launch_utils.py 77.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import time
import os
import signal
import copy
import sys
import subprocess
22 23
import tempfile
import shutil
24
from contextlib import closing
X
xiongkun 已提交
25
import multiprocessing
26
import socket
W
WangXi 已提交
27
import struct
28
import json
29

30
import paddle.fluid as fluid
J
Jiangxinz 已提交
31
from distutils.util import strtobool
X
xiongkun 已提交
32
import paddle.utils.cpp_extension.extension_utils as utils
33

34 35 36 37
logger = logging.getLogger("root")
logger.propagate = False


G
gongweibao 已提交
38
class DistributeMode():
39 40 41 42 43 44 45 46
    """
    There are various mode for fleetrun, each of them is designed for different model.
    """
    COLLECTIVE = 0
    PS = 1
    PS_HETER = 2


G
gongweibao 已提交
47
class DeviceMode():
48 49 50
    """
    Training devices type
    """
51
    UNKNOWN = -1
52 53 54
    CPU = 0
    GPU = 1
    KUNLUN = 2
55
    XPU = 2
56 57
    ASCEND_NPU = 3
    UNKNOWN = 3
Z
zn 已提交
58
    MLU = 4
59 60


61
class Cluster(object):
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    def __init__(self, hdfs):
        self.job_server = None
        self.pods = []
        self.hdfs = None
        self.job_stage_flag = None

    def __str__(self):
        return "job_server:{} pods:{} job_stage_flag:{} hdfs:{}".format(
            self.job_server, [str(pod) for pod in self.pods],
            self.job_stage_flag, self.hdfs)

    def __eq__(self, cluster):
        if len(self.pods) != len(cluster.pods):
            return False

        for a, b in zip(self.pods, cluster.pods):
            if a != b:
                return False

        if self.job_stage_flag != cluster.job_stage_flag:
            return False

        return True

    def __ne__(self, cluster):
        return not self.__eq__(cluster)

Z
zhangchunle 已提交
90
    def update_pods(self, cluster):
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        self.pods = copy.copy(cluster.pods)

    def trainers_nranks(self):
        return len(self.trainers_endpoints())

    def pods_nranks(self):
        return len(self.pods)

    def trainers_endpoints(self):
        r = []
        for pod in self.pods:
            for t in pod.trainers:
                r.append(t.endpoint)
        return r

106 107 108 109 110 111 112 113
    def world_device_ids(self):
        r = []
        for pod in self.pods:
            for t in pod.trainers:
                str_accelerators = [str(acc) for acc in t.accelerators]
                r.append(str_accelerators)
        return r

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    def pods_endpoints(self):
        r = []
        for pod in self.pods:
            ep = "{}:{}".format(pod.addr, pod.port)
            assert pod.port != None and pod.addr != None, "{} not a valid endpoint".format(
                ep)
            r.append(ep)
        return r

    def get_pod_by_id(self, pod_id):
        for pod in self.pods:
            if str(pod_id) == str(pod.id):
                return pod

        return None


class JobServer(object):
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146
    def __init__(self):
        self.endpoint = None

    def __str__(self):
        return "{}".format(self.endpoint)

    def __eq__(self, j):
        return self.endpint == j.endpoint

    def __ne__(self, j):
        return not self == j


class Trainer(object):
147

148
    def __init__(self):
149
        self.accelerators = []
150 151
        self.endpoint = None
        self.rank = None
152
        self.stage = None
153 154

    def __str__(self):
155 156
        return "accelerator:{} endpoint:{} rank:{}".format(
            self.accelerators, self.endpoint, self.rank)
157 158

    def __eq__(self, t):
159
        if len(self.accelerators) != len(t.accelerators):
160 161 162 163 164 165
            return False

        if self.endpoint != t.endpoint or \
                self.rank != t.rank:
            return False

166
        for a, b in zip(self.accelerators, t.accelerators):
167 168 169 170 171 172 173 174 175 176 177 178 179
            if a != b:
                return False

        return True

    def __ne__(self, t):
        return not self == t

    def rank(self):
        return self.rank


class Pod(object):
180

181 182 183 184 185 186
    def __init__(self):
        self.rank = None
        self.id = None
        self.addr = None
        self.port = None
        self.trainers = []
187 188
        self.servers = []
        self.workers = []
189
        self.coordinators = []
190
        self.heter_workers = []
191 192
        self.accelerators = []
        self.device_mode = None
193 194

    def __str__(self):
195
        return "rank:{} id:{} addr:{} port:{} visible_accelerator:{} trainers:{} servers:{} \
196
            workers:{} heter_workers:{} coordinators:{}".format(
197 198 199
            self.rank, self.id, self.addr, self.port, self.accelerators,
            [str(t) for t in self.trainers], [str(s) for s in self.servers],
            [str(w)
200 201
             for w in self.workers], [str(h) for h in self.heter_workers],
            [str(c) for c in self.coordinators])
202 203 204 205 206 207

    def __eq__(self, pod):
        if self.rank != pod.rank or \
                self.id != pod.id or \
                self.addr != pod.addr or \
                self.port != pod.port:
Z
zhangchunle 已提交
208
            logger.debug("pod {} != {}".format(self, pod))
209 210 211 212 213 214 215 216 217 218 219 220 221
            return False

        if len(self.trainers) != len(pod.trainers):
            logger.debug("trainers {} != {}".format(self.trainers,
                                                    pod.trainers))
            return False

        for i in range(len(self.trainers)):
            if self.trainers[i] != pod.trainers[i]:
                logger.debug("trainer {} != {}".format(self.trainers[i],
                                                       pod.trainers[i]))
                return False

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        if len(self.servers) != len(pod.servers):
            logger.debug("servers {} != {}".format(self.servers, pod.servers))
            return False

        for i in range(len(self.servers)):
            if self.servers[i] != pod.servers[i]:
                logger.debug("servers {} != {}".format(self.servers[i],
                                                       pod.servers[i]))
                return False

        if len(self.workers) != len(pod.workers):
            logger.debug("workers {} != {}".format(self.workers, pod.workers))
            return False

        for i in range(len(self.workers)):
            if self.workers[i] != pod.workers[i]:
                logger.debug("workers {} != {}".format(self.workers[i],
                                                       pod.workers[i]))
                return False

242 243 244 245 246 247 248 249 250 251 252
        return True

    def __ne__(self, pod):
        return not self == pod

    def parse_response(self, res_pods):
        pass

    def rank(self):
        return self.rank

253
    def get_visible_accelerators(self):
254
        r = ""
255
        for g in self.accelerators:
256 257
            r += "{},".format(g)

258
        assert r != "", "this pod {} can't see any accelerators".format(self)
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

        r = r[:-1]
        return r


def get_logger(log_level=20, name="root"):
    logger = logging.getLogger(name)
    logger.setLevel(log_level)

    log_handler = logging.StreamHandler()
    log_format = logging.Formatter(
        '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s')
    log_handler.setFormatter(log_format)
    logger.addHandler(log_handler)

    return logger


277 278
def get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                devices_per_proc):
279
    assert type(trainer_endpoints) is list, "trainer_endpoints must be list"
280 281 282 283 284 285
    cluster = Cluster(hdfs=None)
    trainer_rank = 0
    for node_rank, ip in enumerate(node_ips):
        pod = Pod()
        pod.rank = node_rank
        pod.addr = ip
286 287
        pod.device_mode = device_mode

288
        cur_node_endpoints = trainer_endpoints[node_rank]
289
        # when use paddlecloud, endpoints may > devices_per_proc(user_defined)
290
        assert len(cur_node_endpoints) >= len(
291
            devices_per_proc
292
        ), "current trainer_endpoints size should be greater equal than acclerators size."
293
        for i in range(len(devices_per_proc)):
294
            trainer = Trainer()
Z
zn 已提交
295
            if device_mode == DeviceMode.GPU or device_mode == DeviceMode.ASCEND_NPU or device_mode == DeviceMode.MLU:
296
                if isinstance(devices_per_proc[i], (list, tuple)):
297 298
                    trainer.accelerators.extend(devices_per_proc[i])
                    pod.accelerators.extend(devices_per_proc[i])
299
                else:
300 301
                    trainer.accelerators.append(devices_per_proc[i])
                    pod.accelerators.append(devices_per_proc[i])
302 303
            elif device_mode == DeviceMode.XPU:
                if isinstance(devices_per_proc[i], (list, tuple)):
304
                    trainer.accelerators.extend(devices_per_proc[i])
305
                else:
306
                    trainer.accelerators.append(devices_per_proc[i])
307
            trainer.endpoint = "%s" % (cur_node_endpoints[i])
308 309 310 311 312 313 314 315 316 317 318
            trainer.rank = trainer_rank
            trainer_rank += 1

            pod.trainers.append(trainer)
        cluster.pods.append(pod)

    pod_rank = node_ips.index(node_ip)
    return cluster, cluster.pods[pod_rank]


def terminate_local_procs(procs):
K
kuizhiqing 已提交
319 320 321 322 323 324 325 326 327 328 329
    # try to terminate process by group, this happend in multiprocess senario in user process
    if os.name != 'nt':
        for p in procs:
            if p.proc.poll() is None:
                os.killpg(os.getpgid(p.proc.pid), signal.SIGTERM)
                if p.log_fn:
                    p.log_fn.close()
                logger.info("terminate process group gid:{}".format(p.proc.pid))

        time.sleep(1)

330 331 332
    for p in procs:
        if p.proc.poll() is None:
            p.proc.terminate()
333 334
            if p.log_fn:
                p.log_fn.close()
335 336
            logger.debug("terminate process id:{}".format(p.proc.pid))

337
    # wait all process terminiated
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    time.sleep(3)
    for step in range(0, 50):
        alive = False
        for p in procs:
            if p.proc.poll() is None:  # not termniate
                os.kill(p.proc.pid, signal.SIGKILL)
                alive = True

        if not alive:
            logger.info("terminate all the procs")
            return

        time.sleep(3)

    logger.fatal("can't kill all process and exit")
    exit(1)


def get_host_name_ip():
    try:
        host_name = socket.gethostname()
        host_ip = socket.gethostbyname(host_name)
        return host_name, host_ip
    except:
        return None


def add_arguments(argname, type, default, help, argparser, **kwargs):
    """Add argparse's argument.
    Usage:
    .. code-block:: python
        parser = argparse.ArgumentParser()
        add_argument("name", str, "Jonh", "User name.", parser)
        args = parser.parse_args()
    """
J
Jiangxinz 已提交
373
    type = strtobool if type == bool else type
374 375 376 377 378
    argparser.add_argument("--" + argname,
                           default=default,
                           type=type,
                           help=help + ' Default: %(default)s.',
                           **kwargs)
379 380 381


def find_free_ports(num):
382

383 384
    def __free_port():
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
W
WangXi 已提交
385 386 387 388
            # Note(wangxi): Close the connection with a TCP RST instead
            # of a TCP FIN, to avoid time_wait state.
            s.setsockopt(socket.SOL_SOCKET, socket.SO_LINGER,
                         struct.pack('ii', 1, 0))
389 390 391 392 393 394 395 396 397 398 399 400 401 402
            s.bind(('', 0))
            return s.getsockname()[1]

    port_set = set()
    step = 0
    while True:
        port = __free_port()
        if port not in port_set:
            port_set.add(port)

        if len(port_set) >= num:
            return port_set

        step += 1
W
WangXi 已提交
403
        if step > 400:
404 405 406 407 408 409 410 411
            print(
                "can't find avilable port and use the specified static port now!"
            )
            return None

    return None


412 413 414 415 416 417
def get_ports(num, offset):
    if os.environ.get('FLAGS_START_PORT') is None:
        ports = find_free_ports(num)
        if ports is not None:
            ports = list(ports)
    else:
418
        start_port = int(os.environ.get('FLAGS_START_PORT'))
419 420 421 422
        ports = range(start_port + offset, start_port + offset + num, 1)
    return ports


423 424 425 426 427 428 429 430
def pretty_print_envs(envs, header=None):
    spacing = 2
    max_k = 40
    max_v = 45

    for k, v in envs.items():
        max_k = max(max_k, len(k))

431 432
    h_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(
        max_k, " " * spacing, max_v)
433
    l_format = "    " + "|{{:>{}s}}{{}}{{:^{}s}}|\n".format(max_k, max_v)
434 435
    length = max_k + max_v + spacing

436 437
    border = "    +" + "".join(["="] * length) + "+"
    line = "    +" + "".join(["-"] * length) + "+"
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

    draws = ""
    draws += border + "\n"

    if header:
        draws += h_format.format(header[0], header[1])
    else:
        draws += h_format.format("fleetrun Distributed Envs", "Value")

    draws += line + "\n"

    for k, v in envs.items():
        if isinstance(v, str) and len(v) >= max_v:
            str_v = "... " + v[-41:]
        else:
            str_v = v

        draws += l_format.format(k, " " * spacing, str(str_v))

    draws += border

    _str = "\n{}\n".format(draws)
    return _str


463
class TrainerProc(object):
464

465 466 467 468 469 470 471 472 473
    def __init__(self):
        self.proc = None
        self.log_fn = None
        self.log_offset = None
        self.rank = None
        self.local_rank = None
        self.cmd = None


474 475 476 477 478 479 480 481 482 483 484 485
_run_with_coverage = False


def run_with_coverage(*args):
    global _run_with_coverage
    assert len(args) <= 1, "len(args) {} should <= 1".format(len(args))
    if len(args) == 1:
        assert isinstance(args[0], bool)
        _run_with_coverage = args[0]
    return _run_with_coverage


486 487 488 489
def start_local_trainers(cluster,
                         pod,
                         training_script,
                         training_script_args,
490 491 492 493 494 495 496 497
                         log_dir=None,
                         envs=None):

    if envs is None:
        current_env = copy.copy(os.environ.copy())
    else:
        current_env = copy.copy(envs)

498 499 500 501
    # paddle broadcast ncclUniqueId use socket, and
    # proxy maybe make trainers unreachable, so delete them.
    # if we set them to "", grpc will log error message "bad uri"
    # so just delete them.
502 503 504
    current_env.pop("http_proxy", None)
    current_env.pop("https_proxy", None)

505 506
    ids = cluster.world_device_ids()
    res = [':'.join(ele) for ele in ids]
507 508 509
    procs = []
    for idx, t in enumerate(pod.trainers):
        proc_env = {
510 511 512 513 514 515 516 517 518 519
            "PADDLE_TRAINER_ID":
            "%d" % t.rank,
            "PADDLE_CURRENT_ENDPOINT":
            "%s" % t.endpoint,
            "PADDLE_TRAINERS_NUM":
            "%d" % cluster.trainers_nranks(),
            "PADDLE_TRAINER_ENDPOINTS":
            ",".join(cluster.trainers_endpoints()),
            "PADDLE_RANK_IN_NODE":
            str(idx),
520 521
            "PADDLE_LOCAL_DEVICE_IDS":
            ",".join([str(acc) for acc in t.accelerators]),
522 523
            "PADDLE_WORLD_DEVICE_IDS":
            ",".join(res),
524 525
        }

526 527 528 529 530 531 532 533 534 535 536
        # The following three environnement variables are used for auto mapping
        if current_env.get("PADDLE_CLUSTER_TOPO_PATH", None) is not None:
            proc_env["PADDLE_CLUSTER_TOPO_PATH"] = current_env[
                "PADDLE_CLUSTER_TOPO_PATH"]
        if current_env.get("PADDLE_RANK_MAPPING_PATH", None) is not None:
            proc_env["PADDLE_RANK_MAPPING_PATH"] = current_env[
                "PADDLE_RANK_MAPPING_PATH"]
        if current_env.get("PADDLE_ENABLE_AUTO_MAPPING", None) is not None:
            proc_env["PADDLE_ENABLE_AUTO_MAPPING"] = current_env[
                "PADDLE_ENABLE_AUTO_MAPPING"]

537
        if len(t.accelerators) > 0 and pod.device_mode == DeviceMode.GPU:
538
            proc_env["FLAGS_selected_gpus"] = "%s" % ",".join(
539 540
                [str(g) for g in t.accelerators])

541 542
        elif len(t.accelerators
                 ) > 0 and pod.device_mode == DeviceMode.ASCEND_NPU:
543 544
            proc_env["FLAGS_selected_npus"] = "%s" % ",".join(
                [str(g) for g in t.accelerators])
Z
zn 已提交
545 546 547
        elif len(t.accelerators) > 0 and pod.device_mode == DeviceMode.MLU:
            proc_env["FLAGS_selected_mlus"] = "%s" % ",".join(
                [str(g) for g in t.accelerators])
548

549 550 551 552 553
        if len(t.accelerators) > 0:
            proc_env["FLAGS_selected_accelerators"] = "%s" % ",".join(
                [str(g) for g in t.accelerators])
        # to do: same code style in future
        if fluid.core.is_compiled_with_xpu() and len(t.accelerators) > 0:
554
            proc_env["FLAGS_selected_xpus"] = "%s" % ",".join(
555
                [str(g) for g in t.accelerators])
556

557 558
        current_env.update(proc_env)

559
        coverage_args = []
560 561
        if run_with_coverage() or os.environ.get("WITH_COVERAGE",
                                                 "OFF") == "ON":
562 563 564
            coverage_args = ["-m", "coverage", "run", "--branch", "-p"]
        cmd = [sys.executable, "-u"] + coverage_args + [training_script
                                                        ] + training_script_args
565

566 567 568 569 570 571
        logger.debug("start trainer proc{}  env:{}".format(cmd, current_env))

        if idx == 0:
            logger.info("Local start {} processes. First process distributed "
                        "environment info (Only For Debug): {}".format(
                            len(pod.trainers),
572 573
                            pretty_print_envs(proc_env,
                                              ("Distributed Envs", "Value"))))
574
            logger.info(
575 576 577
                "details about PADDLE_TRAINER_ENDPOINTS can be found in "
                "{}/endpoints.log, and detail running logs maybe found in "
                "{}/workerlog.0".format(log_dir, log_dir))
578
        fn = None
K
kuizhiqing 已提交
579
        pre_fn = None if os.name == 'nt' else os.setsid
580 581
        if log_dir is not None:
            os.system("mkdir -p {}".format(log_dir))
582 583 584 585 586
            if os.path.exists("%s/endpoints.log" % log_dir):
                os.system("rm -f {}/endpoints.log".format(log_dir))
            with open("%s/endpoints.log" % log_dir, "w") as f:
                f.write("PADDLE_TRAINER_ENDPOINTS: \n")
                f.write("\n".join(cluster.trainers_endpoints()))
587 588 589 590 591
            if current_env.get("PADDLE_ENABLE_AUTO_MAPPING") is not None \
                and current_env.get("PADDLE_NEED_RANK_MAPPING").lower() == "true":
                fn = open("%s/prelaunchlog.%d" % (log_dir, idx), "a")
            else:
                fn = open("%s/workerlog.%d" % (log_dir, idx), "a")
592 593 594 595 596
            proc = subprocess.Popen(cmd,
                                    env=current_env,
                                    stdout=fn,
                                    stderr=fn,
                                    preexec_fn=pre_fn)
597
        else:
K
kuizhiqing 已提交
598
            proc = subprocess.Popen(cmd, env=current_env, preexec_fn=pre_fn)
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651

        tp = TrainerProc()
        tp.proc = proc
        tp.rank = t.rank
        tp.local_rank = idx
        tp.log_fn = fn
        tp.log_offset = fn.tell() if fn else None
        tp.cmd = cmd

        procs.append(tp)

    return procs


def pull_worker_log(tp):
    if tp.log_fn:
        with open(tp.log_fn.name, 'r') as fin:
            fin.seek(tp.log_offset, 0)
            for line in fin:
                try:
                    sys.stdout.write(line)
                except UnicodeEncodeError:
                    sys.stdout.write(
                        'UnicodeEncodeError occurs at this line. '
                        'Please refer to the original log file "%s"\n' %
                        tp.log_fn.name)
            tp.log_offset = fin.tell()


def watch_local_trainers(procs, nranks):
    try:
        error = False
        error_rank = []
        # wait all process finish or one error
        alive = False
        for p in procs:
            if p.log_fn and p.local_rank == 0:
                pull_worker_log(p)

            ret = p.proc.poll()
            if ret is None:
                alive = True
            elif ret != 0:
                error = True
                error_rank.append(p.rank)

        if error:
            terminate_local_procs(procs)
            exit(1)

    except KeyboardInterrupt:
        logger.warning("KeyboardInterrupt, exit")
        terminate_local_procs(procs)
K
kuizhiqing 已提交
652
        return
653 654
    except SystemExit:
        logger.error(
655 656
            "ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log."
            .format(nranks, error_rank))
657
        terminate_local_procs(procs)
658
        raise
659 660
    except:
        logger.error(
661 662
            "ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log."
            .format(nranks, error_rank))
663
        terminate_local_procs(procs)
K
kuizhiqing 已提交
664
        return
665 666

    return alive
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697


def get_gpus(gpus):
    if gpus is None:
        gpus_num = fluid.core.get_cuda_device_count()
        res_gpus = [str(x) for x in range(0, gpus_num)]
    else:
        cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
        if cuda_visible_devices is None or cuda_visible_devices == "":
            res_gpus = [x.strip() for x in gpus.split(',')]
        else:
            # change gpus into relative values
            # e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.gpus=4,5,6,7;
            # therefore gpus=0,1,2,3
            cuda_visible_devices_list = cuda_visible_devices.split(',')
            for x in gpus.split(','):
                assert x in cuda_visible_devices_list, "Can't find "\
                    "your gpus %s in CUDA_VISIBLE_DEVICES[%s]."\
                    % (x, cuda_visible_devices)
            res_gpus = [
                cuda_visible_devices_list.index(x.strip())
                for x in gpus.split(',')
            ]
            logger.info("Change selected_gpus into reletive values. --ips:{} "
                        "will change into relative_ips:{} according to your "
                        "CUDA_VISIBLE_DEVICES:{}".format(
                            gpus, res_gpus, cuda_visible_devices_list))

    return res_gpus


698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
def get_xpus(xpus):
    if xpus is None:
        xpus_num = fluid.core.get_xpu_device_count()
        res_xpus = [str(x) for x in range(0, xpus_num)]
    else:
        xpu_visible_devices = os.getenv("XPU_VISIBLE_DEVICES")
        if xpu_visible_devices is None or xpu_visible_devices == "":
            res_xpus = [x.strip() for x in xpus.split(',')]
        else:
            # change xpus into relative values
            # e.g. XPU_VISIBLE_DEVICES=4,5,6,7; args.xpus=4,5,6,7;
            # therefore xpus=0,1,2,3
            xpu_visible_devices_list = xpu_visible_devices.split(',')
            for x in xpus.split(','):
                assert x in xpu_visible_devices_list, "Can't find "\
                    "your xpus %s in XPU_VISIBLE_DEVICES[%s]."\
                    % (x, xpu_visible_devices)
            res_xpus = [
                xpu_visible_devices_list.index(x.strip())
                for x in xpus.split(',')
            ]
            logger.info("Change selected_xpus into reletive values. --ips:{} "
                        "will change into relative_ips:{} according to your "
                        "XPU_VISIBLE_DEVICES:{}".format(
                            xpus, res_xpus, xpu_visible_devices_list))

    return res_xpus


K
kuizhiqing 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
def get_npus(npus):
    if npus is None:
        npus_num = fluid.core.get_npu_device_count()
        res_npus = [str(x) for x in range(0, npus_num)]
    else:
        npu_visible_devices = os.getenv("ASCEND_VISIBLE_DEVICES")
        if npu_visible_devices is None or npu_visible_devices == "":
            res_npus = [x.strip() for x in npus.split(',')]
        else:
            # change npus into relative values
            # e.g. ASCEND_VISIBLE_DEVICES=4,5,6,7; args.npus=4,5,6,7;
            # therefore npus=0,1,2,3
            npu_visible_devices_list = npu_visible_devices.split(',')
            for x in npus.split(','):
                assert x in npu_visible_devices_list, "Can't find "\
                    "your npus %s in ASCEND_VISIBLE_DEVICES[%s]."\
                    % (x, npu_visible_devices)
            res_npus = [
                npu_visible_devices_list.index(x.strip())
                for x in npus.split(',')
            ]
            logger.info("Change selected_npus into reletive values. --ips:{} "
                        "will change into relative_ips:{} according to your "
                        "ASCEND_VISIBLE_DEVICES:{}".format(
                            npus, res_npus, npu_visible_devices_list))

    return res_npus


Z
zn 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
def get_mlus(mlus):
    if mlus is None:
        mlus_num = fluid.core.get_mlu_device_count()
        res_mlus = [str(x) for x in range(0, mlus_num)]
    else:
        mlu_visible_devices = os.getenv("MLU_VISIBLE_DEVICES")
        if mlu_visible_devices is None or mlu_visible_devices == "":
            res_mlus = [x.strip() for x in mlus.split(',')]
        else:
            # change mlus into relative values
            # e.g. MLU_VISIBLE_DEVICES=4,5,6,7; args.mlus=4,5,6,7;
            # therefore mlus=0,1,2,3
            mlu_visible_devices_list = mlu_visible_devices.split(',')
            for x in mlus.split(','):
                assert x in mlu_visible_devices_list, "Can't find "\
                    "your mlus %s in MLU_VISIBLE_DEVICES[%s]."\
                    % (x, mlu_visible_devices)
            res_mlus = [
                mlu_visible_devices_list.index(x.strip())
                for x in mlus.split(',')
            ]
            logger.info("Change selected_mlus into reletive values. --ips:{} "
                        "will change into relative_ips:{} according to your "
                        "MLU_VISIBLE_DEVICES:{}".format(
                            mlus, res_mlus, mlu_visible_devices_list))

    return res_mlus


X
xiongkun 已提交
785
def get_device_mode(backend):
K
kuizhiqing 已提交
786 787 788 789 790 791 792 793 794 795
    if backend == 'heter':
        if fluid.core.is_compiled_with_cuda() and \
            fluid.core.get_cuda_device_count() > 0:
            print("launch train in heter mode with GPU device.")
            return DeviceMode.GPU
        if fluid.core.is_compiled_with_xpu() and \
            fluid.core.get_xpu_device_count() > 0:
            print("launch train in heter mode with XPU device.")
            return DeviceMode.XPU
        if fluid.core.is_compiled_with_npu() and \
B
Baibaifan 已提交
796
            fluid.core.get_npu_device_count() > 0:
K
kuizhiqing 已提交
797 798 799 800
            print("launch train in heter mode with NPU device.")
            return DeviceMode.ASCEND_NPU

    if backend == 'hccl' and fluid.core.get_npu_device_count() > 0:
801 802 803
        print("launch train in ascend npu mode!")
        return DeviceMode.ASCEND_NPU

X
xiongkun 已提交
804
    if backend == 'nccl' and \
805 806
            fluid.core.get_cuda_device_count() > 0:
        print("launch train in GPU mode!")
807
        return DeviceMode.GPU
808

X
xiongkun 已提交
809
    if backend == 'bkcl' and fluid.core.get_xpu_device_count() > 0:
810 811
        print("launch train in XPU mode")
        return DeviceMode.XPU
812

Z
zn 已提交
813 814 815 816
    if backend == 'cncl' and fluid.core.get_mlu_device_count() > 0:
        print("launch train in MLU mode")
        return DeviceMode.MLU

X
xiongkun 已提交
817 818 819 820 821
    if backend == 'gloo':
        print("launch train in CPU mode")
        return DeviceMode.CPU

    raise RuntimeError("Don't supported devices")
822 823 824 825


def get_device_proc_info(args):
    # device_mode
X
xiongkun 已提交
826
    device_mode = get_device_mode(args.backend)
827 828 829 830 831 832 833

    # devices
    devices_per_proc = []
    if device_mode == DeviceMode.GPU:
        gpus = get_gpus(args.gpus)
        if args.nproc_per_node is not None:
            assert (len(gpus) % int(args.nproc_per_node)) ==0, \
J
Jiangxinz 已提交
834
                "gpus' number:{} mod args.nproc_per_node:{} must == 0".format(len(gpus), args.nproc_per_node)
835 836

            n = int(len(gpus) / int(args.nproc_per_node))
837
            devices_per_proc = [gpus[i:i + n] for i in range(0, len(gpus), n)]
838 839
        else:
            devices_per_proc = gpus
840
    elif device_mode == DeviceMode.ASCEND_NPU:
K
kuizhiqing 已提交
841 842 843 844 845 846
        npus = get_npus(args.npus)
        if args.nproc_per_node is not None:
            assert (len(npus) % int(args.nproc_per_node)) ==0, \
                "npus' number:{} mod args.nproc_per_node:{} must == 0".format(len(npus), args.nproc_per_node)

            n = int(len(npus) / int(args.nproc_per_node))
847
            devices_per_proc = [npus[i:i + n] for i in range(0, len(npus), n)]
K
kuizhiqing 已提交
848 849
        else:
            devices_per_proc = npus
850 851 852 853
    elif device_mode == DeviceMode.XPU:
        xpus = get_xpus(args.xpus)
        if args.nproc_per_node is not None:
            assert (len(xpus) % int(args.nproc_per_node)) == 0, \
J
Jiangxinz 已提交
854
                "xpus' number:{} mod args.nproc_per_node:{} must == 0".format(len(xpus), args.nproc_per_node)
855 856

            n = int(len(xpus) / int(args.nproc_per_node))
857
            devices_per_proc = [xpus[i:i + n] for i in range(0, len(xpus), n)]
858 859
        else:
            devices_per_proc = xpus
Z
zn 已提交
860 861 862 863 864 865 866
    elif device_mode == DeviceMode.MLU:
        mlus = get_mlus(args.mlus)
        if args.nproc_per_node is not None:
            assert (len(mlus) % int(args.nproc_per_node)) ==0, \
                "mlus' number:{} mod args.nproc_per_node:{} must == 0".format(len(mlus), args.nproc_per_node)

            n = int(len(mlus) / int(args.nproc_per_node))
867
            devices_per_proc = [mlus[i:i + n] for i in range(0, len(mlus), n)]
Z
zn 已提交
868 869
        else:
            devices_per_proc = mlus
870
    elif device_mode == DeviceMode.CPU:
X
xiongkun 已提交
871 872 873
        if hasattr(args, "paddle_cpuonly") and args.nproc_per_node is None:
            #NOTE (xiongkun03) set it to cpu core number
            args.nproc_per_node = multiprocessing.cpu_count()
874 875 876 877 878
        if args.nproc_per_node is None:
            devices_per_proc = [0]
        else:
            devices_per_proc = [x for x in range(0, args.nproc_per_node)]
    else:
879
        assert False, "Can't support device_mode:{}, support only cpu|gpu|xpu now.".format(
880 881 882 883 884
            device_mode)

    return (device_mode, devices_per_proc)


885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
def direct_start(args):
    # run ps-cpu mode on paddlecloud, using given envs
    cmd = [sys.executable, "-u", args.training_script] + \
        args.training_script_args
    proc = subprocess.Popen(cmd)
    proc.wait()
    return


def get_custom_endpoints(origin_endpoints, offset=0):
    """
    origin_endpoint: ip:port
    user_define_endpoint: ip:(port+offset)
    """
    assert origin_endpoints != None
    paddle_user_define_endpoints_list = []
    for ip_port in origin_endpoints.split(","):
        ip = ip_port.split(":")[0]
        port = ip_port.split(":")[1]
        new_port = int(port) + offset
        paddle_user_define_endpoints_list.append(":".join((ip, str(new_port))))
    paddle_user_define_endpoints = ",".join(paddle_user_define_endpoints_list)
    return paddle_user_define_endpoints


910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
#def cloud_ps_heter_env_set(args):
#    environs = {}
#
#    paddle_trainer_endpoints = os.getenv("TRAINER_IP_PORT_LIST", "")
#    assert paddle_trainer_endpoints != None
#
#    paddle_pserver_endpoints = os.getenv("PSERVER_IP_PORT_LIST", "")
#    assert paddle_pserver_endpoints != None
#
#    # hard code for paddlecloud custom-framework
#    avilable_ports = os.getenv("TRAINER_PORTS", "").split(",")
#    assert len(
#        avilable_ports
#    ) >= 2, "set paddle_ports_num >= 2 in config.ini for paddlecloud job submit"
#
#    # hard code for paddlecloud custom-framework
#    trainers_num = len(paddle_pserver_endpoints.split(","))
#    assert trainers_num != 0
#    environs["PADDLE_TRAINERS_NUM"] = trainers_num
#    environs["TRAINERS_NUM"] = trainers_num
#
#    # hard code for paddlecloud custom-framework
#    environs["PADDLE_HETER_TRAINER_IP_PORT_LIST"] = paddle_trainer_endpoints
#    environs["PADDLE_PSERVERS_IP_PORT_LIST"] = paddle_pserver_endpoints
#    environs["PADDLE_TRAINER_ENDPOINTS"] = get_custom_endpoints(
#        paddle_pserver_endpoints, 1)
#    heter_worker_num = len(paddle_trainer_endpoints.split(","))
#    if (args.heter_worker_num != None) and (
#            heter_worker_num != args.heter_worker_num):
#        warnings.warn(
#            "Your fleetrun setting: heter_worker_num is {}, but we find {} device can be used, this setting has been changed.".
#            format(args.heter_worker_num, heter_worker_num))
#        args.heter_worker_num = heter_worker_num
#
#    for k, v in environs.items():
#        os.environ[k] = str(v)
#    logger.info("Set heter parameter server env: {}".format(
#        pretty_print_envs(environs)))
948 949


950 951 952
def get_mapped_cluster_without_rank_mapping(node_ips, node_ip,
                                            trainer_endpoints, device_mode,
                                            node_ranks):
953 954 955 956 957 958 959 960 961 962 963 964
    assert type(trainer_endpoints) is list, "trainer_endpoints must be list"
    assert device_mode == DeviceMode.GPU, \
        "Only support get mapped cluster for gpu now."
    cluster = Cluster(hdfs=None)
    for node_rank, ip in enumerate(node_ips):
        pod = Pod()
        pod.rank = node_rank
        pod.addr = ip
        pod.device_mode = device_mode
        cur_node_endpoints = trainer_endpoints[node_rank]

        # choose rank from global mapped ranks and set it to the trainer.
965 966
        ranks_per_node = node_ranks[node_rank]
        assert len(ranks_per_node) == 1
967 968 969 970
        for i in range(len(ranks_per_node)):
            trainer = Trainer()
            trainer.endpoint = "%s" % (cur_node_endpoints[i])
            trainer.rank = ranks_per_node[i]
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
            pod.trainers.append(trainer)
        cluster.pods.append(pod)

    pod_rank = node_ips.index(node_ip)
    return cluster, cluster.pods[pod_rank]


def get_mapped_cluster_from_args_without_rank_mapping(args, device_mode):
    assert device_mode == DeviceMode.GPU, \
        "Only support get mapped cluster for gpu now."
    gpus_num = fluid.core.get_cuda_device_count()

    # parse ip-ranks json file
    cluster_topo = None
    with open(args.cluster_topo_path, "r") as json_file:
        cluster_topo = json.load(json_file)

    node_ips = []
    node_ranks = []
    for idx, cur_cluster_topo in enumerate(cluster_topo["machines"]):
        node_ips.append(cur_cluster_topo['addr'])
        node_ranks.append([idx])

    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()

    assert node_ip in node_ips, \
        "Can't find your local ip {%s} in node_ips: {%s}" % (node_ip, node_ips)
    node_rank = node_ips.index(node_ip)

    assert len(node_ranks) == len(node_ips), \
        "ranks length should be equal to ips length."

    logger.debug("parsed from args: node_ips:{} node_ip:{} "
1010 1011 1012
                 "node_rank:{} node_ranks:{}".format(node_ips, node_ip,
                                                     node_rank,
                                                     node_ranks[node_rank]))
1013 1014 1015 1016 1017 1018 1019 1020 1021

    # NOTE: there are different number of global mapped ranks on each node.
    free_ports = []
    trainer_endpoints = []
    for ip in node_ips:
        node_rank = node_ips.index(ip)
        if os.environ.get('PADDLE_PORT') is not None:
            start_port = int(os.getenv("PADDLE_PORT", ""))
            free_ports = [
1022 1023
                x for x in range(start_port, start_port +
                                 len(node_ranks[node_rank]))
1024 1025 1026 1027
            ]
        elif os.environ.get('FLAGS_START_PORT') is not None:
            start_port = int(os.environ.get('FLAGS_START_PORT'))
            free_ports = [
1028 1029
                x for x in range(start_port, start_port +
                                 len(node_ranks[node_rank]))
1030 1031 1032 1033 1034
            ]
        else:
            free_ports = find_free_ports(len(node_ranks[node_rank]))
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])

1035 1036 1037
    return get_mapped_cluster_without_rank_mapping(node_ips, node_ip,
                                                   trainer_endpoints,
                                                   device_mode, node_ranks)
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065


def get_mapped_cluster_with_rank_mapping(node_ips, node_ip, trainer_endpoints,
                                         device_mode, node_ranks,
                                         node_rank_mappings):
    assert type(trainer_endpoints) is list, "trainer_endpoints must be list"
    assert device_mode == DeviceMode.GPU, \
        "Only support get mapped cluster for gpu now."

    def get_relative_gpu_id(gpu_id):
        cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
        if cuda_visible_devices is None or cuda_visible_devices == "":
            return gpu_id
        else:
            cuda_visible_devices_list = cuda_visible_devices.split(',')
            relative_id = cuda_visible_devices_list.index(str(gpu_id))
            logger.info(
                "Change gpu id from {} to {} based on CUDA_VISIBLE_DEVICES {}".
                format(gpu_id, relative_id, cuda_visible_devices_list))
            return relative_id

    cluster = Cluster(hdfs=None)
    for node_rank, ip in enumerate(node_ips):
        pod = Pod()
        pod.rank = node_rank
        pod.addr = ip
        pod.device_mode = device_mode
        cur_node_endpoints = trainer_endpoints[node_rank]
1066

1067 1068 1069 1070 1071 1072 1073 1074 1075
        # choose rank from global mapped ranks and set it to the trainer.
        ranks_per_node = node_ranks[node_rank]
        cur_node_rank_mapping = node_rank_mappings[node_rank]
        for i in range(len(ranks_per_node)):
            trainer = Trainer()
            local_device_ids = cur_node_rank_mapping["ranks"][str(
                ranks_per_node[i])]
            assert len(local_device_ids) == 1, \
                "Only support one process to one device mapping"
1076 1077
            trainer.accelerators.append(get_relative_gpu_id(
                local_device_ids[0]))
1078 1079
            trainer.endpoint = "%s" % (cur_node_endpoints[i])
            trainer.rank = ranks_per_node[i]
1080 1081 1082 1083 1084 1085 1086
            pod.trainers.append(trainer)
        cluster.pods.append(pod)

    pod_rank = node_ips.index(node_ip)
    return cluster, cluster.pods[pod_rank]


1087
def get_mapped_cluster_from_args_with_rank_mapping(args, device_mode):
1088 1089 1090 1091 1092
    assert device_mode == DeviceMode.GPU, \
        "Only support get mapped cluster for gpu now."
    gpus_num = fluid.core.get_cuda_device_count()

    # parse ip-ranks json file
1093 1094 1095 1096 1097 1098 1099
    rank_mapping_path = args.rank_mapping_path or os.getenv(
        "PADDLE_RANK_MAPPING_PATH")
    rank_mapping = None
    with open(rank_mapping_path, "r") as json_file:
        rank_mapping = json.load(json_file)
    # reset PADDLE_RANK_MAPPING_PATH env
    os.environ["PADDLE_RANK_MAPPING_PATH"] = ""
1100 1101

    node_ips = []
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
    node_ranks = []
    node_rank_mappings = []
    for cur_rank_mapping in rank_mapping:
        node_ips.append(cur_rank_mapping['addr'])
        cur_node_rank_list = [
            int(i) for i in list(cur_rank_mapping['ranks'].keys())
        ]
        cur_node_rank_list.sort()
        node_ranks.append(cur_node_rank_list)
        node_rank_mappings.append(cur_rank_mapping)
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()

    assert node_ip in node_ips, \
        "Can't find your local ip {%s} in node_ips: {%s}" % (node_ip, node_ips)
    node_rank = node_ips.index(node_ip)

1125
    assert len(node_ranks[node_rank]) <= gpus_num, \
1126
        "number of ranks mapped to one node should not exceed the avaiable ones."
1127
    assert len(node_ranks) == len(node_ips), \
1128 1129 1130
        "ranks length should be equal to ips length."

    logger.debug("parsed from args: node_ips:{} node_ip:{} "
1131 1132 1133
                 "node_rank:{} node_ranks:{}".format(node_ips, node_ip,
                                                     node_rank,
                                                     node_ranks[node_rank]))
1134 1135 1136 1137 1138 1139

    # NOTE: there are different number of global mapped ranks on each node.
    free_ports = []
    trainer_endpoints = []
    for ip in node_ips:
        node_rank = node_ips.index(ip)
1140 1141 1142
        if os.environ.get('PADDLE_PORT') is not None:
            start_port = int(os.getenv("PADDLE_PORT", ""))
            free_ports = [
1143 1144
                x for x in range(start_port, start_port +
                                 len(node_ranks[node_rank]))
1145 1146
            ]
        elif os.environ.get('FLAGS_START_PORT') is not None:
1147
            start_port = int(os.environ.get('FLAGS_START_PORT'))
1148
            free_ports = [
1149 1150
                x for x in range(start_port, start_port +
                                 len(node_ranks[node_rank]))
1151
            ]
1152
        else:
1153
            free_ports = find_free_ports(len(node_ranks[node_rank]))
1154 1155
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])

1156 1157 1158
    return get_mapped_cluster_with_rank_mapping(node_ips, node_ip,
                                                trainer_endpoints, device_mode,
                                                node_ranks, node_rank_mappings)
1159 1160


1161
class ParameterServerLauncher(object):
1162

1163 1164 1165
    def __init__(self, args, distribute_mode):
        self.args = args
        self.distribute_mode = distribute_mode
1166
        self.with_coordinator = False
1167 1168 1169
        self.server_num = 0
        self.worker_num = 0
        self.heter_worker_num = 0
1170
        self.coordinator_num = 0
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

        self.server_endpoints = ""
        self.server_endpoints_ips = []
        self.server_endpoints_port = []

        self.worker_endpoints = ""
        self.worker_endpoints_ips = []
        self.worker_endpoints_port = []

        self.heter_worker_endpoints = ""
        self.heter_worker_endpoints_ips = []
        self.heter_worker_endpoints_port = []

1184 1185 1186 1187
        self.coordinator_endpoints = ""
        self.coordinator_endpoints_ips = []
        self.coordinator_endpoints_port = []

1188 1189 1190
        self.is_local = True
        self.current_node_ip = ""

1191 1192 1193 1194 1195 1196
        self.stage_trainer_num = []
        self.stage_heter_map = {}
        self.stage_list = []
        self.stage_device_map = {}
        self.stage_num = 0

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
        self.get_role_endpoints(args)

    def get_role_endpoints(self, args):
        if args.server_num:
            self.server_num = args.server_num
            if args.servers:
                assert len(
                    args.servers.split(",")
                ) == self.server_num, "The server_num and servers doesn't match. Expect servers endpoints num epual to server_num, but received servers enpoint num: {} and server_num {}".format(
                    len(args.servers.split(",")), self.server_num)
                self.server_endpoints = args.servers
            else:
                ports = get_ports(self.server_num, 0)
                self.server_endpoints = ",".join(
                    ["127.0.0.1:" + str(x) for x in ports])
        else:
            assert args.servers != "", "The setting of Parameter-Server must has server_num or servers."
            self.server_endpoints = args.servers
            self.server_num = len(self.server_endpoints.split(","))

        # get worker envs
        if args.worker_num:
            self.worker_num = args.worker_num
            if args.workers:
                assert len(
                    args.workers.split(",")
                ) == self.worker_num, "The worker_num and workers doesn't match. Expect workers endpoints num epual to worker_num, but received workers enpoint num: {} and worker_num {}".format(
                    len(args.workers.split(",")), self.worker_num)

                self.worker_endpoints = args.workers
            else:
                ports = get_ports(self.worker_num, self.server_num)
                self.worker_endpoints = ",".join(
                    ["127.0.0.1:" + str(x) for x in ports])
        else:
            assert args.workers != "", "The setting of Parameter-Server must has worker_num or workers."
            worker_endpoints_ips = [
                x.strip().split(":")[0] for x in args.workers.split(",")
            ]
            self.worker_num = len(worker_endpoints_ips)
            worker_endpoints_len = [
                len(x.strip().split(":")) for x in args.workers.split(",")
            ]

            if 1 in worker_endpoints_len:
                # if no port value in worker_endpoints, will set default port values.
                start_port = 6170
                worker_endpoints_port = range(
                    start_port + self.server_num,
                    start_port + self.server_num + self.worker_num, 1)
                # create endpoints str
                worker_endpoints = []
                for i in range(self.worker_num):
1250 1251 1252
                    worker_endpoints.append(":".join(
                        (worker_endpoints_ips[i],
                         str(worker_endpoints_port[i]))))
1253 1254 1255 1256
                self.worker_endpoints = ",".join(worker_endpoints)
            else:
                self.worker_endpoints = args.workers

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
        # get coordinator envs
        if args.coordinator_num:
            self.with_coordinator = True
            self.coordinator_num = args.coordinator_num
            if args.coordinators:
                assert len(
                    args.coordinators.split(",")
                ) == self.coordinator_num, "The coordinator_num and coordinators doesn't match. Expect coordinators endpoints num epual to coordinator_num, but received coordinator enpoint num: {} and coordinator_num {}".format(
                    len(args.coordinators.split(",")), self.coordinator_num)

                self.coordinator_endpoints = args.coordinators
            else:
                ports = get_ports(self.coordinator_num, 1)
                self.coordinator_endpoints = ",".join(
                    ["127.0.0.1:" + str(x) for x in ports])
                print(">>> use default coordinator addr(only one process)")

1274 1275
        # get heter worker envs
        if self.distribute_mode == DistributeMode.PS_HETER:
1276 1277 1278 1279 1280 1281 1282
            assert args.heter_devices != "", "The setting of Parameter-Server heter mode must has heter_devices."
            self.stage_device_map[1] = "cpu"  #  for cpu trainer
            heter_devices_list = args.heter_devices.split(";")
            for i in range(len(heter_devices_list)):
                self.stage_device_map[i + 2] = heter_devices_list[i]

            self.stage_heter_map[1] = self.worker_endpoints
1283
            if args.heter_worker_num:
1284
                self.stage_heter_trainer_num = args.heter_worker_num.split(";")
1285 1286 1287 1288 1289
                self.stage_heter_trainer_num = [
                    int(trainer_num)
                    for trainer_num in self.stage_heter_trainer_num
                ]

1290
                if args.heter_workers:
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
                    assert len(args.heter_workers.split(";")) == len(
                        self.stage_heter_trainer_num
                    ), "The stage_num and heter_workers doesn't match. Expect heter_workers endpoints stage num epual to heter_worker_num stage, but received heter_workers enpoint stage num: {} and heter_worker_num stage {}".format(
                        len(args.heter_workers.split(";")),
                        len(self.stage_heter_trainer_num))
                    heter_worker_endpoints_list = args.heter_workers.split(";")
                    self.heter_worker_endpoints = ""
                    for i in range(len(self.stage_heter_trainer_num)):
                        if self.heter_worker_endpoints != "":
                            self.heter_worker_endpoints += ","
                        heter_worker_endpoints = heter_worker_endpoints_list[
                            i].split(",")
                        assert len(
                            heter_worker_endpoints
                        ) == self.stage_heter_trainer_num[
                            i], "The heter trainer num in stage {} is not equal in args.heter_worker_num and args.heter_workers".format(
                                i)

                        heter_worker_endpoints_ips = [
                            x.strip().split(":")[0]
                            for x in heter_worker_endpoints
                        ]
                        heter_worker_endpoints_len = [
                            len(x.strip().split(":"))
                            for x in heter_worker_endpoints
                        ]

                        if 1 in heter_worker_endpoints_len:
                            # if no port value in heter_worker_endpoint, will set default port values.
                            heter_worker_endpoints_port = get_ports(
1321 1322 1323
                                len(heter_worker_endpoints_ips),
                                self.worker_num + self.server_num +
                                self.heter_worker_num)
1324 1325
                            new_heter_worker_endpoints = []
                            for j in range(len(heter_worker_endpoints_ips)):
1326 1327 1328
                                new_heter_worker_endpoints.append(":".join(
                                    (heter_worker_endpoints_ips[j],
                                     str(heter_worker_endpoints_port[j]))))
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
                            ip_port_list = ",".join(new_heter_worker_endpoints)
                        else:
                            ip_port_list = ",".join(heter_worker_endpoints)

                        self.stage_heter_map[i + 2] = ip_port_list
                        self.stage_list.extend([i + 2] *
                                               len(ip_port_list.split(',')))

                        self.heter_worker_num += self.stage_heter_trainer_num[i]
                        self.heter_worker_endpoints += ip_port_list
1339
                else:
1340 1341
                    for i in range(len(self.stage_heter_trainer_num)):
                        heter_trainer_num = self.stage_heter_trainer_num[i]
1342 1343 1344
                        ports = get_ports(
                            heter_trainer_num, self.server_num +
                            self.worker_num + self.heter_worker_num)
1345 1346 1347 1348 1349 1350 1351 1352 1353
                        ip_port_list = ",".join(
                            ["127.0.0.1:" + str(x) for x in ports])
                        self.stage_heter_map[i + 2] = ip_port_list
                        self.stage_list.extend([i + 2] *
                                               len(ip_port_list.split(',')))
                        self.heter_worker_num += heter_trainer_num
                        if self.heter_worker_endpoints != "":
                            self.heter_worker_endpoints += ","
                        self.heter_worker_endpoints += ip_port_list
1354 1355
            else:
                assert args.heter_workers != "", "The setting of Parameter-Server heter mode must has heter_worker_num or heter_workers."
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
                self.stage_heter_trainer_num = []
                heter_worker_endpoints_list = args.heter_workers.split(";")
                self.heter_worker_endpoints = ""
                for i in range(len(heter_worker_endpoints_list)):
                    heter_worker_endpoints = heter_worker_endpoints_list[
                        i].split(",")
                    self.stage_heter_trainer_num.append(
                        len(heter_worker_endpoints))
                    heter_worker_endpoints_ips = [
                        x.strip().split(":")[0] for x in heter_worker_endpoints
                    ]
                    heter_worker_endpoints_len = [
                        len(x.strip().split(":"))
                        for x in heter_worker_endpoints
                    ]
                    if 1 in heter_worker_endpoints_len:
                        # if no port value in heter_worker_endpoint, will set default port values.
                        heter_worker_endpoints_port = get_ports(
                            len(heter_worker_endpoints_ips), self.worker_num +
                            self.server_num + self.heter_worker_num)

                        new_heter_worker_endpoints = []
                        for j in range(len(heter_worker_endpoints_ips)):
1379 1380 1381
                            new_heter_worker_endpoints.append(":".join(
                                (heter_worker_endpoints_ips[j],
                                 str(heter_worker_endpoints_port[j]))))
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
                        ip_port_list = ",".join(new_heter_worker_endpoints)
                    else:
                        ip_port_list = ",".join(heter_worker_endpoints)

                    self.stage_heter_map[i + 2] = ip_port_list
                    self.stage_list.extend([i + 2] *
                                           len(ip_port_list.split(',')))

                    self.heter_worker_num += self.stage_heter_trainer_num[-1]
                    if self.heter_worker_endpoints != "":
                        self.heter_worker_endpoints += ","
                    self.heter_worker_endpoints += ip_port_list

            self.stage_trainer_num = [self.worker_num
                                      ] + self.stage_heter_trainer_num
            self.stage_num = len(self.stage_trainer_num)

        # get http_port
        if args.http_port:
1401
            http_port = [args.http_port]
1402 1403 1404
        else:
            http_port = get_ports(
                1, self.server_num + self.worker_num + self.heter_worker_num)
1405 1406
        http_ip = self.server_endpoints.split(",")[0].split(":")[0]
        self.http_port = http_ip + ":" + str(http_port[0])
1407 1408 1409 1410 1411 1412 1413 1414

        # check local or user define
        self.server_endpoints_ips = [
            x.strip().split(":")[0] for x in self.server_endpoints.split(",")
        ]
        self.worker_endpoints_ips = [
            x.strip().split(":")[0] for x in self.worker_endpoints.split(",")
        ]
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425

        if self.with_coordinator == True:
            self.coordinator_endpoints_ips = [
                x.strip().split(":")[0]
                for x in self.coordinator_endpoints.split(",")
            ]
            self.coordinator_endpoints_port = [
                x.strip().split(":")[1]
                for x in self.coordinator_endpoints.split(",")
            ]

1426 1427 1428 1429 1430 1431
        self.server_endpoints_port = [
            x.strip().split(":")[1] for x in self.server_endpoints.split(",")
        ]
        self.worker_endpoints_port = [
            x.strip().split(":")[1] for x in self.worker_endpoints.split(",")
        ]
1432 1433 1434 1435 1436 1437 1438 1439
        self.node_ips = []
        for ip in self.server_endpoints_ips:
            if ip not in self.node_ips:
                self.node_ips.append(ip)
        for ip in self.worker_endpoints_ips:
            if ip not in self.node_ips:
                self.node_ips.append(ip)

1440 1441 1442 1443 1444 1445 1446 1447 1448
        if self.distribute_mode == DistributeMode.PS_HETER:
            self.heter_worker_endpoints_ips = [
                x.strip().split(":")[0]
                for x in self.heter_worker_endpoints.split(",")
            ]
            self.heter_worker_endpoints_port = [
                x.strip().split(":")[1]
                for x in self.heter_worker_endpoints.split(",")
            ]
1449 1450 1451
            for ip in self.heter_worker_endpoints_ips:
                if ip not in self.node_ips:
                    self.node_ips.append(ip)
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462

        if len(set(self.node_ips)) == 1:
            self.is_local = True
            self.current_node_ip = self.node_ips[0]
        else:
            self.is_local = False
            pod_ip = os.getenv("POD_IP", None)
            if pod_ip == None:
                _, self.current_node_ip = get_host_name_ip()
            else:
                self.current_node_ip = pod_ip
1463 1464 1465 1466 1467 1468 1469 1470
            if not self.distribute_mode == DistributeMode.PS_HETER:
                assert self.current_node_ip in self.node_ips, "Can't find your local ip {%s} in args.servers and args.workers ips: {%s}" \
                      % (self.current_node_ip, self.node_ips)
        if self.current_node_ip in self.node_ips:
            self.node_rank = self.node_ips.index(self.current_node_ip)
            logger.debug(
                "parsed from args: node_ips:{} current_node_ip:{} node_rank:{}".
                format(self.node_ips, self.current_node_ip, self.node_rank))
1471 1472

    def start_ps(self):
1473
        if self.current_node_ip not in self.node_ips:
1474
            return
1475 1476 1477 1478
        cluster = Cluster(hdfs=None)
        server_rank = 0
        worker_rank = 0
        heter_worker_rank = 0
1479
        coordinator_rank = 0
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
        for node_rank, ip in enumerate(self.node_ips):
            pod = Pod()
            pod.rank = node_rank
            pod.addr = ip
            for i in range(len(self.server_endpoints_ips)):
                if ip == self.server_endpoints_ips[i]:
                    server = Trainer()
                    server.endpoint = "%s:%s" % (ip,
                                                 self.server_endpoints_port[i])
                    server.rank = server_rank
                    server_rank += 1
                    pod.servers.append(server)
            for j in range(len(self.worker_endpoints_ips)):
                if ip == self.worker_endpoints_ips[j]:
                    worker = Trainer()
                    worker.endpoint = "%s:%s" % (ip,
                                                 self.worker_endpoints_port[j])
                    worker.rank = worker_rank
1498
                    worker.stage = 1
1499 1500
                    worker_rank += 1
                    pod.workers.append(worker)
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
            for m in range(len(self.coordinator_endpoints_ips)):
                if ip == self.coordinator_endpoints_ips[m]:
                    coordinator = Trainer()
                    coordinator.endpoint = "%s:%s" % (
                        ip, self.coordinator_endpoints_port[m])
                    coordinator.rank = coordinator_rank
                    coordinator.stage = 1
                    coordinator_rank += 1
                    pod.coordinators.append(coordinator)

1511 1512 1513 1514 1515 1516
            for k in range(len(self.heter_worker_endpoints_ips)):
                if ip == self.heter_worker_endpoints_ips[k]:
                    heter_worker = Trainer()
                    heter_worker.endpoint = "%s:%s" % (
                        ip, self.heter_worker_endpoints_port[k])
                    heter_worker.rank = heter_worker_rank
1517
                    heter_worker.stage = self.stage_list[k]
1518 1519 1520 1521 1522 1523 1524 1525 1526
                    heter_worker_rank += 1
                    pod.heter_workers.append(heter_worker)

            cluster.pods.append(pod)

        pod = cluster.pods[self.node_rank]
        self.gloo_rendezvous_dir = tempfile.mkdtemp()

        # 3. subproces start
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
        self.procs = {
            "worker": [],
            "coordinator": [],
            "server": [],
            "heter_worker": []
        }
        self.cmds = {
            "worker": [],
            "coordinator": [],
            "server": [],
            "heter_worker": []
        }
        self.log_fns = {
            "worker": [],
            "coordinator": [],
            "server": [],
            "heter_worker": []
        }
1545 1546 1547

        self.start_pod_server(self.args, pod)
        self.start_pod_worker(self.args, pod)
1548 1549
        if self.with_coordinator:
            self.start_pod_coordinator(self.args, pod)
1550 1551
        if self.distribute_mode == DistributeMode.PS_HETER:
            self.start_pod_heter_worker(self.args, pod)
1552 1553

        logger.info(
1554 1555 1556
            "Please check servers, workers, coordinator and heter_worker logs in {}/workerlog.*, {}/serverlog.* , {}/coordinatorlog.*, and {}/heterlog.*"
            .format(self.args.log_dir, self.args.log_dir, self.args.log_dir,
                    self.args.log_dir))
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

        # 4. wait for finish training
        if len(self.procs["worker"]) > 0:
            # if node has worker procs
            # only wait worker to finish here
            for i, proc in enumerate(self.procs["worker"]):
                self.procs["worker"][i].proc.wait()
                if len(self.log_fns["worker"]) > 0:
                    self.log_fns["worker"][i].close()
            logger.info(
                "all workers exit, going to finish parameter server and heter_worker."
            )
            if len(self.procs["heter_worker"]) > 0:
                for i, proc in enumerate(self.procs["heter_worker"]):
                    self.log_fns["heter_worker"][i].close()
                    self.procs["heter_worker"][i].proc.terminate()
                logger.info("all heter_worker are killed")

            if len(self.procs["server"]) > 0:
                for i, proc in enumerate(self.procs["server"]):
                    self.log_fns["server"][i].close()
                    self.procs["server"][i].proc.terminate()
                logger.info("all parameter server are killed")

1581 1582 1583 1584 1585 1586
            if len(self.procs["coordinator"]) > 0:
                for i, proc in enumerate(self.procs["coordinator"]):
                    self.log_fns["coordinator"][i].close()
                    self.procs["coordinator"][i].proc.terminate()
                logger.info("all coordinators are killed")

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
        else:
            # if node has not worker procs
            # blocking training process
            if len(self.procs["server"]) > 0:
                for i, proc in enumerate(self.procs["server"]):
                    self.procs["server"][i].proc.wait()

            if len(self.procs["heter_worker"]) > 0:
                for i, proc in enumerate(self.procs["heter_worker"]):
                    self.procs["heter_worker"][i].proc.wait()

        if os.path.exists(self.gloo_rendezvous_dir):
            shutil.rmtree(self.gloo_rendezvous_dir)

    def start_pod_server(self, args, pod):
        default_env = os.environ.copy()
        current_env = copy.copy(default_env)
        current_env.pop("http_proxy", None)
        current_env.pop("https_proxy", None)
        for idx, cur_server in enumerate(pod.servers):
1607 1608 1609 1610
            if self.distribute_mode == DistributeMode.PS_HETER:
                proc_env = {
                    "PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
                    "PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
1611
                    "PADDLE_COORDINATOR_ENDPOINTS": self.coordinator_endpoints,
1612 1613 1614 1615 1616 1617
                    "PADDLE_ALL_HETER_TRAINER_IP_PORT_LIST":
                    self.heter_worker_endpoints,
                    "PADDLE_PORT": cur_server.endpoint.split(":")[1],
                    "TRAINING_ROLE": "PSERVER",
                    "PADDLE_TRAINERS_NUM": str(self.worker_num),
                    "POD_IP": cur_server.endpoint.split(":")[0],
1618
                    "PADDLE_WITH_GLOO": str(os.getenv("PADDLE_WITH_GLOO", "0")),
1619 1620 1621 1622 1623 1624 1625 1626
                    "PADDLE_GLOO_RENDEZVOUS": "3",
                    "PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
                    "PADDLE_GLOO_HTTP_ENDPOINT": self.http_port
                }
            else:
                proc_env = {
                    "PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
                    "PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
1627
                    "PADDLE_COORDINATOR_ENDPOINTS": self.coordinator_endpoints,
1628 1629 1630 1631
                    "PADDLE_PORT": cur_server.endpoint.split(":")[1],
                    "TRAINING_ROLE": "PSERVER",
                    "PADDLE_TRAINERS_NUM": str(self.worker_num),
                    "POD_IP": cur_server.endpoint.split(":")[0],
1632
                    "PADDLE_WITH_GLOO": str(os.getenv("PADDLE_WITH_GLOO", "0")),
1633 1634 1635 1636
                    "PADDLE_GLOO_RENDEZVOUS": "3",
                    "PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
                    "PADDLE_GLOO_HTTP_ENDPOINT": self.http_port
                }
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
            current_env.update(proc_env)

            cmd = [sys.executable, "-u", args.training_script
                   ] + args.training_script_args
            self.cmds["server"].append(cmd)

            if idx == 0:
                logger.info(
                    "Local server start {} processes. First process distributed "
                    "environment info (Only For Debug): {}".format(
                        len(pod.servers),
1648 1649
                        pretty_print_envs(proc_env,
                                          ("Distributed Envs", "Value"))))
1650 1651 1652 1653 1654

            if args.log_dir is not None:
                os.system("mkdir -p {}".format(args.log_dir))
                fn = open("%s/serverlog.%d" % (args.log_dir, idx), "w")
                self.log_fns["server"].append(fn)
1655 1656 1657 1658
                proc = subprocess.Popen(cmd,
                                        env=current_env,
                                        stdout=fn,
                                        stderr=fn)
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
            else:
                proc = subprocess.Popen(cmd, env=current_env)

            tp = TrainerProc()
            tp.proc = proc
            tp.rank = cur_server.rank
            tp.local_rank = idx
            tp.log_fn = fn
            tp.log_offset = fn.tell() if fn else None
            tp.cmd = cmd

            self.procs["server"].append(tp)

    def start_pod_worker(self, args, pod):
        default_env = os.environ.copy()
        current_env = copy.copy(default_env)
        current_env.pop("http_proxy", None)
        current_env.pop("https_proxy", None)

        heter_device_num = 0
        device_list = []
        if fluid.core.is_compiled_with_cuda():
            device_list = get_gpus(args.gpus)
            heter_device_num = len(device_list)
        elif fluid.core.is_compiled_with_xpu():
            heter_device_num = fluid.core.get_xpu_device_count()
            device_list = [str(x) for x in range(0, heter_device_num)]

        for idx, cur_worker in enumerate(pod.workers):
1688 1689
            device_id = "0" if heter_device_num == 0 else str(
                device_list[(idx) % heter_device_num])
1690 1691
            if self.distribute_mode == DistributeMode.PS_HETER:
                proc_env = {
1692 1693 1694 1695 1696 1697
                    "PADDLE_PSERVERS_IP_PORT_LIST":
                    self.server_endpoints,
                    "PADDLE_TRAINER_ENDPOINTS":
                    self.worker_endpoints,
                    "PADDLE_TRAINERS_NUM":
                    str(self.worker_num),
1698 1699
                    "PADDLE_COORDINATOR_ENDPOINTS":
                    self.coordinator_endpoints,
1700 1701 1702 1703 1704 1705 1706 1707
                    "PADDLE_STAGE_TRAINERS_NUM":
                    str(self.stage_trainer_num),
                    "STAGE_ID":
                    "1",
                    "STAGE_NUM":
                    str(self.stage_num),
                    "PADDLE_PREVIOUS_HETER_TRAINER_IP_PORT_LIST":
                    "",
1708 1709 1710 1711
                    "PADDLE_NEXT_HETER_TRAINER_IP_PORT_LIST":
                    self.stage_heter_map[2],
                    "PADDLE_ALL_HETER_TRAINER_IP_PORT_LIST":
                    self.heter_worker_endpoints,
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
                    "HETER_DEVICE_TYPE":
                    self.stage_device_map[1],
                    "TRAINING_ROLE":
                    "TRAINER",
                    "POD_IP":
                    cur_worker.endpoint.split(":")[0],
                    "PADDLE_PORT":
                    cur_worker.endpoint.split(":")[1],
                    "PADDLE_TRAINER_ID":
                    str(cur_worker.rank),
1722 1723
                    "PADDLE_WITH_GLOO":
                    str(os.getenv("PADDLE_WITH_GLOO", "0")),
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
                    "PADDLE_GLOO_RENDEZVOUS":
                    "3",
                    "PADDLE_GLOO_FS_PATH":
                    self.gloo_rendezvous_dir,
                    "FLAGS_selected_gpus":
                    "0",
                    "FLAGS_selected_xpus":
                    "0",
                    "CUDA_VISIBLE_DEVICES":
                    device_id,
                    "XPU_VISIBLE_DEVICES":
                    device_id,
                    "PADDLE_GLOO_HTTP_ENDPOINT":
                    self.http_port
1738 1739 1740 1741 1742 1743 1744
                }
            else:
                proc_env = {
                    "PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
                    "PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
                    "PADDLE_TRAINERS_NUM": str(self.worker_num),
                    "TRAINING_ROLE": "TRAINER",
1745
                    "PADDLE_COORDINATOR_ENDPOINTS": self.coordinator_endpoints,
1746 1747 1748
                    "POD_IP": cur_worker.endpoint.split(":")[0],
                    "PADDLE_PORT": cur_worker.endpoint.split(":")[1],
                    "PADDLE_TRAINER_ID": str(cur_worker.rank),
1749
                    "PADDLE_WITH_GLOO": str(os.getenv("PADDLE_WITH_GLOO", "0")),
1750 1751 1752 1753 1754 1755 1756 1757
                    "PADDLE_GLOO_RENDEZVOUS": "3",
                    "PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
                    "FLAGS_selected_gpus": "0",
                    "FLAGS_selected_xpus": "0",
                    "CUDA_VISIBLE_DEVICES": device_id,
                    "XPU_VISIBLE_DEVICES": device_id,
                    "PADDLE_GLOO_HTTP_ENDPOINT": self.http_port
                }
1758

1759
            current_env.update(proc_env)
1760 1761 1762 1763 1764 1765 1766 1767 1768
            cmd = [sys.executable, "-u", args.training_script
                   ] + args.training_script_args
            self.cmds["worker"].append(cmd)

            if idx == 0:
                logger.info(
                    "Local worker start {} processes. First process distributed "
                    "environment info (Only For Debug): {}".format(
                        len(pod.workers),
1769 1770
                        pretty_print_envs(proc_env,
                                          ("Distributed Envs", "Value"))))
1771 1772 1773 1774 1775

            if args.log_dir is not None:
                os.system("mkdir -p {}".format(args.log_dir))
                fn = open("%s/workerlog.%d" % (args.log_dir, idx), "w")
                self.log_fns["worker"].append(fn)
1776 1777 1778 1779
                proc = subprocess.Popen(cmd,
                                        env=current_env,
                                        stdout=fn,
                                        stderr=fn)
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
            else:
                proc = subprocess.Popen(cmd, env=current_env)

            tp = TrainerProc()
            tp.proc = proc
            tp.rank = cur_worker.rank
            tp.local_rank = idx
            tp.log_fn = fn
            tp.log_offset = fn.tell() if fn else None
            tp.cmd = cmd

            self.procs["worker"].append(tp)

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
    def start_pod_coordinator(self, args, pod):
        print(">>> entering start_pod_coordinator")
        default_env = os.environ.copy()
        current_env = copy.copy(default_env)
        current_env.pop("http_proxy", None)
        current_env.pop("https_proxy", None)

        for idx, cur_coordinator in enumerate(pod.coordinators):
            device_id = "0"
            proc_env = {
                "PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
                "PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
                "PADDLE_TRAINERS_NUM": str(self.worker_num),
                "PADDLE_COORDINATOR_ENDPOINTS": self.coordinator_endpoints,
                "PADDLE_COORDINATOR_NUM": str(self.coordinator_num),
                "TRAINING_ROLE": "COORDINATOR",
                "POD_IP": cur_coordinator.endpoint.split(":")[0],
                "PADDLE_PORT": cur_coordinator.endpoint.split(":")[1],
                "PADDLE_TRAINER_ID": str(cur_coordinator.rank),
                "PADDLE_WITH_GLOO": str(os.getenv("PADDLE_WITH_GLOO", "0")),
                "PADDLE_GLOO_RENDEZVOUS": "3",
                "PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
                "FLAGS_selected_gpus": "0",
                "FLAGS_selected_xpus": "0",
                "CUDA_VISIBLE_DEVICES": device_id,
                "XPU_VISIBLE_DEVICES": device_id,
                "PADDLE_GLOO_HTTP_ENDPOINT": self.http_port
            }

            current_env.update(proc_env)
            cmd = [sys.executable, "-u", args.training_script
                   ] + args.training_script_args
            self.cmds["coordinator"].append(cmd)

            if idx == 0:
                logger.info(
                    "Local coordinator start {} processes. First process distributed "
                    "environment info (Only For Debug): {}".format(
                        len(pod.coordinators),
                        pretty_print_envs(proc_env,
                                          ("Distributed Envs", "Value"))))

            if args.log_dir is not None:
                os.system("mkdir -p {}".format(args.log_dir))
                fn = open("%s/coordinator.%d" % (args.log_dir, idx), "w")
                self.log_fns["coordinator"].append(fn)
                proc = subprocess.Popen(cmd,
                                        env=current_env,
                                        stdout=fn,
                                        stderr=fn)
            else:
                proc = subprocess.Popen(cmd, env=current_env)

            tp = TrainerProc()
            tp.proc = proc
            tp.rank = cur_coordinator.rank
            tp.local_rank = idx
            tp.log_fn = fn
            tp.log_offset = fn.tell() if fn else None
            tp.cmd = cmd

            self.procs["coordinator"].append(tp)

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
    def start_pod_heter_worker(self, args, pod):
        default_env = os.environ.copy()
        current_env = copy.copy(default_env)
        current_env.pop("http_proxy", None)
        current_env.pop("https_proxy", None)

        heter_device_num = 0
        device_list = []
        if fluid.core.is_compiled_with_cuda():
            device_list = get_gpus(args.gpus)
            heter_device_num = len(device_list)
        elif fluid.core.is_compiled_with_xpu():
            heter_device_num = fluid.core.get_xpu_device_count()
            device_list = [str(x) for x in range(0, heter_device_num)]

        for idx, cur_heter_worker in enumerate(pod.heter_workers):
1872 1873
            device_id = "0" if heter_device_num == 0 else str(
                device_list[(idx) % heter_device_num])
1874
            stage_id = cur_heter_worker.stage
1875
            proc_env = {
1876 1877 1878 1879
                "PADDLE_PSERVERS_IP_PORT_LIST":
                self.server_endpoints,
                "PADDLE_TRAINER_ENDPOINTS":
                self.worker_endpoints,
1880 1881 1882 1883 1884 1885
                "PADDLE_NEXT_HETER_TRAINER_IP_PORT_LIST":
                self.stage_heter_map[stage_id + 1]
                if stage_id <= self.stage_num - 1 else "",
                "PADDLE_PREVIOUS_HETER_TRAINER_IP_PORT_LIST":
                self.stage_heter_map[stage_id - 1],
                "PADDLE_ALL_HETER_TRAINER_IP_PORT_LIST":
1886
                self.heter_worker_endpoints,
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
                "HETER_DEVICE_TYPE":
                self.stage_device_map[stage_id],
                "STAGE_ID":
                str(stage_id),
                "STAGE_NUM":
                str(self.stage_num),
                "PADDLE_PORT":
                cur_heter_worker.endpoint.split(":")[1],
                "TRAINING_ROLE":
                "HETER_TRAINER",
                "PADDLE_TRAINERS_NUM":
                str(self.worker_num),
                "PADDLE_STAGE_TRAINERS_NUM":
                str(self.stage_trainer_num),
                "POD_IP":
                cur_heter_worker.endpoint.split(":")[0],
                "PADDLE_WITH_GLOO":
                str(os.getenv("PADDLE_WITH_GLOO", "0")),
                "PADDLE_GLOO_RENDEZVOUS":
                "3",
                "PADDLE_GLOO_FS_PATH":
                self.gloo_rendezvous_dir,
                "FLAGS_selected_gpus":
                "0",
                "FLAGS_selected_xpus":
                "0",
                "CUDA_VISIBLE_DEVICES":
                device_id,
                "XPU_VISIBLE_DEVICES":
                device_id,
                "PADDLE_GLOO_HTTP_ENDPOINT":
                self.http_port
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
            }
            current_env.update(proc_env)

            cmd = [sys.executable, "-u", args.training_script
                   ] + args.training_script_args
            self.cmds["heter_worker"].append(cmd)

            if idx == 0:
                logger.info(
                    "Local heter_worker start {} processes. First process distributed "
                    "environment info (Only For Debug): {}".format(
                        len(pod.heter_workers),
1931 1932
                        pretty_print_envs(proc_env,
                                          ("Distributed Envs", "Value"))))
1933 1934 1935 1936 1937

            if args.log_dir is not None:
                os.system("mkdir -p {}".format(args.log_dir))
                fn = open("%s/heterlog.%d" % (args.log_dir, idx), "w")
                self.log_fns["heter_worker"].append(fn)
1938 1939 1940 1941
                proc = subprocess.Popen(cmd,
                                        env=current_env,
                                        stdout=fn,
                                        stderr=fn)
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
            else:
                proc = subprocess.Popen(cmd, env=current_env)

            tp = TrainerProc()
            tp.proc = proc
            tp.rank = cur_heter_worker.rank
            tp.local_rank = idx
            tp.log_fn = fn
            tp.log_offset = fn.tell() if fn else None
            tp.cmd = cmd

            self.procs["heter_worker"].append(tp)
X
xiongkun 已提交
1954 1955 1956


def check_backend(backend):
1957 1958 1959 1960 1961 1962 1963 1964
    if backend not in [
            'nccl', 'gloo', 'bkcl', 'cncl', 'auto', 'hccl', 'heter', 'xccl'
    ]:
        raise ValueError(
            "paddle.distributed initialize error, "
            "backend argument can only be one of "
            "'nccl', 'gloo', 'bkcl', 'auto', 'hccl', 'heter', 'xccl' "
            "but got %s" % backend)
X
xiongkun 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

    if backend == 'nccl' and not fluid.core.is_compiled_with_cuda():
        raise ValueError(
            "paddle.distributed initialize error, "
            "your paddle is not compiled with cuda but you assign 'nccl' as backend."
        )

    if backend == 'bkcl' and not fluid.core.is_compiled_with_xpu():
        raise ValueError(
            "paddle.distributed initialize error, "
            "your paddle is not compiled with xpu but you assign 'bkcl' as backend."
        )

K
kuizhiqing 已提交
1978 1979 1980 1981 1982 1983
    if backend == 'hccl' and not fluid.core.is_compiled_with_npu():
        raise ValueError(
            "paddle.distributed initialize error, "
            "your paddle is not compiled with npu but you assign 'hccl' as backend."
        )

Z
zn 已提交
1984 1985 1986 1987 1988 1989
    if backend == 'cncl' and not fluid.core.is_compiled_with_mlu():
        raise ValueError(
            "paddle.distributed initialize error, "
            "your paddle is not compiled with mlu but you assign 'cncl' as backend."
        )

X
xiongkun 已提交
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

def block_windows_and_macos(backend):
    if backend != 'gloo': return
    if utils.OS_NAME.startswith('darwin'):  # MACOS , block
        raise ValueError(
            "You are going to using gloo on macos, but currently is not supported"
        )
    if utils.IS_WINDOWS:  # MACOS , block
        raise ValueError(
            "You are going to using gloo on windows, but currently is not supported"
        )


def get_backend_by_compile_flag():
    if fluid.core.is_compiled_with_cuda():
        return 'nccl'

    if fluid.core.is_compiled_with_xpu():
        return 'bkcl'

K
kuizhiqing 已提交
2010 2011 2012
    if fluid.core.is_compiled_with_npu():
        return 'hccl'

Z
zn 已提交
2013 2014 2015
    if fluid.core.is_compiled_with_mlu():
        return 'cncl'

X
xiongkun 已提交
2016
    return 'gloo'