roll_op.cc 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/roll_op.h"
#include <memory>
#include <vector>

namespace paddle {
namespace operators {

using framework::Tensor;

class RollOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(X) of RollOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::InvalidArgument(
                          "Output(Out) of RollOp should not be null."));

    auto dims = ctx->Attrs().Get<std::vector<int64_t>>("dims");
    auto shifts = ctx->Attrs().Get<std::vector<int64_t>>("shifts");

    PADDLE_ENFORCE_EQ(dims.size(), shifts.size(),
                      platform::errors::InvalidArgument(
                          "Attr(dims).size() should be equl to "
                          "Attr(shifts).size(). But received "
                          "Attr(dims).size() = %d, Attr(shifts).size() = %d",
                          dims.size(), shifts.size()));

    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    auto type = ctx->GetInputsVarType("X")[0];
    if (type == framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class RollGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should be not null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                      platform::errors::InvalidArgument(
                          "Output(X@GRAD) should be not null."));

    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

class RollOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) the input tensor.");
    AddOutput("Out", "(Tensor), the output tensor.");
    AddAttr<std::vector<int64_t>>("shifts",
                                  "The number of places by which the elements "
                                  "of the tensor are shifted.")
        .SetDefault({});
    AddAttr<std::vector<int64_t>>(
        "dims",
        "Axis along which to roll. It must have the same size "
        "with shifts.")
        .SetDefault({});
    AddComment(R"DOC(
    Roll the tensor along the given dimension(s). 
    Elements that are shifted beyond the last position
    are re-introduced at the first position. If a dimension
    is not specified, the tensor will be flattened before 
    rolling and then restored to the original shape.
    )DOC");
  }
};

template <typename T>
class RollGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("roll_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(RollGradNoNeedBufferVarsInference, "X");
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(roll, ops::RollOp, ops::RollOpMaker,
                  ops::RollGradMaker<paddle::framework::OpDesc>,
                  ops::RollGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(roll_grad, ops::RollGradOp,
                  ops::RollGradNoNeedBufferVarsInference);
REGISTER_OP_CPU_KERNEL(
    roll, ops::RollKernel<paddle::platform::CPUDeviceContext, float>,
    ops::RollKernel<paddle::platform::CPUDeviceContext, double>,
    ops::RollKernel<paddle::platform::CPUDeviceContext, int>,
    ops::RollKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    roll_grad, ops::RollGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::RollGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::RollGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::RollGradKernel<paddle::platform::CPUDeviceContext, int64_t>);