roll_op.cc 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/roll_op.h"
S
sunli 已提交
16

17 18
#include <memory>
#include <vector>
S
sunli 已提交
19

20
#include "paddle/fluid/framework/op_version_registry.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace operators {

using framework::Tensor;

class RollOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(X) of RollOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::InvalidArgument(
                          "Output(Out) of RollOp should not be null."));

Y
yaoxuefeng 已提交
39
    auto dims = ctx->Attrs().Get<std::vector<int64_t>>("axis");
40 41
    auto shifts = ctx->Attrs().Get<std::vector<int64_t>>("shifts");

S
sunli 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    if (dims.size() != 0) {
      PADDLE_ENFORCE_EQ(dims.size(), shifts.size(),
                        platform::errors::InvalidArgument(
                            "When dims.size() != 0, dims.size() "
                            "should be equal to "
                            "shifts.size(). But received "
                            "dims.size() = %d, shifts.size() = %d",
                            dims.size(), shifts.size()));
    } else {
      PADDLE_ENFORCE_EQ(shifts.size(), 1,
                        platform::errors::InvalidArgument(
                            "When dims.size() == 0, shifts.size() "
                            "should be equal to 1, But received "
                            "shifts.size() = %d",
                            shifts.size()));
    }
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    auto type = ctx->GetInputsVarType("X")[0];
    if (type == framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class RollGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should be not null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                      platform::errors::InvalidArgument(
                          "Output(X@GRAD) should be not null."));

    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

class RollOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) the input tensor.");
    AddOutput("Out", "(Tensor), the output tensor.");
    AddAttr<std::vector<int64_t>>("shifts",
                                  "The number of places by which the elements "
                                  "of the tensor are shifted.")
        .SetDefault({});
    AddAttr<std::vector<int64_t>>(
Y
yaoxuefeng 已提交
108
        "axis",
109
        "Axis along which to roll. It must have the same size "
S
sunli 已提交
110
        "with shifts or size == 0")
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        .SetDefault({});
    AddComment(R"DOC(
    Roll the tensor along the given dimension(s). 
    Elements that are shifted beyond the last position
    are re-introduced at the first position. If a dimension
    is not specified, the tensor will be flattened before 
    rolling and then restored to the original shape.
    )DOC");
  }
};

template <typename T>
class RollGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("roll_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

137
DECLARE_NO_NEED_BUFFER_VARS_INFERER(RollGradNoNeedBufferVarsInferer, "X");
138 139 140 141 142 143 144 145
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(roll, ops::RollOp, ops::RollOpMaker,
                  ops::RollGradMaker<paddle::framework::OpDesc>,
                  ops::RollGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(roll_grad, ops::RollGradOp,
146
                  ops::RollGradNoNeedBufferVarsInferer);
147 148 149 150 151 152 153 154 155 156
REGISTER_OP_CPU_KERNEL(
    roll, ops::RollKernel<paddle::platform::CPUDeviceContext, float>,
    ops::RollKernel<paddle::platform::CPUDeviceContext, double>,
    ops::RollKernel<paddle::platform::CPUDeviceContext, int>,
    ops::RollKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    roll_grad, ops::RollGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::RollGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::RollGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::RollGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
157 158 159 160 161 162 163 164 165

REGISTER_OP_VERSION(roll)
    .AddCheckpoint(
        R"ROC(
      Upgrade roll add 1 attribute [axis], delete 1 attribute[dims].
    )ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewAttr("axis",
                     "(std::vector<int64_t>) Axis along which to roll. "
S
sunli 已提交
166
                     "It must have the same size with shifts, or size = 0.",
167
                     std::vector<int64_t>())
S
sunli 已提交
168 169 170 171
            .DeleteAttr(
                "dims",
                "(std::vector<int64_t>) Dims along which to roll. "
                "It must have the same size with shifts, or size = 0."));