entry_attr.py 5.4 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
__all__ = []
T
tangwei12 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82


class EntryAttr(object):
    """
    Entry Config for paddle.static.nn.sparse_embedding with Parameter Server.

    Examples:
        .. code-block:: python

            import paddle

            sparse_feature_dim = 1024
            embedding_size = 64

            entry = paddle.distributed.ProbabilityEntry(0.1)

            input = paddle.static.data(name='ins', shape=[1], dtype='int64')

            emb = paddle.static.nn.sparse_embedding((
                input=input,
                size=[sparse_feature_dim, embedding_size],
                is_test=False,
                entry=entry,
                param_attr=paddle.ParamAttr(name="SparseFeatFactors",
                                           initializer=paddle.nn.initializer.Uniform()))

    """

    def __init__(self):
        self._name = None

    def _to_attr(self):
        """
        Returns the attributes of this parameter.

        Returns:
            Parameter attributes(map): The attributes of this parameter.
        """
        raise NotImplementedError("EntryAttr is base class")


class ProbabilityEntry(EntryAttr):
    """
    Examples:
        .. code-block:: python

            import paddle

            sparse_feature_dim = 1024
            embedding_size = 64

            entry = paddle.distributed.ProbabilityEntry(0.1)

            input = paddle.static.data(name='ins', shape=[1], dtype='int64')

            emb = paddle.static.nn.sparse_embedding((
                input=input,
                size=[sparse_feature_dim, embedding_size],
                is_test=False,
                entry=entry,
                param_attr=paddle.ParamAttr(name="SparseFeatFactors",
                                           initializer=paddle.nn.initializer.Uniform()))


    """

    def __init__(self, probability):
J
Jiangxinz 已提交
83
        super(ProbabilityEntry, self).__init__()
T
tangwei12 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

        if not isinstance(probability, float):
            raise ValueError("probability must be a float in (0,1)")

        if probability <= 0 or probability >= 1:
            raise ValueError("probability must be a float in (0,1)")

        self._name = "probability_entry"
        self._probability = probability

    def _to_attr(self):
        return ":".join([self._name, str(self._probability)])


class CountFilterEntry(EntryAttr):
    """
    Examples:
        .. code-block:: python

            import paddle

            sparse_feature_dim = 1024
            embedding_size = 64

            entry = paddle.distributed.CountFilterEntry(10)

            input = paddle.static.data(name='ins', shape=[1], dtype='int64')

            emb = paddle.static.nn.sparse_embedding((
                input=input,
                size=[sparse_feature_dim, embedding_size],
                is_test=False,
                entry=entry,
                param_attr=paddle.ParamAttr(name="SparseFeatFactors",
                                           initializer=paddle.nn.initializer.Uniform()))

    """

    def __init__(self, count_filter):
J
Jiangxinz 已提交
123
        super(CountFilterEntry, self).__init__()
T
tangwei12 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137

        if not isinstance(count_filter, int):
            raise ValueError(
                "count_filter must be a valid integer greater than 0")

        if count_filter < 0:
            raise ValueError(
                "count_filter must be a valid integer greater or equal than 0")

        self._name = "count_filter_entry"
        self._count_filter = count_filter

    def _to_attr(self):
        return ":".join([self._name, str(self._count_filter)])
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179


class ShowClickEntry(EntryAttr):
    """
    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()

            sparse_feature_dim = 1024
            embedding_size = 64

            shows = paddle.static.data(name='show', shape=[1], dtype='int64')
            clicks = paddle.static.data(name='click', shape=[1], dtype='int64')
            input = paddle.static.data(name='ins', shape=[1], dtype='int64')

            entry = paddle.distributed.ShowClickEntry("show", "click")

            emb = paddle.static.nn.sparse_embedding(
                input=input,
                size=[sparse_feature_dim, embedding_size],
                is_test=False,
                entry=entry,
                param_attr=paddle.ParamAttr(name="SparseFeatFactors",
                                           initializer=paddle.nn.initializer.Uniform()))


    """

    def __init__(self, show_name, click_name):
        super(ShowClickEntry, self).__init__()

        if not isinstance(show_name, str) or not isinstance(click_name, str):
            raise ValueError("show_name click_name must be a str")

        self._name = "show_click_entry"
        self._show_name = show_name
        self._click_name = click_name

    def _to_attr(self):
        return ":".join([self._name, self._show_name, self._click_name])