提交 990e578a 编写于 作者: F Filip Hlásek

Merge remote-tracking branch 'upstream/master'

/**
* @file
* @brief Implementation of [Jarvis’s](https://en.wikipedia.org/wiki/Gift_wrapping_algorithm) algorithm.
*
* @details
* Given a set of points in the plane. the convex hull of the set
* is the smallest convex polygon that contains all the points of it.
*
* ### Algorithm
* The idea of Jarvis’s Algorithm is simple, we start from the leftmost point
* (or point with minimum x coordinate value) and we
* keep wrapping points in counterclockwise direction.
*
* The idea is to use orientation() here. Next point is selected as the
* point that beats all other points at counterclockwise orientation, i.e.,
* next point is q if for any other point r,
* we have “orientation(p, q, r) = counterclockwise”.
*
* For Example,
* If points = {{0, 3}, {2, 2}, {1, 1}, {2, 1},
{3, 0}, {0, 0}, {3, 3}};
*
* then the convex hull is
* (0, 3), (0, 0), (3, 0), (3, 3)
*
* @author [Rishabh Agarwal](https://github.com/rishabh-997)
*/
#include <vector>
#include <cassert>
#include <iostream>
/**
* @namespace geometry
* @brief Geometry algorithms
*/
namespace geometry {
/**
* @namespace jarvis
* @brief Functions for [Jarvis’s](https://en.wikipedia.org/wiki/Gift_wrapping_algorithm) algorithm
*/
namespace jarvis {
/**
* Structure defining the x and y co-ordinates of the given
* point in space
*/
struct Point {
int x, y;
};
/**
* Class which can be called from main and is globally available
* throughout the code
*/
class Convexhull {
std::vector<Point> points;
int size;
public:
/**
* Constructor of given class
*
* @param pointList list of all points in the space
* @param n number of points in space
*/
explicit Convexhull(const std::vector<Point> &pointList) {
points = pointList;
size = points.size();
}
/**
* Creates convex hull of a set of n points.
* There must be 3 points at least for the convex hull to exist
*
* @returns an vector array containing points in space
* which enclose all given points thus forming a hull
*/
std::vector<Point> getConvexHull() const {
// Initialize Result
std::vector<Point> hull;
// Find the leftmost point
int leftmost_point = 0;
for (int i = 1; i < size; i++) {
if (points[i].x < points[leftmost_point].x) {
leftmost_point = i;
}
}
// Start from leftmost point, keep moving counterclockwise
// until reach the start point again. This loop runs O(h)
// times where h is number of points in result or output.
int p = leftmost_point, q = 0;
do {
// Add current point to result
hull.push_back(points[p]);
// Search for a point 'q' such that orientation(p, x, q)
// is counterclockwise for all points 'x'. The idea
// is to keep track of last visited most counter clock-
// wise point in q. If any point 'i' is more counter clock-
// wise than q, then update q.
q = (p + 1) % size;
for (int i = 0; i < size; i++) {
// If i is more counterclockwise than current q, then
// update q
if (orientation(points[p], points[i], points[q]) == 2) {
q = i;
}
}
// Now q is the most counterclockwise with respect to p
// Set p as q for next iteration, so that q is added to
// result 'hull'
p = q;
} while (p != leftmost_point); // While we don't come to first point
return hull;
}
/**
* This function returns the geometric orientation for the three points
* in a space, ie, whether they are linear ir clockwise or
* anti-clockwise
* @param p first point selected
* @param q adjacent point for q
* @param r adjacent point for q
*
* @returns 0 -> Linear
* @returns 1 -> Clock Wise
* @returns 2 -> Anti Clock Wise
*/
static int orientation(const Point &p, const Point &q, const Point &r) {
int val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
if (val == 0) {
return 0;
}
return (val > 0) ? 1 : 2;
}
};
} // namespace jarvis
} // namespace geometry
/**
* Test function
* @returns void
*/
static void test() {
std::vector<geometry::jarvis::Point> points = {{0, 3},
{2, 2},
{1, 1},
{2, 1},
{3, 0},
{0, 0},
{3, 3}
};
geometry::jarvis::Convexhull hull(points);
std::vector<geometry::jarvis::Point> actualPoint;
actualPoint = hull.getConvexHull();
std::vector<geometry::jarvis::Point> expectedPoint = {{0, 3},
{0, 0},
{3, 0},
{3, 3}};
for (int i = 0; i < expectedPoint.size(); i++) {
assert(actualPoint[i].x == expectedPoint[i].x);
assert(actualPoint[i].y == expectedPoint[i].y);
}
std::cout << "Test implementations passed!\n";
}
/** Driver Code */
int main() {
test();
return 0;
}
......@@ -4,77 +4,84 @@
#include <iostream>
#include <vector>
#include <stack>
using namespace std;
/**
* Iterative function/method to print graph:
* @param a[] : array of vectors (2D)
* @param V : vertices
* @param a adjacency list representation of the graph
* @param V number of vertices
* @return void
**/
void print(vector<int> a[], int V) {
void print(const std::vector< std::vector<int> > &a, int V) {
for (int i = 0; i < V; i++) {
if (!a[i].empty())
cout << "i=" << i << "-->";
for (int j = 0; j < a[i].size(); j++) cout << a[i][j] << " ";
if (!a[i].empty())
cout << endl;
if (!a[i].empty()) {
std::cout << "i=" << i << "-->";
}
for (int j : a[i]) {
std::cout << j << " ";
}
if (!a[i].empty()) {
std::cout << std::endl;
}
}
}
/**
* //Recursive function/method to push vertices into stack passed as parameter:
* @param v : vertices
* @param &st : stack passed by reference
* @param vis[] : array to keep track of visited nodes (boolean type)
* @param adj[] : array of vectors to represent graph
* @param v vertices
* @param st stack passed by reference
* @param vis array to keep track of visited nodes (boolean type)
* @param adj adjacency list representation of the graph
* @return void
**/
void push_vertex(int v, stack<int> &st, bool vis[], vector<int> adj[]) {
vis[v] = true;
void push_vertex(int v, std::stack<int> *st, std::vector<bool> *vis, const std::vector< std::vector<int> > &adj) {
(*vis)[v] = true;
for (auto i = adj[v].begin(); i != adj[v].end(); i++) {
if (vis[*i] == false)
if ((*vis)[*i] == false) {
push_vertex(*i, st, vis, adj);
}
}
st.push(v);
st->push(v);
}
/**
* //Recursive function/method to implement depth first traversal(dfs):
* @param v : vertices
* @param vis[] : array to keep track of visited nodes (boolean type)
* @param grev[] : graph with reversed edges
* @param v vertices
* @param vis array to keep track of visited nodes (boolean type)
* @param grev graph with reversed edges
* @return void
**/
void dfs(int v, bool vis[], vector<int> grev[]) {
vis[v] = true;
void dfs(int v, std::vector<bool> *vis, const std::vector< std::vector<int> > &grev) {
(*vis)[v] = true;
// cout<<v<<" ";
for (auto i = grev[v].begin(); i != grev[v].end(); i++) {
if (vis[*i] == false)
if ((*vis)[*i] == false) {
dfs(*i, vis, grev);
}
}
}
// function/method to implement Kosaraju's Algorithm:
/**
* Info about the method
* @param V : vertices in graph
* @param adj[] : array of vectors that represent a graph (adjacency list/array)
* @param V vertices in graph
* @param adj array of vectors that represent a graph (adjacency list/array)
* @return int ( 0, 1, 2..and so on, only unsigned values as either there can be
no SCCs i.e. none(0) or there will be x no. of SCCs (x>0)) i.e. it returns the
count of (number of) strongly connected components (SCCs) in the graph.
(variable 'count_scc' within function)
**/
int kosaraju(int V, vector<int> adj[]) {
bool vis[V] = {};
stack<int> st;
int kosaraju(int V, const std::vector< std::vector<int> > &adj) {
std::vector<bool> vis(V, false);
std::stack<int> st;
for (int v = 0; v < V; v++) {
if (vis[v] == false)
push_vertex(v, st, vis, adj);
if (vis[v] == false) {
push_vertex(v, &st, &vis, adj);
}
}
// making new graph (grev) with reverse edges as in adj[]:
vector<int> grev[V];
std::vector< std::vector<int> > grev(V);
for (int i = 0; i < V + 1; i++) {
for (auto j = adj[i].begin(); j != adj[i].end(); j++) {
grev[*j].push_back(i);
......@@ -89,7 +96,7 @@ int kosaraju(int V, vector<int> adj[]) {
int t = st.top();
st.pop();
if (vis[t] == false) {
dfs(t, vis, grev);
dfs(t, &vis, grev);
count_scc++;
}
}
......@@ -101,21 +108,21 @@ int kosaraju(int V, vector<int> adj[]) {
// All critical/corner cases have been taken care of.
// Input your required values: (not hardcoded)
int main() {
int t;
cin >> t;
int t = 0;
std::cin >> t;
while (t--) {
int a, b; // a->number of nodes, b->directed edges.
cin >> a >> b;
int m, n;
vector<int> adj[a + 1];
int a = 0, b = 0; // a->number of nodes, b->directed edges.
std::cin >> a >> b;
int m = 0, n = 0;
std::vector< std::vector<int> > adj(a + 1);
for (int i = 0; i < b; i++) // take total b inputs of 2 vertices each
// required to form an edge.
{
cin >> m >> n; // take input m,n denoting edge from m->n.
std::cin >> m >> n; // take input m,n denoting edge from m->n.
adj[m].push_back(n);
}
// pass number of nodes and adjacency array as parameters to function:
cout << kosaraju(a, adj) << endl;
std::cout << kosaraju(a, adj) << std::endl;
}
return 0;
}
#include <iostream>
#include <vector>
#include <algorithm>
#include <array>
//#include <boost/multiprecision/cpp_int.hpp>
// using namespace boost::multiprecision;
const int mx = 1e6 + 5;
const long int inf = 2e9;
typedef long long ll;
#define rep(i, n) for (i = 0; i < n; i++)
#define repp(i, a, b) for (i = a; i <= b; i++)
#define pii pair<int, int>
#define vpii vector<pii>
#define vi vector<int>
#define vll vector<ll>
#define r(x) scanf("%d", &x)
#define rs(s) scanf("%s", s)
#define gc getchar_unlocked
#define pc putchar_unlocked
#define mp make_pair
#define pb push_back
#define lb lower_bound
#define ub upper_bound
#define endl "\n"
#define fast \
ios_base::sync_with_stdio(false); \
cin.tie(NULL); \
cout.tie(NULL);
using namespace std;
void in(int &x) {
register int c = gc();
x = 0;
int neg = 0;
for (; ((c < 48 || c > 57) && c != '-'); c = gc())
;
if (c == '-') {
neg = 1;
c = gc();
}
for (; c > 47 && c < 58; c = gc()) {
x = (x << 1) + (x << 3) + c - 48;
}
if (neg)
x = -x;
}
void out(int n) {
int N = n, rev, count = 0;
rev = N;
if (N == 0) {
pc('0');
return;
}
while ((rev % 10) == 0) {
count++;
rev /= 10;
}
rev = 0;
while (N != 0) {
rev = (rev << 3) + (rev << 1) + N % 10;
N /= 10;
}
while (rev != 0) {
pc(rev % 10 + '0');
rev /= 10;
}
while (count--) pc('0');
}
ll parent[mx], arr[mx], node, edge;
vector<pair<ll, pair<ll, ll>>> v;
using ll = int64_t;
std::array<ll, mx> parent;
ll node, edge;
std::vector<std::pair<ll, std::pair<ll, ll>>> edges;
void initial() {
int i;
rep(i, node + edge) parent[i] = i;
for (int i = 0; i < node + edge; ++i) {
parent[i] = i;
}
}
int root(int i) {
while (parent[i] != i) {
parent[i] = parent[parent[i]];
......@@ -75,41 +23,42 @@ int root(int i) {
}
return i;
}
void join(int x, int y) {
int root_x = root(x); // Disjoint set union by rank
int root_y = root(y);
parent[root_x] = root_y;
}
ll kruskal() {
ll mincost = 0, i, x, y;
rep(i, edge) {
x = v[i].second.first;
y = v[i].second.second;
ll mincost = 0;
for (int i = 0; i < edge; ++i) {
ll x = edges[i].second.first;
ll y = edges[i].second.second;
if (root(x) != root(y)) {
mincost += v[i].first;
mincost += edges[i].first;
join(x, y);
}
}
return mincost;
}
int main() {
fast;
while (1) {
int i, j, from, to, cost, totalcost = 0;
cin >> node >> edge; // Enter the nodes and edges
if (node == 0 && edge == 0)
while (true) {
int from = 0, to = 0, cost = 0, totalcost = 0;
std::cin >> node >> edge; // Enter the nodes and edges
if (node == 0 && edge == 0) {
break; // Enter 0 0 to break out
}
initial(); // Initialise the parent array
rep(i, edge) {
cin >> from >> to >> cost;
v.pb(mp(cost, mp(from, to)));
for (int i = 0; i < edge; ++i) {
std::cin >> from >> to >> cost;
edges.emplace_back(make_pair(cost, std::make_pair(from, to)));
totalcost += cost;
}
sort(v.begin(), v.end());
// rep(i,v.size())
// cout<<v[i].first<<" ";
cout << kruskal() << endl;
v.clear();
sort(edges.begin(), edges.end());
std::cout << kruskal() << std::endl;
edges.clear();
}
return 0;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册