mrc.py 16.7 KB
Newer Older
T
tianxin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Model for classifier."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
C
chenxuyi 已提交
19 20
from __future__ import unicode_literals
from __future__ import absolute_import
T
tianxin 已提交
21 22 23 24 25 26

import time
import numpy as np
import os
import math
import json
C
chenxuyi 已提交
27
import logging
T
tianxin 已提交
28 29 30 31 32 33 34 35 36 37 38 39
import collections
import six

from scipy.stats import pearsonr, spearmanr
from six.moves import xrange
import paddle.fluid as fluid

from utils.cmrc2018_eval import eval_file
from model.ernie import ErnieModel
import tokenization


C
chenxuyi 已提交
40 41
log = logging.getLogger(__name__)

T
tianxin 已提交
42
def create_model(args, pyreader_name, ernie_config, is_training):
43 44 45 46
    src_ids = fluid.layers.data(name='1', shape=[-1, args.max_seq_len, 1], dtype='int64')
    pos_ids = fluid.layers.data(name='2', shape=[-1, args.max_seq_len, 1], dtype='int64')
    sent_ids= fluid.layers.data(name='3', shape=[-1, args.max_seq_len, 1], dtype='int64')
    task_ids= fluid.layers.data(name='4', shape=[-1, args.max_seq_len, 1], dtype='int64')
C
chenxuyi 已提交
47
    input_mask = fluid.layers.data(name='5', shape=[-1, args.max_seq_len, 1], dtype='float32')
48 49 50 51 52 53 54
    start_positions = fluid.layers.data(name='6', shape=[-1, 1], dtype='int64')
    end_positions = fluid.layers.data(name='7', shape=[-1, 1], dtype='int64')
    unique_id = fluid.layers.data(name='8', shape=[-1, 1], dtype='int64')

    pyreader = fluid.io.DataLoader.from_generator(feed_list=[
        src_ids, sent_ids, pos_ids, task_ids, input_mask, start_positions,
        end_positions, unique_id], capacity=50, iterable=False)
T
tianxin 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    ernie = ErnieModel(
        src_ids=src_ids,
        position_ids=pos_ids,
        sentence_ids=sent_ids,
        task_ids=task_ids,
        input_mask=input_mask,
        config=ernie_config,
        use_fp16=args.use_fp16)

    enc_out = ernie.get_sequence_output()
    enc_out = fluid.layers.dropout(
        x=enc_out, dropout_prob=0.1, dropout_implementation="upscale_in_train")

    logits = fluid.layers.fc(
        input=enc_out,
        size=2,
        num_flatten_dims=2,
        param_attr=fluid.ParamAttr(
            name="cls_mrc_out_w",
            initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
        bias_attr=fluid.ParamAttr(
            name="cls_mrc_out_b", initializer=fluid.initializer.Constant(0.)))

    logits = fluid.layers.transpose(x=logits, perm=[2, 0, 1])
    start_logits, end_logits = fluid.layers.unstack(x=logits, axis=0)

    batch_ones = fluid.layers.fill_constant_batch_size_like(
        input=start_logits, dtype='int64', shape=[1], value=1)
    num_seqs = fluid.layers.reduce_sum(input=batch_ones)

    def compute_loss(logits, positions):
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=logits, label=positions)
        loss = fluid.layers.mean(x=loss)
        return loss

    start_loss = compute_loss(start_logits, start_positions)
    end_loss = compute_loss(end_logits, end_positions)
    loss = (start_loss + end_loss) / 2.0
    if args.use_fp16 and args.loss_scaling > 1.0:
        loss *= args.loss_scaling

    graph_vars = {
        "loss": loss,
        "num_seqs": num_seqs,
        "unique_id": unique_id,
        "start_logits": start_logits,
        "end_logits": end_logits
    }

    for k, v in graph_vars.items():
        v.persistable = True

    return pyreader, graph_vars


def evaluate(exe,
             test_program,
             test_pyreader,
             graph_vars,
             eval_phase,
             tag_num=None,
             dev_count=1,
             examples=None,
             features=None,
             args=None):
    if eval_phase == "train":
        train_fetch_list = [graph_vars["loss"].name]
        if "learning_rate" in graph_vars:
            train_fetch_list.append(graph_vars["learning_rate"].name)
        outputs = exe.run(fetch_list=train_fetch_list)
        ret = {"loss": np.mean(outputs[0])}
        if "learning_rate" in graph_vars:
            ret["learning_rate"] = float(outputs[1][0])
        return ret

    output_dir = args.checkpoints
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    output_prediction_file = os.path.join(output_dir,
                                          eval_phase + "_predictions.json")
    output_nbest_file = os.path.join(output_dir,
                                     eval_phase + "_nbest_predictions.json")

    RawResult = collections.namedtuple(
        "RawResult", ["unique_id", "start_logits", "end_logits"])

    test_pyreader.start()
    all_results = []
    time_begin = time.time()

    fetch_list = [
        graph_vars["unique_id"].name, graph_vars["start_logits"].name,
        graph_vars["end_logits"].name, graph_vars["num_seqs"].name
    ]
    while True:
        try:
            np_unique_ids, np_start_logits, np_end_logits, np_num_seqs = exe.run(
                program=test_program, fetch_list=fetch_list)
            for idx in range(np_unique_ids.shape[0]):
                if len(all_results) % 1000 == 0:
C
chenxuyi 已提交
157
                    log.info("Processing example: %d" % len(all_results))
T
tianxin 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
                unique_id = int(np_unique_ids[idx])
                start_logits = [float(x) for x in np_start_logits[idx].flat]
                end_logits = [float(x) for x in np_end_logits[idx].flat]
                all_results.append(
                    RawResult(
                        unique_id=unique_id,
                        start_logits=start_logits,
                        end_logits=end_logits))

        except fluid.core.EOFException:
            test_pyreader.reset()
            break

    write_predictions(examples, features, all_results, args.n_best_size,
                      args.max_answer_length, args.do_lower_case,
                      output_prediction_file, output_nbest_file)

    if eval_phase.find("dev") != -1:
        data_file = args.dev_set
    elif eval_phase.find("test") != -1:
        data_file = args.test_set

    em, f1, avg, total = eval_file(data_file, output_prediction_file)

    time_end = time.time()
    elapsed_time = time_end - time_begin

C
chenxuyi 已提交
185
    log.info(
T
tianxin 已提交
186 187 188 189 190 191 192 193
        "[%s evaluation] em: %f, f1: %f, avg: %f, questions: %d, elapsed time: %f"
        % (eval_phase, em, f1, avg, total, elapsed_time))


def write_predictions(all_examples, all_features, all_results, n_best_size,
                      max_answer_length, do_lower_case, output_prediction_file,
                      output_nbest_file):
    """Write final predictions to the json file and log-odds of null if needed."""
C
chenxuyi 已提交
194 195
    log.info("Writing predictions to: %s" % (output_prediction_file))
    log.info("Writing nbest to: %s" % (output_nbest_file))
T
tianxin 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453

    example_index_to_features = collections.defaultdict(list)
    for feature in all_features:
        example_index_to_features[feature.example_index].append(feature)

    unique_id_to_result = {}
    for result in all_results:
        unique_id_to_result[result.unique_id] = result

    _PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "PrelimPrediction", [
            "feature_index", "start_index", "end_index", "start_logit",
            "end_logit"
        ])

    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()

    for (example_index, example) in enumerate(all_examples):
        features = example_index_to_features[example_index]

        prelim_predictions = []
        # keep track of the minimum score of null start+end of position 0
        for (feature_index, feature) in enumerate(features):
            result = unique_id_to_result[feature.unique_id]
            start_indexes = _get_best_indexes(result.start_logits, n_best_size)
            end_indexes = _get_best_indexes(result.end_logits, n_best_size)

            for start_index in start_indexes:
                for end_index in end_indexes:
                    # We could hypothetically create invalid predictions, e.g., predict
                    # that the start of the span is in the question. We throw out all
                    # invalid predictions.
                    if start_index >= len(feature.tokens):
                        continue
                    if end_index >= len(feature.tokens):
                        continue
                    if start_index not in feature.token_to_orig_map:
                        continue
                    if end_index not in feature.token_to_orig_map:
                        continue
                    if not feature.token_is_max_context.get(start_index, False):
                        continue
                    if end_index < start_index:
                        continue
                    length = end_index - start_index + 1
                    if length > max_answer_length:
                        continue
                    prelim_predictions.append(
                        _PrelimPrediction(
                            feature_index=feature_index,
                            start_index=start_index,
                            end_index=end_index,
                            start_logit=result.start_logits[start_index],
                            end_logit=result.end_logits[end_index]))

        prelim_predictions = sorted(
            prelim_predictions,
            key=lambda x: (x.start_logit + x.end_logit),
            reverse=True)

        _NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
            "NbestPrediction", ["text", "start_logit", "end_logit"])

        seen_predictions = {}
        nbest = []
        for pred in prelim_predictions:
            if len(nbest) >= n_best_size:
                break
            feature = features[pred.feature_index]
            if pred.start_index > 0:  # this is a non-null prediction
                tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1
                                                              )]
                orig_doc_start = feature.token_to_orig_map[pred.start_index]
                orig_doc_end = feature.token_to_orig_map[pred.end_index]
                orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end +
                                                                 1)]
                tok_text = " ".join(tok_tokens)

                # De-tokenize WordPieces that have been split off.
                tok_text = tok_text.replace(" ##", "")
                tok_text = tok_text.replace("##", "")

                # Clean whitespace
                tok_text = tok_text.strip()
                tok_text = " ".join(tok_text.split())
                orig_text = "".join(orig_tokens)

                final_text = get_final_text(tok_text, orig_text, do_lower_case)
                if final_text in seen_predictions:
                    continue

                seen_predictions[final_text] = True
            else:
                final_text = ""
                seen_predictions[final_text] = True

            nbest.append(
                _NbestPrediction(
                    text=final_text,
                    start_logit=pred.start_logit,
                    end_logit=pred.end_logit))

        # In very rare edge cases we could have no valid predictions. So we
        # just create a nonce prediction in this case to avoid failure.
        if not nbest:
            nbest.append(
                _NbestPrediction(
                    text="empty", start_logit=0.0, end_logit=0.0))

        total_scores = []
        best_non_null_entry = None
        for entry in nbest:
            total_scores.append(entry.start_logit + entry.end_logit)

        probs = _compute_softmax(total_scores)

        nbest_json = []
        for (i, entry) in enumerate(nbest):
            output = collections.OrderedDict()
            output["text"] = entry.text
            output["probability"] = probs[i]
            output["start_logit"] = entry.start_logit
            output["end_logit"] = entry.end_logit
            nbest_json.append(output)

        assert len(nbest_json) >= 1

        all_predictions[example.qas_id] = nbest_json[0]["text"]
        all_nbest_json[example.qas_id] = nbest_json

    with open(output_prediction_file, "w") as writer:
        writer.write(json.dumps(all_predictions, indent=4) + "\n")

    with open(output_nbest_file, "w") as writer:
        writer.write(json.dumps(all_nbest_json, indent=4) + "\n")


def get_final_text(pred_text, orig_text, do_lower_case):
    """Project the tokenized prediction back to the original text."""

    # When we created the data, we kept track of the alignment between original
    # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
    # now `orig_text` contains the span of our original text corresponding to the
    # span that we predicted.
    #
    # However, `orig_text` may contain extra characters that we don't want in
    # our prediction.
    #
    # For example, let's say:
    #   pred_text = steve smith
    #   orig_text = Steve Smith's
    #
    # We don't want to return `orig_text` because it contains the extra "'s".
    #
    # We don't want to return `pred_text` because it's already been normalized
    # (the SQuAD eval script also does punctuation stripping/lower casing but
    # our tokenizer does additional normalization like stripping accent
    # characters).
    #
    # What we really want to return is "Steve Smith".
    #
    # Therefore, we have to apply a semi-complicated alignment heruistic between
    # `pred_text` and `orig_text` to get a character-to-charcter alignment. This
    # can fail in certain cases in which case we just return `orig_text`.

    def _strip_spaces(text):
        ns_chars = []
        ns_to_s_map = collections.OrderedDict()
        for (i, c) in enumerate(text):
            if c == " ":
                continue
            ns_to_s_map[len(ns_chars)] = i
            ns_chars.append(c)
        ns_text = "".join(ns_chars)
        return (ns_text, ns_to_s_map)

    # We first tokenize `orig_text`, strip whitespace from the result
    # and `pred_text`, and check if they are the same length. If they are
    # NOT the same length, the heuristic has failed. If they are the same
    # length, we assume the characters are one-to-one aligned.
    tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case)

    tok_text = " ".join(tokenizer.tokenize(orig_text))

    start_position = tok_text.find(pred_text)
    if start_position == -1:
        return orig_text
    end_position = start_position + len(pred_text) - 1

    (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
    (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)

    if len(orig_ns_text) != len(tok_ns_text):
        return orig_text

    # We then project the characters in `pred_text` back to `orig_text` using
    # the character-to-character alignment.
    tok_s_to_ns_map = {}
    for (i, tok_index) in six.iteritems(tok_ns_to_s_map):
        tok_s_to_ns_map[tok_index] = i

    orig_start_position = None
    if start_position in tok_s_to_ns_map:
        ns_start_position = tok_s_to_ns_map[start_position]
        if ns_start_position in orig_ns_to_s_map:
            orig_start_position = orig_ns_to_s_map[ns_start_position]

    if orig_start_position is None:
        return orig_text

    orig_end_position = None
    if end_position in tok_s_to_ns_map:
        ns_end_position = tok_s_to_ns_map[end_position]
        if ns_end_position in orig_ns_to_s_map:
            orig_end_position = orig_ns_to_s_map[ns_end_position]

    if orig_end_position is None:
        return orig_text

    output_text = orig_text[orig_start_position:(orig_end_position + 1)]
    return output_text


def _get_best_indexes(logits, n_best_size):
    """Get the n-best logits from a list."""
    index_and_score = sorted(
        enumerate(logits), key=lambda x: x[1], reverse=True)

    best_indexes = []
    for i in range(len(index_and_score)):
        if i >= n_best_size:
            break
        best_indexes.append(index_and_score[i][0])
    return best_indexes


def _compute_softmax(scores):
    """Compute softmax probability over raw logits."""
    if not scores:
        return []

    max_score = None
    for score in scores:
        if max_score is None or score > max_score:
            max_score = score

    exp_scores = []
    total_sum = 0.0
    for score in scores:
        x = math.exp(score - max_score)
        exp_scores.append(x)
        total_sum += x

    probs = []
    for score in exp_scores:
        probs.append(score / total_sum)
    return probs