group_norm_op.h 11.6 KB
Newer Older
D
Dun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
17 18
#include <string>
#include "paddle/fluid/framework/data_layout.h"
D
Dun 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

template <typename DeviceContext, typename T>
class GroupNormKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
36 37 38
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
D
Dun 已提交
39 40 41 42 43 44 45 46 47 48 49
    const float epsilon = ctx.Attr<float>("epsilon");
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* x = ctx.Input<Tensor>("X");

    auto* y = ctx.Output<Tensor>("Y");
    auto* mean = ctx.Output<Tensor>("Mean");
    auto* var = ctx.Output<Tensor>("Variance");
    const auto groups = ctx.Attr<int>("groups");

    const auto x_dims = x->dims();
50 51 52 53
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    const int group_size = (C - 1) / groups + 1;
D
Dun 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());

    auto* x_data = x->data<T>();
    auto* y_data = y->data<T>();
    auto* mean_data = mean->data<T>();
    auto* var_data = var->data<T>();

    const T* scale_data = nullptr;
    if (scale) scale_data = scale->data<T>();
    const T* bias_data = nullptr;
    if (bias) bias_data = bias->data<T>();

69 70 71
    int imsize = (data_layout == DataLayout::kNCHW ? x_dims[2] * x_dims[3]
                                                   : x_dims[1] * x_dims[2]);

D
Dun 已提交
72 73
    auto* iter_x_data = x_data;
    auto* iter_y_data = y_data;
74
    for (int bid = 0; bid < x_dims[0]; bid++) {
D
Dun 已提交
75 76
      for (int gid = 0; gid < groups; gid++) {
        T x_mean = 0, x_var = 0;
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
        int number =
            std::min(group_size, static_cast<int>(C - gid * group_size));
        auto* tmp_x = iter_x_data;
        auto* x_src_data = iter_x_data;
        auto* tmp_y = iter_y_data;
        auto* y_src_data = iter_y_data;

        if (data_layout == DataLayout::kNCHW) {
          for (int cid = 0; cid < number; cid++) {
            for (int imid = 0; imid < imsize; imid++, iter_x_data++) {
              x_mean += iter_x_data[0];
              x_var += iter_x_data[0] * iter_x_data[0];
            }
          }
        } else {
          for (int cid = 0; cid < number; cid++) {
            iter_x_data = tmp_x + cid;
            for (int imid = 0; imid < imsize; imid++, iter_x_data += C) {
              x_mean += iter_x_data[0];
              x_var += iter_x_data[0] * iter_x_data[0];
            }
D
Dun 已提交
98
          }
99
          iter_x_data = tmp_x + group_size;
D
Dun 已提交
100
        }
101

D
Dun 已提交
102 103 104 105 106 107
        x_mean /= number * imsize;
        x_var /= number * imsize;
        x_var = x_var - x_mean * x_mean;
        T var_inv = 1.0 / sqrt(x_var + epsilon);
        mean_data[bid * groups + gid] = x_mean;
        var_data[bid * groups + gid] = x_var;
108 109 110 111 112 113 114 115 116

        if (data_layout == DataLayout::kNCHW) {
          for (int cid = 0; cid < number; cid++) {
            for (int imid = 0; imid < imsize; imid++, tmp_x++, iter_y_data++) {
              T val = (tmp_x[0] - x_mean) * var_inv;
              if (scale_data) val *= scale_data[gid * group_size + cid];
              if (bias_data) val += bias_data[gid * group_size + cid];
              iter_y_data[0] = val;
            }
D
Dun 已提交
117
          }
118 119 120 121 122 123 124 125 126 127 128 129 130
        } else {
          for (int cid = 0; cid < number; cid++) {
            tmp_x = x_src_data + cid;
            iter_y_data = y_src_data + cid;
            for (int imid = 0; imid < imsize;
                 imid++, tmp_x += C, iter_y_data += C) {
              T val = (tmp_x[0] - x_mean) * var_inv;
              if (scale_data) val *= scale_data[gid * group_size + cid];
              if (bias_data) val += bias_data[gid * group_size + cid];
              iter_y_data[0] = val;
            }
          }
          iter_y_data = tmp_y + group_size;
D
Dun 已提交
131 132
        }
      }
133 134 135 136 137
      if (data_layout == DataLayout::kNHWC) {
        iter_x_data = x_data + (bid + 1) * C * imsize;
        iter_y_data = y_data + (bid + 1) * C * imsize;
      }
    }
D
Dun 已提交
138 139 140 141 142 143 144
  }
};

template <typename DeviceContext, typename T>
class GroupNormGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
145 146 147
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
D
Dun 已提交
148
    const float epsilon = ctx.Attr<float>("epsilon");
149
    auto* x = ctx.Input<Tensor>("Y");
D
Dun 已提交
150 151
    auto* var = ctx.Input<Tensor>("Variance");
    auto* scale = ctx.Input<Tensor>("Scale");
152
    auto* bias = ctx.Input<Tensor>("Bias");
D
Dun 已提交
153 154 155 156 157 158 159 160 161
    auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto groups = ctx.Attr<int>("groups");

    // init output
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    const auto& x_dims = x->dims();
162 163 164 165
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    const int group_size = (C - 1) / groups + 1;
D
Dun 已提交
166

167
    d_x->mutable_data<T>(ctx.GetPlace());
D
Dun 已提交
168 169 170 171
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = ctx.template device_context<DeviceContext>();

    auto* x_data = x->data<T>();
172
    auto* d_x_data = d_x->data<T>();
D
Dun 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    auto* y_data = d_y->data<T>();
    auto* var_data = var->data<T>();
    T* d_scale_data = nullptr;
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, d_scale, static_cast<T>(0));
      d_scale_data = d_scale->data<T>();
    }
    T* d_bias_data = nullptr;
    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, d_bias, static_cast<T>(0));
      d_bias_data = d_bias->data<T>();
    }

    const T* scale_data = nullptr;
    if (scale) scale_data = scale->data<T>();
190 191
    const T* bias_data = nullptr;
    if (bias) bias_data = bias->data<T>();
D
Dun 已提交
192

193 194
    int imsize = (data_layout == DataLayout::kNCHW ? x_dims[2] * x_dims[3]
                                                   : x_dims[1] * x_dims[2]);
D
Dun 已提交
195 196 197
    auto* iter_x_data = x_data;
    auto* iter_d_x_data = d_x_data;
    auto* iter_y_data = y_data;
198
    for (int bid = 0; bid < x_dims[0]; bid++) {
D
Dun 已提交
199 200 201
      for (int gid = 0; gid < groups; gid++) {
        T x_var = var_data[bid * groups + gid];
        T var_inv = 1.0 / sqrt(x_var + epsilon);
202 203
        int number =
            std::min(group_size, static_cast<int>(C - gid * group_size));
204
        T number_inv = 1.0 / (number * imsize);
205 206 207 208 209 210 211 212
        auto* tmp_x = iter_x_data;
        auto* tmp_y = iter_y_data;
        auto* tmp_d_x = iter_d_x_data;
        auto* x_src_data = iter_x_data;
        auto* y_src_data = iter_y_data;
        auto* iter_x_data_backup = iter_x_data;
        auto* iter_y_data_backup = iter_y_data;
        auto* iter_d_x_data_backup = iter_d_x_data;
213
        T dp_scale = 0, dp_bias = 0;
214 215 216 217 218 219 220 221 222

        if (data_layout == DataLayout::kNCHW) {
          for (int cid = 0; cid < number; cid++) {
            for (int imid = 0; imid < imsize;
                 imid++, iter_x_data++, iter_y_data++) {
              T val = iter_x_data[0];
              if (bias_data) val -= bias_data[gid * group_size + cid];
              T dval = iter_y_data[0];
              dp_scale += val * dval;
223 224
              if (scale_data)
                dp_bias += dval * scale_data[gid * group_size + cid];
225 226 227 228 229 230 231

              if (scale_data && scale_data[gid * group_size + cid] != 0)
                val /= scale_data[gid * group_size + cid];
              if (d_bias_data) d_bias_data[gid * group_size + cid] += dval;
              if (d_scale_data)
                d_scale_data[gid * group_size + cid] += val * dval;
            }
D
Dun 已提交
232 233
          }

234 235 236 237 238 239 240
          for (int cid = 0; cid < number; cid++) {
            for (int imid = 0; imid < imsize;
                 imid++, iter_d_x_data++, tmp_x++, tmp_y++) {
              T v_y = tmp_x[0];
              T dly = tmp_y[0];
              T dss = dp_scale;
              T dbs = dp_bias;
241 242 243
              T v_scale = 1., v_bias = 0.;
              if (scale_data) v_scale = scale_data[gid * group_size + cid];
              if (bias_data) v_bias = bias_data[gid * group_size + cid];
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
              v_y -= v_bias;
              if (v_scale != 0) v_y /= v_scale;
              iter_d_x_data[0] =
                  (dly * v_scale - number_inv * dss * v_y - number_inv * dbs) *
                  var_inv;
            }
          }
        } else {
          for (int cid = 0; cid < number; cid++) {
            iter_x_data = x_src_data + cid;
            iter_y_data = y_src_data + cid;
            for (int imid = 0; imid < imsize;
                 imid++, iter_x_data += C, iter_y_data += C) {
              T val = iter_x_data[0];
              if (bias_data) val -= bias_data[gid * group_size + cid];
              T dval = iter_y_data[0];
              dp_scale += val * dval;
261 262
              if (scale_data)
                dp_bias += dval * scale_data[gid * group_size + cid];
263 264 265 266 267 268 269

              if (scale_data && scale_data[gid * group_size + cid] != 0)
                val /= scale_data[gid * group_size + cid];
              if (d_bias_data) d_bias_data[gid * group_size + cid] += dval;
              if (d_scale_data)
                d_scale_data[gid * group_size + cid] += val * dval;
            }
D
Dun 已提交
270
          }
271 272 273 274 275 276 277 278 279 280 281

          for (int cid = 0; cid < number; cid++) {
            tmp_x = x_src_data + cid;
            tmp_y = y_src_data + cid;
            iter_d_x_data = tmp_d_x + cid;
            for (int imid = 0; imid < imsize;
                 imid++, iter_d_x_data += C, tmp_x += C, tmp_y += C) {
              T v_y = tmp_x[0];
              T dly = tmp_y[0];
              T dss = dp_scale;
              T dbs = dp_bias;
282 283 284
              T v_scale = 1.0, v_bias = 0.;
              if (scale_data) v_scale = scale_data[gid * group_size + cid];
              if (bias_data) v_bias = bias_data[gid * group_size + cid];
285 286 287 288 289 290 291 292 293 294
              v_y -= v_bias;
              if (v_scale != 0) v_y /= v_scale;
              iter_d_x_data[0] =
                  (dly * v_scale - number_inv * dss * v_y - number_inv * dbs) *
                  var_inv;
            }
          }
          iter_x_data = iter_x_data_backup + group_size;
          iter_y_data = iter_y_data_backup + group_size;
          iter_d_x_data = iter_d_x_data_backup + group_size;
D
Dun 已提交
295 296
        }
      }
297 298 299 300 301 302
      if (data_layout == DataLayout::kNHWC) {
        iter_x_data = x_data + (bid + 1) * C * imsize;
        iter_d_x_data = d_x_data + (bid + 1) * C * imsize;
        iter_y_data = y_data + (bid + 1) * C * imsize;
      }
    }
D
Dun 已提交
303 304 305 306 307
  }
};

}  // namespace operators
}  // namespace paddle