api_train_v2.py 3.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4
import paddle.v2 as paddle


def main():
Y
Yu Yang 已提交
5
    paddle.init(use_gpu=False, trainer_count=3)
Y
Yu Yang 已提交
6
    movie_title_dict = paddle.dataset.movielens.get_movie_title_dict()
Y
Refine  
Yu Yang 已提交
7 8 9 10 11
    uid = paddle.layer.data(
        name='user_id',
        type=paddle.data_type.integer_value(
            paddle.dataset.movielens.max_user_id() + 1))
    usr_emb = paddle.layer.embedding(input=uid, size=32)
Y
Yu Yang 已提交
12

Y
Refine  
Yu Yang 已提交
13 14 15 16 17 18 19 20
    usr_gender_id = paddle.layer.data(
        name='gender_id', type=paddle.data_type.integer_value(2))
    usr_gender_emb = paddle.layer.embedding(input=usr_gender_id, size=16)

    usr_age_id = paddle.layer.data(
        name='age_id',
        type=paddle.data_type.integer_value(
            len(paddle.dataset.movielens.age_table)))
Y
Yu Yang 已提交
21
    usr_age_emb = paddle.layer.embedding(input=usr_age_id, size=16)
Y
Refine  
Yu Yang 已提交
22

Y
Yu Yang 已提交
23 24 25 26 27 28 29 30 31
    usr_job_id = paddle.layer.data(
        name='job_id',
        type=paddle.data_type.integer_value(paddle.dataset.movielens.max_job_id(
        ) + 1))

    usr_job_emb = paddle.layer.embedding(input=usr_job_id, size=16)

    usr_combined_features = paddle.layer.fc(
        input=[usr_emb, usr_gender_emb, usr_age_emb, usr_job_emb],
Y
Refine  
Yu Yang 已提交
32 33 34 35 36 37 38 39 40
        size=200,
        act=paddle.activation.Tanh())

    mov_id = paddle.layer.data(
        name='movie_id',
        type=paddle.data_type.integer_value(
            paddle.dataset.movielens.max_movie_id() + 1))
    mov_emb = paddle.layer.embedding(input=mov_id, size=32)

Y
Yu Yang 已提交
41 42 43 44 45 46 47
    mov_categories = paddle.layer.data(
        name='category_id',
        type=paddle.data_type.sparse_binary_vector(
            len(paddle.dataset.movielens.movie_categories())))

    mov_categories_hidden = paddle.layer.fc(input=mov_categories, size=32)

Y
Refine  
Yu Yang 已提交
48 49
    mov_title_id = paddle.layer.data(
        name='movie_title',
Y
Yu Yang 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        type=paddle.data_type.integer_value_sequence(len(movie_title_dict)))
    mov_title_emb = paddle.layer.embedding(input=mov_title_id, size=32)
    mov_title_conv = paddle.networks.sequence_conv_pool(
        input=mov_title_emb, hidden_size=32, context_len=3)

    mov_combined_features = paddle.layer.fc(
        input=[mov_emb, mov_categories_hidden, mov_title_conv],
        size=200,
        act=paddle.activation.Tanh())

    inference = paddle.layer.cos_sim(
        a=usr_combined_features, b=mov_combined_features, size=1, scale=5)
    cost = paddle.layer.regression_cost(
        input=inference,
        label=paddle.layer.data(
            name='score', type=paddle.data_type.dense_vector(1)))

    parameters = paddle.parameters.create(cost)

    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=paddle.optimizer.Adam(
                                     learning_rate=1e-4))

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "Pass %d Batch %d Cost %.2f" % (
                    event.pass_id, event.batch_id, event.cost)

    trainer.train(
        reader=paddle.reader.batched(
            paddle.dataset.movielens.train(), batch_size=256),
        event_handler=event_handler,
        reader_dict={
            'user_id': 0,
            'gender_id': 1,
            'age_id': 2,
            'job_id': 3,
            'movie_id': 4,
            'category_id': 5,
            'movie_title': 6,
            'score': 7
        })
Y
Yu Yang 已提交
94 95 96 97


if __name__ == '__main__':
    main()