test_fc_op.py 5.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
L
Leo Chen 已提交
16
import paddle
T
tensor-tang 已提交
17 18
import numpy as np
from op_test import OpTest
19
import paddle.fluid as fluid
20 21 22
from paddle.fluid import Program, program_guard, core

SEED = 2020
T
tensor-tang 已提交
23 24


25
def fc_refer(matrix, with_bias, with_relu=False):
T
tensor-tang 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38
    in_n, in_c, in_h, in_w = matrix.input.shape
    w_i, w_o = matrix.weights.shape

    x_data = np.reshape(matrix.input, [in_n, in_c * in_h * in_w])
    w_data = np.reshape(matrix.weights, [w_i, w_o])
    b_data = np.reshape(matrix.bias, [1, w_o])
    result = None

    if with_bias:
        result = np.dot(x_data, w_data) + b_data
    else:
        result = np.dot(x_data, w_data)

39 40 41 42
    if with_relu:
        return np.maximum(result, 0)
    else:
        return result
T
tensor-tang 已提交
43 44 45


class MatrixGenerate:
46
    def __init__(self, mb, ic, oc, h, w, bias_dims=2):
T
tensor-tang 已提交
47 48
        self.input = np.random.random((mb, ic, h, w)).astype("float32")
        self.weights = np.random.random((ic * h * w, oc)).astype("float32")
49 50 51 52
        if bias_dims == 2:
            self.bias = np.random.random((1, oc)).astype("float32")
        else:
            self.bias = np.random.random((oc)).astype("float32")
T
tensor-tang 已提交
53 54 55


class TestFCOp(OpTest):
56 57 58 59 60
    def config(self):
        self.with_bias = True
        self.with_relu = True
        self.matrix = MatrixGenerate(1, 10, 15, 3, 3, 2)

T
tensor-tang 已提交
61 62
    def setUp(self):
        self.op_type = "fc"
63
        self.config()
T
tensor-tang 已提交
64 65 66 67 68 69 70 71 72 73

        if self.with_bias:
            self.inputs = {
                'Input': self.matrix.input,
                'W': self.matrix.weights,
                'Bias': self.matrix.bias
            }
        else:
            self.inputs = {'Input': self.matrix.input, 'W': self.matrix.weights}

74 75 76 77 78
        if self.with_relu:
            activation_type = "relu"
        else:
            activation_type = ""
        self.attrs = {'use_mkldnn': False, 'activation_type': activation_type}
T
tensor-tang 已提交
79

80 81 82
        self.outputs = {
            'Out': fc_refer(self.matrix, self.with_bias, self.with_relu)
        }
T
tensor-tang 已提交
83 84 85 86 87

    def test_check_output(self):
        self.check_output()


88 89
class TestFCOpNoBias1(TestFCOp):
    def config(self):
90
        self.with_bias = False
91 92
        self.with_relu = False
        self.matrix = MatrixGenerate(2, 8, 10, 1, 1, 2)
93

T
tensor-tang 已提交
94

95 96 97 98 99
class TestFCOpNoBias2(TestFCOp):
    def config(self):
        self.with_bias = False
        self.with_relu = False
        self.matrix = MatrixGenerate(4, 5, 6, 2, 2, 1)
T
tensor-tang 已提交
100 101


102 103 104 105 106
class TestFCOpNoBias4(TestFCOp):
    def config(self):
        self.with_bias = False
        self.with_relu = False
        self.matrix = MatrixGenerate(1, 32, 64, 3, 3, 1)
T
tensor-tang 已提交
107 108


109 110 111 112 113
class TestFCOpWithBias1(TestFCOp):
    def config(self):
        self.with_bias = True
        self.with_relu = False
        self.matrix = MatrixGenerate(3, 8, 10, 2, 1, 2)
114 115


116 117 118 119 120
class TestFCOpWithBias2(TestFCOp):
    def config(self):
        self.with_bias = True
        self.with_relu = True
        self.matrix = MatrixGenerate(4, 5, 6, 2, 2, 1)
121 122


123 124 125 126 127
class TestFCOpWithBias3(TestFCOp):
    def config(self):
        self.with_bias = True
        self.with_relu = True
        self.matrix = MatrixGenerate(1, 64, 32, 3, 3, 1)
128 129


130 131 132 133 134 135 136
class TestFCOpWithPadding(TestFCOp):
    def config(self):
        self.with_bias = True
        self.with_relu = True
        self.matrix = MatrixGenerate(1, 4, 3, 128, 128, 2)


137 138
class TestFcOp_NumFlattenDims_NegOne(unittest.TestCase):
    def test_api(self):
L
Leo Chen 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        def run_program(num_flatten_dims):
            paddle.manual_seed(SEED)
            startup_program = Program()
            main_program = Program()

            with program_guard(main_program, startup_program):
                input = np.random.random([2, 2, 25]).astype("float32")
                x = fluid.layers.data(
                    name="x",
                    shape=[2, 2, 25],
                    append_batch_size=False,
                    dtype="float32")

                out = fluid.layers.fc(input=x,
                                      size=1,
                                      num_flatten_dims=num_flatten_dims)

            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            exe = fluid.Executor(place=place)
            exe.run(startup_program)
            out = exe.run(main_program, feed={"x": input}, fetch_list=[out])

        res_1 = run_program(-1)
        res_2 = run_program(2)
        self.assertTrue(np.array_equal(res_1, res_2))
165 166


167
class TestFCOpError(unittest.TestCase):
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    def test_errors(self):
        with program_guard(Program(), Program()):
            input_data = np.random.random((2, 4)).astype("float32")

            def test_Variable():
                # the input type must be Variable
                fluid.layers.fc(input=input_data, size=1)

            self.assertRaises(TypeError, test_Variable)

            def test_input_list():
                # each of input(list) must be Variable
                fluid.layers.fc(input=[input_data], size=1)

            self.assertRaises(TypeError, test_input_list)

            def test_type():
                # dtype must be float32 or float64
                x2 = fluid.layers.data(name='x2', shape=[4], dtype='int32')
                fluid.layers.fc(input=x2, size=1)

            self.assertRaises(TypeError, test_type)

191 192 193 194
            # The input dtype of fc can be float16 in GPU, test for warning
            x3 = fluid.layers.data(name='x3', shape=[4], dtype='float16')
            fluid.layers.fc(input=x3, size=1)

195

T
tensor-tang 已提交
196 197
if __name__ == "__main__":
    unittest.main()