global_beta_pow=True)
        adam.minimize(loss)
        self.assertRaises(Exception, adam._get_global_accumulator, 'tmp')
        adam._add_global_accumulator(
            'tmp', type=core.VarDesc.VarType.LOD_TENSOR)
        adam._get_global_accumulator('tmp')
        self.assertRaises(
            Exception,
            adam._add_global_accumulator,
            adam._beta1_pow_acc_str,
            type=core.VarDesc.VarType.LOD_TENSOR)
        paddle.disable_static()

    def test_adam_save_load(self):
        paddle.disable_static()
        a = paddle.rand([4, 10])
        linear = paddle.nn.Linear(10, 10)
        b = linear(a)
        state_dict = linear.state_dict()
        fluid.save_dygraph(state_dict, "paddle_dy")

        scheduler = paddle.optimizer.lr.NoamDecay(
            d_model=0.01, warmup_steps=100, verbose=True)
        adam = paddle.fluid.optimizer.Adam(
            learning_rate=scheduler,
            parameter_list=linear.parameters(),
            use_global_beta_pow=True)
        adam.minimize(b)
        state_dict = adam.state_dict()
        fluid.save_dygraph(state_dict, "paddle_dy")
945 946
        para_state_dict, opt_state_dict = fluid.load_dygraph("paddle_dy")
        adam.set_state_dict(opt_state_dict)
947 948 949

        paddle.enable_static()

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
    def test_adam_save_load_error(self):
        paddle.disable_static()

        def get_opt(dtype, shape):
            with paddle.utils.unique_name.guard():
                paddle.set_default_dtype(dtype)
                a = paddle.rand([4, 10])
                linear = paddle.nn.Linear(10, 10)
                b = linear(a)
                state_dict = linear.state_dict()
                fluid.save_dygraph(state_dict, "paddle_dy")

                scheduler = paddle.optimizer.lr.NoamDecay(
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.fluid.optimizer.Adam(
                    learning_rate=scheduler,
                    parameter_list=linear.parameters(),
                    use_global_beta_pow=True)
                adam.minimize(b)
                return adam

        adam = get_opt('float32', [10, 10])

        state_dict = adam.state_dict()
        fluid.save_dygraph(state_dict, "paddle_dy")
        para_state_dict, opt_state_dict = fluid.load_dygraph("paddle_dy")
        adam.set_state_dict(opt_state_dict)

        adam2 = get_opt('float64', [10, 10])  # dtype not match
        self.assertRaises(AssertionError, adam2.set_state_dict, opt_state_dict)

        adam3 = get_opt('float32', [10, 10])  # shape not match
        opt_state_dict['beta1_pow_acc_0'] = np.array(
            [0.9, 0.9], dtype='float32')
        self.assertRaises(AssertionError, adam3.set_state_dict, opt_state_dict)
        paddle.enable_static()

987

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
class TestAdamOpV2Group(TestAdamOpV2):
    def test_adam_op(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        # This can be any optimizer supported by dygraph.
        adam = paddle.optimizer.Adam(
            learning_rate=0.01,
            parameters=[{
                'params': linear_1.parameters()
            }, {
                'params': linear_2.parameters(),
                'weight_decay': 0.001,
                'beta1': 0.1,
                'beta2': 0.99
            }],
            weight_decay=0.1)
        out = linear_1(a)
        out = linear_2(out)
        out.backward()
        adam.step()
        adam.clear_gradients()


Z
zhangbo9674 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
class TestMultiTensorAdam(unittest.TestCase):
    def _adam_optimize_dygraph(self,
                               place,
                               use_param_attr=False,
                               use_param_group=False,
                               use_amp=False,
                               use_multi_tensor=False):
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device(place)

        input = paddle.randn((5, 5))

        weight_attr = paddle.ParamAttr(
            learning_rate=0.5,
            regularizer=paddle.regularizer.L2Decay(1.0),
            trainable=True)
        if use_param_attr:
            model = paddle.nn.Linear(5, 5, weight_attr)
        else:
            model = paddle.nn.Linear(5, 5)

        if not use_param_group:
            optimizer = paddle.optimizer.Adam(
                parameters=model.parameters(),
                use_multi_tensor=use_multi_tensor,
                multi_precision=use_amp)
        else:
            optimizer = paddle.optimizer.Adam(
                parameters=[{
                    'params': model.parameters(),
                    'weight_decay': 0.001,
                    'beta1': 0.1,
                    'beta2': 0.99
                }],
                use_multi_tensor=use_multi_tensor,
                multi_precision=use_amp)

        for idx in range(2):
            if place == 'gpu' and use_amp == True:
                model = paddle.amp.decorate(models=model, level='O2')
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

            if place == 'gpu' and use_amp == True:
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.step(optimizer)
                optimizer.clear_grad()
            else:
                output = model(input)
                loss = paddle.mean(output)
                loss.backward()
                optimizer.step()
                optimizer.clear_grad()

        return output, model.parameters()

    def _adam_optimize_static(self,
                              place,
                              use_amp=False,
                              use_multi_tensor=False):
        paddle.enable_static()
        paddle.seed(10)
        np.random.seed(10)
        if place == 'cpu':
            use_amp = False
        exe = paddle.static.Executor(place=place)
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        optimizer = paddle.optimizer.Adam(
            multi_precision=use_amp, use_multi_tensor=use_multi_tensor)
        if use_amp:
            optimizer = paddle.static.amp.decorate(
                optimizer,
                init_loss_scaling=128.0,
                use_dynamic_loss_scaling=True,
                use_pure_fp16=True,
                use_fp16_guard=False)
        with paddle.static.program_guard(train_program, startup_program):
            if use_amp:
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float16')
            else:
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float32')
            hidden = paddle.static.nn.fc(x=data, size=10)
            loss = paddle.fluid.layers.mean(hidden)
            optimizer.minimize(loss)
        exe.run(startup_program)
        if use_amp:
            optimizer.amp_init(place=place, scope=paddle.static.global_scope())
            x = np.random.random(size=(2, 2)).astype('float16')
        else:
            x = np.random.random(size=(2, 2)).astype('float32')
        out = []
        for idx in range(5):
            loss_data, = exe.run(train_program,
                                 feed={"X": x},
                                 fetch_list=[loss.name])
            out.append(loss_data)
        return out

    def _get_places(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        return places

    def _check_with_place_amp(self, place, use_amp):
        # test dygraph mode
        output_dygraph1, params_dygraph1 = self._adam_optimize_dygraph(
            place=place, use_amp=use_amp, use_multi_tensor=True)
        output_dygraph2, params_dygraph2 = self._adam_optimize_dygraph(
            place=place, use_amp=use_amp, use_multi_tensor=False)
        self.assertEqual(
            np.allclose(
                output_dygraph1, output_dygraph2, rtol=1e-05), True)
        for idx in range(len(params_dygraph1)):
            self.assertEqual(
                np.allclose(
                    params_dygraph1[idx], params_dygraph2[idx], rtol=1e-05),
                True)
        # test static mode
        output_static1 = self._adam_optimize_static(
            place=place, use_amp=use_amp, use_multi_tensor=True)
        output_static2 = self._adam_optimize_static(
            place=place, use_amp=use_amp, use_multi_tensor=False)
        for idx in range(len(output_static1)):
            self.assertEqual(
                np.allclose(
                    output_static1[idx], output_static2[idx], rtol=1e-05),
                True)

    def _check_with_param_arrt(self, place, use_amp):
        output1, params1 = self._adam_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_attr=True,
            use_multi_tensor=True)
        output2, params2 = self._adam_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_attr=True,
            use_multi_tensor=False)

        self.assertEqual(np.allclose(output1, output2, rtol=1e-05), True)
        for idx in range(len(params1)):
            self.assertEqual(
                np.allclose(
                    params1[idx], params2[idx], rtol=1e-05), True)

    def _check_with_param_group(self, place, use_amp):
        output1, params1 = self._adam_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_group=True,
            use_multi_tensor=True)
        output2, params2 = self._adam_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_group=True,
            use_multi_tensor=False)

        self.assertEqual(np.allclose(output1, output2, rtol=1e-05), True)
        for idx in range(len(params1)):
            self.assertEqual(
                np.allclose(
                    params1[idx], params2[idx], rtol=1e-05), True)

    def test_main(self):
        for place in self._get_places():
            use_amp_list = [True, False]
            for use_amp in use_amp_list:
                self._check_with_place_amp(place, use_amp)
                self._check_with_param_arrt(place, use_amp)
                self._check_with_param_group(place, use_amp)


1195 1196
if __name__ == "__main__":
    unittest.main()