loss.py 17.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define loss functions of neural network  
L
Leo Chen 已提交
16 17 18
import paddle.fluid as fluid
__all__ = [
    #'NCELoss',
19
    'CrossEntropyLoss',
20
    'MSELoss',
L
Leo Chen 已提交
21 22
    'L1Loss',
    #    'NLLLoss',
C
ceci3 已提交
23
    'BCELoss'
L
Leo Chen 已提交
24 25 26
]


27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
class CrossEntropyLoss(fluid.dygraph.Layer):
    """
    This operator implements the cross entropy loss function. This OP combines `softmax`,
    `cross_entropy`, and `reduce_sum`/`reduce_mean` together.

    It is useful when training a classification problem with `C` classes.
    If provided, the optional argument `weight` should be a 1D Variable assigning
    weight to each of the classes.

    For predictions label, and target label, the loss is calculated as follows.
    .. math::

        loss_j =  -\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right), j = 1,..., K

    If weight is not `None`:
    .. math::

        loss_j =  \\text{weight[class]}(-\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right)), j = 1,..., K

    Parameters:
        input (Variable): Input tensor, the data type is float32,
            float64, int32, int64.
        label (Variable): Label tensor, the data type is float32,
            float64, int32, int64.
        weight (Variable, optional): Weight tensor, a manual rescaling weight given
            to each class. It has the same dimensions as class number and the data type
            is float32, float64, int32, int64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
    Returns:
        The tensor variable storing the cross_entropy_loss of input and label.
    Return type: Variable.
    Examples:
        .. code-block:: python

            # declarative mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            input = fluid.layers.data(name='input', shape=[5, 100], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5, 1], dtype='int64')
            weight = fluid.layers.data(name='weight', shape=[100], dtype='float32')
            ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
            output = ce_loss(input,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            input_data = np.random.random([5, 100]).astype("float32")
            label_data = np.array([[1], [9], [40], [50], [90]]).astype("int64")
            weight_data = np.random.random([100]).astype("float32")
            output = exe.run(fluid.default_main_program(),
                        feed={"input": input_data, "label": label_data,"weight": weight_data},
                        fetch_list=[output],
                        return_numpy=True)
            print(output)

            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                weight = dg.to_variable(weight_data)
                ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
                output = ce_loss(input, label)
                print(output.numpy())
    """

    def __init__(self, weight=None, reduction='mean'):
        super(CrossEntropyLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction

    def forward(self, input, label):
        fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64', 'int32', 'int64'],
            'cross_entropy_loss')
        fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['float32', 'float64', 'int32', 'int64'],
            'cross_entropy_loss')

        if self.reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in cross_entropy_loss should be 'sum', 'mean' or 'none',"
                " but received %s, which is not allowed." % self.reduction)

        softmax_out = fluid.layers.softmax(input)
        if self.weight is not None:
            if isinstance(self.weight, fluid.framework.Variable):
                softmax_out = fluid.layers.elementwise_pow(
                    softmax_out, self.weight, axis=-1)
            else:
                raise ValueError(
                    "The weight' is not a Variable, please convert to Variable.")

        out = fluid.layers.cross_entropy(softmax_out, label)

        if self.reduction == 'sum':
            return fluid.layers.reduce_sum(out)
        elif self.reduction == 'mean':
            return fluid.layers.reduce_mean(out)
        else:
            return out


138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
class MSELoss(fluid.dygraph.layers.Layer):
    """
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    where `input` and `label` are `float32` tensors of arbitrary shapes.

    Parameters:
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            'none': no reduction will be applied
            'mean': the output will be averaged
            'sum': the output will be summed

    Examples:
        .. code-block:: python
        import numpy as np
        import paddle
        from paddle import fluid
        import paddle.fluid.dygraph as dg

        mse_loss = paddle.nn.loss.MSELoss()
        input = fluid.data(name="input", shape=[1])
        label = fluid.data(name="label", shape=[1])
        place = fluid.CPUPlace()
        input_data = np.array([1.5]).astype("float32")
        label_data = np.array([1.7]).astype("float32")

        # declarative mode
        output = mse_loss(input,label)
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        output_data = exe.run(
            fluid.default_main_program(),
            feed={"input":input_data, "label":label_data},
            fetch_list=[output],
            return_numpy=True)
        print(output_data)
        # [array([0.04000002], dtype=float32)]

        # imperative mode
        with dg.guard(place) as g:
            input = dg.to_variable(input_data)
            label = dg.to_variable(label_data)
            output = mse_loss(input, label)
            print(output.numpy())
            # [0.04000002]
    """

    def __init__(self, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
                "but received {}.".format(reduction))
        self.reduction = reduction

    def forward(self, input, label):
        if not fluid.framework.in_dygraph_mode():
            fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                                       ['float32'], 'MSELoss')
            fluid.data_feeder.check_variable_and_dtype(label, 'label',
                                                       ['float32'], 'MSELoss')

        square_out = fluid.layers.square(
            fluid.layers.elementwise_sub(input, label))
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
            reduce_op = 'reduce_sum'

        return getattr(fluid.layers, reduce_op)(square_out)


L
Leo Chen 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
class L1Loss(fluid.dygraph.Layer):
    """
    This interface is used to construct a callable object of the ``L1Loss`` class.
    The L1Loss layer calculates the L1 Loss of input predictions and target 
    labels as follows.

    If :attr:`reduction` set to ``'none'``, the unreduced loss is:
    .. math::
        Out = |input - label|
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
    .. math::
        Out = MEAN(|input - label|)
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
    .. math::
        Out = SUM(|input - label|)

    The shape of input predictions and target labels are [N, *], where N is batch_size and `*` 
    means any number of additional dimensions.
    If :attr:`reduction` is ``'none'``, the shape of output loss is [N, *], the same as input.
    If :attr:`reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1], which means the output is a scalar.
    
    Parameters:
        reduction (str, optional): Indicate the reduction to apply to the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned; 
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. 
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. 
            Default is ``'mean'``.
    Returns:
        A callable object of L1Loss.
    Examples:
        .. code-block:: python
            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            input = fluid.data(name="input", shape=[1])
            label = fluid.data(name="label", shape=[1])
            l1_loss = paddle.nn.loss.L1Loss(reduction='mean')
            output = l1_loss(input,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
    
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")
            output_data = exe.run(fluid.default_main_program(),
                    feed={"input":input_data, "label":label_data},
                    fetch_list=[output],
                    return_numpy=True)
    
            print(output_data)  # [array([0.2], dtype=float32)]
            
            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                l1_loss = paddle.nn.loss.L1Loss(reduction='mean')
                output = l1_loss(input,label)
                print(output.numpy())  # [0.2]
    """

    def __init__(self, reduction='mean'):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(L1Loss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label):
        fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')
        fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')

        unreduced = fluid.layers.elementwise_sub(input, label, act='abs')

        if self.reduction == 'sum':
            return fluid.layers.reduce_sum(unreduced)
        elif self.reduction == 'mean':
            return fluid.layers.reduce_mean(unreduced)
        else:
            return unreduced
C
ceci3 已提交
314 315 316 317


class BCELoss(fluid.dygraph.Layer):
    """
318 319 320 321
    This interface is used to construct a callable object of the ``BCELoss`` class.
    The BCELoss layer measures the binary_cross_entropy loss between input predictions 
    and target labels. The binary_cross_entropy loss can be described as:

C
ceci3 已提交
322
    If :attr:`weight` is set, the loss is:
323 324

    .. math::
C
ceci3 已提交
325 326
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
    If :attr:`weight` is None, the loss is:
327 328

    .. math::
C
ceci3 已提交
329 330 331
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the unreduced loss is:
332

C
ceci3 已提交
333 334 335
    .. math::
        Out = Out
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
336

C
ceci3 已提交
337 338 339
    .. math::
        Out = MEAN(Out)
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
340

C
ceci3 已提交
341 342
    .. math::
        Out = SUM(Out)
343 344 345 346 347 348 349 350

    Note that the input predictions always be the output of sigmoid, and the target labels 
    should be numbers between 0 and 1.

    The shape of input predictions and target labels are [N, *], where N is batch_size and `*` 
    means any number of additional dimensions. If ``reduction`` is ``'none'``, the shape of 
    output is scalar, else the shape of output is same as input.

C
ceci3 已提交
351
    Parameters:
352 353 354
        weight (Variable, optional): A manual rescaling weight given to the loss of each 
            batch element. If given, has to be a Variable of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
C
ceci3 已提交
355 356
        reduction (str, optional): Indicate how to average the loss by batch_size, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
357
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
C
ceci3 已提交
358
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; 
359
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
360
            Default is ``'mean'``.
361 362 363 364

    Returns: 
        A callable object of BCELoss.

C
ceci3 已提交
365 366
    Examples:
        .. code-block:: python
367

C
ceci3 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            input = fluid.data(name="input", shape=[3, 1], dtype='float32')
            label = fluid.data(name="label", shape=[3, 1], dtype='float32')
            bce_loss = paddle.nn.loss.BCELoss()
            output = bce_loss(input, label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
    
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
            output_data = exe.run(fluid.default_main_program(),
                    feed={"input":input_data, "label":label_data},
                    fetch_list=[output],
                    return_numpy=True)
    
            print(output_data)  # [array([0.65537095], dtype=float32)]
            
            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = bce_loss(input, label)
                print(output.numpy())  # [0.65537095]
    """

    def __init__(self, weight=None, reduction='mean'):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCELoss, self).__init__()
        self.weight = weight
        self.reduction = reduction

    def forward(self, input, label):
        dtype = self._helper.input_dtype(input)

        fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'bce_loss')
        fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'bce_loss')

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        self._helper.append_op(
            type='bce_loss',
            inputs={
                'X': [input],
                'Label': [label],
            },
            outputs={'Out': [out]})

        if self.weight is not None:
            if isinstance(self.weight, fluid.framework.Variable):
                w = self.weight
428
                out = fluid.layers.elementwise_mul(out, w, axis=-1)
C
ceci3 已提交
429 430 431 432 433 434 435 436 437 438
            else:
                raise ValueError(
                    "The weight is not a Variable, please convert to Variable.")

        if self.reduction == 'sum':
            return fluid.layers.reduce_sum(out)
        elif self.reduction == 'mean':
            return fluid.layers.reduce_mean(out)
        else:
            return out