entry_attr.py 4.1 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

__all__ = ['ProbabilityEntry', 'CountFilterEntry']


class EntryAttr(object):
    """
    Entry Config for paddle.static.nn.sparse_embedding with Parameter Server.

    Examples:
        .. code-block:: python

            import paddle

            sparse_feature_dim = 1024
            embedding_size = 64

            entry = paddle.distributed.ProbabilityEntry(0.1)

            input = paddle.static.data(name='ins', shape=[1], dtype='int64')

            emb = paddle.static.nn.sparse_embedding((
                input=input,
                size=[sparse_feature_dim, embedding_size],
                is_test=False,
                entry=entry,
                param_attr=paddle.ParamAttr(name="SparseFeatFactors",
                                           initializer=paddle.nn.initializer.Uniform()))

    """

    def __init__(self):
        self._name = None

    def _to_attr(self):
        """
        Returns the attributes of this parameter.

        Returns:
            Parameter attributes(map): The attributes of this parameter.
        """
        raise NotImplementedError("EntryAttr is base class")


class ProbabilityEntry(EntryAttr):
    """
    Examples:
        .. code-block:: python

            import paddle

            sparse_feature_dim = 1024
            embedding_size = 64

            entry = paddle.distributed.ProbabilityEntry(0.1)

            input = paddle.static.data(name='ins', shape=[1], dtype='int64')

            emb = paddle.static.nn.sparse_embedding((
                input=input,
                size=[sparse_feature_dim, embedding_size],
                is_test=False,
                entry=entry,
                param_attr=paddle.ParamAttr(name="SparseFeatFactors",
                                           initializer=paddle.nn.initializer.Uniform()))


    """

    def __init__(self, probability):
        super(EntryAttr, self).__init__()

        if not isinstance(probability, float):
            raise ValueError("probability must be a float in (0,1)")

        if probability <= 0 or probability >= 1:
            raise ValueError("probability must be a float in (0,1)")

        self._name = "probability_entry"
        self._probability = probability

    def _to_attr(self):
        return ":".join([self._name, str(self._probability)])


class CountFilterEntry(EntryAttr):
    """
    Examples:
        .. code-block:: python

            import paddle

            sparse_feature_dim = 1024
            embedding_size = 64

            entry = paddle.distributed.CountFilterEntry(10)

            input = paddle.static.data(name='ins', shape=[1], dtype='int64')

            emb = paddle.static.nn.sparse_embedding((
                input=input,
                size=[sparse_feature_dim, embedding_size],
                is_test=False,
                entry=entry,
                param_attr=paddle.ParamAttr(name="SparseFeatFactors",
                                           initializer=paddle.nn.initializer.Uniform()))

    """

    def __init__(self, count_filter):
        super(EntryAttr, self).__init__()

        if not isinstance(count_filter, int):
            raise ValueError(
                "count_filter must be a valid integer greater than 0")

        if count_filter < 0:
            raise ValueError(
                "count_filter must be a valid integer greater or equal than 0")

        self._name = "count_filter_entry"
        self._count_filter = count_filter

    def _to_attr(self):
        return ":".join([self._name, str(self._count_filter)])