test_fc_op.py 5.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
18
import paddle.fluid as fluid
19 20 21
from paddle.fluid import Program, program_guard, core

SEED = 2020
T
tensor-tang 已提交
22 23


24
def fc_refer(matrix, with_bias, with_relu=False):
T
tensor-tang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37
    in_n, in_c, in_h, in_w = matrix.input.shape
    w_i, w_o = matrix.weights.shape

    x_data = np.reshape(matrix.input, [in_n, in_c * in_h * in_w])
    w_data = np.reshape(matrix.weights, [w_i, w_o])
    b_data = np.reshape(matrix.bias, [1, w_o])
    result = None

    if with_bias:
        result = np.dot(x_data, w_data) + b_data
    else:
        result = np.dot(x_data, w_data)

38 39 40 41
    if with_relu:
        return np.maximum(result, 0)
    else:
        return result
T
tensor-tang 已提交
42 43 44


class MatrixGenerate:
45
    def __init__(self, mb, ic, oc, h, w, bias_dims=2):
T
tensor-tang 已提交
46 47
        self.input = np.random.random((mb, ic, h, w)).astype("float32")
        self.weights = np.random.random((ic * h * w, oc)).astype("float32")
48 49 50 51
        if bias_dims == 2:
            self.bias = np.random.random((1, oc)).astype("float32")
        else:
            self.bias = np.random.random((oc)).astype("float32")
T
tensor-tang 已提交
52 53 54


class TestFCOp(OpTest):
55 56 57 58 59
    def config(self):
        self.with_bias = True
        self.with_relu = True
        self.matrix = MatrixGenerate(1, 10, 15, 3, 3, 2)

T
tensor-tang 已提交
60 61
    def setUp(self):
        self.op_type = "fc"
62
        self.config()
T
tensor-tang 已提交
63 64 65 66 67 68 69 70 71 72

        if self.with_bias:
            self.inputs = {
                'Input': self.matrix.input,
                'W': self.matrix.weights,
                'Bias': self.matrix.bias
            }
        else:
            self.inputs = {'Input': self.matrix.input, 'W': self.matrix.weights}

73 74 75 76 77
        if self.with_relu:
            activation_type = "relu"
        else:
            activation_type = ""
        self.attrs = {'use_mkldnn': False, 'activation_type': activation_type}
T
tensor-tang 已提交
78

79 80 81
        self.outputs = {
            'Out': fc_refer(self.matrix, self.with_bias, self.with_relu)
        }
T
tensor-tang 已提交
82 83 84 85 86

    def test_check_output(self):
        self.check_output()


87 88
class TestFCOpNoBias1(TestFCOp):
    def config(self):
89
        self.with_bias = False
90 91
        self.with_relu = False
        self.matrix = MatrixGenerate(2, 8, 10, 1, 1, 2)
92

T
tensor-tang 已提交
93

94 95 96 97 98
class TestFCOpNoBias2(TestFCOp):
    def config(self):
        self.with_bias = False
        self.with_relu = False
        self.matrix = MatrixGenerate(4, 5, 6, 2, 2, 1)
T
tensor-tang 已提交
99 100


101 102 103 104 105
class TestFCOpNoBias4(TestFCOp):
    def config(self):
        self.with_bias = False
        self.with_relu = False
        self.matrix = MatrixGenerate(1, 32, 64, 3, 3, 1)
T
tensor-tang 已提交
106 107


108 109 110 111 112
class TestFCOpWithBias1(TestFCOp):
    def config(self):
        self.with_bias = True
        self.with_relu = False
        self.matrix = MatrixGenerate(3, 8, 10, 2, 1, 2)
113 114


115 116 117 118 119
class TestFCOpWithBias2(TestFCOp):
    def config(self):
        self.with_bias = True
        self.with_relu = True
        self.matrix = MatrixGenerate(4, 5, 6, 2, 2, 1)
120 121


122 123 124 125 126
class TestFCOpWithBias3(TestFCOp):
    def config(self):
        self.with_bias = True
        self.with_relu = True
        self.matrix = MatrixGenerate(1, 64, 32, 3, 3, 1)
127 128


129 130 131 132 133 134 135
class TestFCOpWithPadding(TestFCOp):
    def config(self):
        self.with_bias = True
        self.with_relu = True
        self.matrix = MatrixGenerate(1, 4, 3, 128, 128, 2)


136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
class TestFcOp_NumFlattenDims_NegOne(unittest.TestCase):
    def test_api(self):
        startup_program = Program()
        main_program = Program()
        startup_program.random_seed = SEED
        main_program.random_seed = SEED

        with program_guard(main_program, startup_program):
            input = np.random.random([2, 2, 25]).astype("float32")
            x = fluid.layers.data(
                name="x",
                shape=[2, 2, 25],
                append_batch_size=False,
                dtype="float32")

            out_1 = fluid.layers.fc(input=x, size=1, num_flatten_dims=-1)
            out_2 = fluid.layers.fc(input=x, size=1, num_flatten_dims=2)

        place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)
        exe = fluid.Executor(place=place)
        exe.run(startup_program)
        res_1, res_2 = exe.run(main_program,
                               feed={"x": input},
                               fetch_list=[out_1, out_2])

        assert np.array_equal(res_1, res_2)


165
class TestFCOpError(unittest.TestCase):
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def test_errors(self):
        with program_guard(Program(), Program()):
            input_data = np.random.random((2, 4)).astype("float32")

            def test_Variable():
                # the input type must be Variable
                fluid.layers.fc(input=input_data, size=1)

            self.assertRaises(TypeError, test_Variable)

            def test_input_list():
                # each of input(list) must be Variable
                fluid.layers.fc(input=[input_data], size=1)

            self.assertRaises(TypeError, test_input_list)

            def test_type():
                # dtype must be float32 or float64
                x2 = fluid.layers.data(name='x2', shape=[4], dtype='int32')
                fluid.layers.fc(input=x2, size=1)

            self.assertRaises(TypeError, test_type)

189 190 191 192
            # The input dtype of fc can be float16 in GPU, test for warning
            x3 = fluid.layers.data(name='x3', shape=[4], dtype='float16')
            fluid.layers.fc(input=x3, size=1)

193

T
tensor-tang 已提交
194 195
if __name__ == "__main__":
    unittest.main()