kohonen_som_topology.cpp 20.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
/**
 * \addtogroup machine_learning Machine Learning Algorithms
 * @{
 * \file
 * \author [Krishna Vedala](https://github.com/kvedala)
 * \brief [Kohonen self organizing
 * map](https://en.wikipedia.org/wiki/Self-organizing_map) (topological map)
 *
 * This example implements a powerful unsupervised learning algorithm called as
 * a self organizing map. The algorithm creates a connected network of weights
 * that closely follows the given data points. This thus creates a topological
 * map of the given data i.e., it maintains the relationship between varipus
 * data points in a much higher dimesional space by creating an equivalent in a
 * 2-dimensional space.
 * <img alt="Trained topological maps for the test cases in the program"
 * src="https://raw.githubusercontent.com/TheAlgorithms/C-Plus-Plus/docs/images/machine_learning/2D_Kohonen_SOM.svg"
 * />
 * \note This C++ version of the program is considerable slower than its [C
 * counterpart](https://github.com/kvedala/C/blob/master/machine_learning/kohonen_som_trace.c)
 * \note The compiled code is much slower when compiled with MS Visual C++ 2019
 * than with GCC on windows
 * \see kohonen_som_trace.cpp
 */
#define _USE_MATH_DEFINES  // required for MS Visual C++
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <fstream>
#include <iostream>
#include <valarray>
#include <vector>
#ifdef _OPENMP  // check if OpenMP based parallellization is available
#include <omp.h>
#endif

/**
 * Helper function to generate a random number in a given interval.
 * \n Steps:
 * 1. `r1 = rand() % 100` gets a random number between 0 and 99
 * 2. `r2 = r1 / 100` converts random number to be between 0 and 0.99
 * 3. scale and offset the random number to given range of \f$[a,b]\f$
 *
 * \param[in] a lower limit
 * \param[in] b upper limit
 * \returns random number in the range \f$[a,b]\f$
 */
double _random(double a, double b) {
    return ((b - a) * (std::rand() % 100) / 100.f) + a;
}

/**
 * Save a given n-dimensional data martix to file.
 *
 * \param[in] fname filename to save in (gets overwriten without confirmation)
 * \param[in] X matrix to save
 * \returns 0 if all ok
 * \returns -1 if file creation failed
 */
int save_2d_data(const char *fname,
                 const std::vector<std::valarray<double>> &X) {
    size_t num_points = X.size();       // number of rows
    size_t num_features = X[0].size();  // number of columns

    std::ofstream fp;
    fp.open(fname);
    if (!fp.is_open()) {
        // error with opening file to write
        std::cerr << "Error opening file " << fname << "\n";
        return -1;
    }

    // for each point in the array
    for (int i = 0; i < num_points; i++) {
        // for each feature in the array
        for (int j = 0; j < num_features; j++) {
            fp << X[i][j];             // print the feature value
            if (j < num_features - 1)  // if not the last feature
                fp << ",";             // suffix comma
        }
        if (i < num_points - 1)  // if not the last row
            fp << "\n";          // start a new line
    }

    fp.close();
    return 0;
}

/**
 * Get minimum value and index of the value in a matrix
 * \param[in] X matrix to search
 * \param[in] N number of points in the vector
 * \param[out] val minimum value found
 * \param[out] idx_x x-index where minimum value was found
 * \param[out] idx_y y-index where minimum value was found
 */
void get_min_2d(const std::vector<std::valarray<double>> &X, double *val,
                int *x_idx, int *y_idx) {
    val[0] = INFINITY;  // initial min value
    int N = X.size();

    for (int i = 0; i < N; i++) {  // traverse each x-index
        auto result = std::min_element(std::begin(X[i]), std::end(X[i]));
        double d_min = *result;
        int j = std::distance(std::begin(X[i]), result);

        if (d_min < val[0]) {  // if a lower value is found
                               // save the value and its index
            x_idx[0] = i;
            y_idx[0] = j;
            val[0] = d_min;
        }
    }
}

/** \namespace machine_learning
 * \brief Machine learning algorithms
 */
namespace machine_learning {
#define MIN_DISTANCE 1e-4  ///< Minimum average distance of image nodes

/**
 * Create the distance matrix or
 * [U-matrix](https://en.wikipedia.org/wiki/U-matrix) from the trained
 * 3D weiths matrix and save to disk.
 *
 * \param [in] fname filename to save in (gets overwriten without
 * confirmation)
 * \param [in] W model matrix to save
 * \returns 0 if all ok
 * \returns -1 if file creation failed
 */
int save_u_matrix(const char *fname,
                  const std::vector<std::vector<std::valarray<double>>> &W) {
    std::ofstream fp(fname);
    if (!fp) {  // error with fopen
        char msg[120];
        std::snprintf(msg, sizeof(msg), "File error (%s): ", fname);
        std::perror(msg);
        return -1;
    }

    // neighborhood range
    unsigned int R = 1;

    for (int i = 0; i < W.size(); i++) {         // for each x
        for (int j = 0; j < W[0].size(); j++) {  // for each y
            double distance = 0.f;

            int from_x = std::max<int>(0, i - R);
            int to_x = std::min<int>(W.size(), i + R + 1);
            int from_y = std::max<int>(0, j - R);
            int to_y = std::min<int>(W[0].size(), j + R + 1);
            int l, m;
#ifdef _OPENMP
#pragma omp parallel for reduction(+ : distance)
#endif
            for (l = from_x; l < to_x; l++) {      // scan neighborhoor in x
                for (m = from_y; m < to_y; m++) {  // scan neighborhood in y
                    auto d = W[i][j] - W[l][m];
                    double d2 = std::pow(d, 2).sum();
                    distance += std::sqrt(d2);
                    // distance += d2;
                }
            }

            distance /= R * R;          // mean distance from neighbors
            fp << distance;             // print the mean separation
            if (j < W[0].size() - 1) {  // if not the last column
                fp << ',';              // suffix comma
            }
        }
        if (i < W.size() - 1)  // if not the last row
            fp << '\n';        // start a new line
    }

    fp.close();
    return 0;
}

/**
 * Update weights of the SOM using Kohonen algorithm
 *
 * \param[in] X data point - N features
 * \param[in,out] W weights matrix - PxQxN
 * \param[in,out] D temporary vector to store distances PxQ
 * \param[in] alpha learning rate \f$0<\alpha\le1\f$
 * \param[in] R neighborhood range
 * \returns minimum distance of sample and trained weights
 */
double update_weights(const std::valarray<double> &X,
                      std::vector<std::vector<std::valarray<double>>> *W,
                      std::vector<std::valarray<double>> *D, double alpha,
                      int R) {
    int x, y;
    int num_out_x = static_cast<int>(W->size());       // output nodes - in X
    int num_out_y = static_cast<int>(W[0][0].size());  // output nodes - in Y
    int num_features = static_cast<int>(W[0][0][0].size());  //  features = in Z
    double d_min = 0.f;

#ifdef _OPENMP
#pragma omp for
#endif
    // step 1: for each output point
    for (x = 0; x < num_out_x; x++) {
        for (y = 0; y < num_out_y; y++) {
            (*D)[x][y] = 0.f;
            // compute Euclidian distance of each output
            // point from the current sample
            auto d = ((*W)[x][y] - X);
            (*D)[x][y] = (d * d).sum();
            (*D)[x][y] = std::sqrt((*D)[x][y]);
        }
    }

    // step 2:  get closest node i.e., node with snallest Euclidian distance
    // to the current pattern
    int d_min_x, d_min_y;
    get_min_2d(*D, &d_min, &d_min_x, &d_min_y);

    // step 3a: get the neighborhood range
    int from_x = std::max(0, d_min_x - R);
    int to_x = std::min(num_out_x, d_min_x + R + 1);
    int from_y = std::max(0, d_min_y - R);
    int to_y = std::min(num_out_y, d_min_y + R + 1);

    // step 3b: update the weights of nodes in the
    // neighborhood
#ifdef _OPENMP
#pragma omp for
#endif
    for (x = from_x; x < to_x; x++) {
        for (y = from_y; y < to_y; y++) {
            /* you can enable the following normalization if needed.
   personally, I found it detrimental to convergence */
            // const double s2pi = sqrt(2.f * M_PI);
            // double normalize = 1.f / (alpha * s2pi);

            /* apply scaling inversely proportional to distance from the
               current node */
            double d2 =
                (d_min_x - x) * (d_min_x - x) + (d_min_y - y) * (d_min_y - y);
            double scale_factor = std::exp(-d2 / (2.f * alpha * alpha));

            (*W)[x][y] += (X - (*W)[x][y]) * alpha * scale_factor;
        }
    }
    return d_min;
}

/**
 * Apply incremental algorithm with updating neighborhood and learning
 * rates on all samples in the given datset.
 *
 * \param[in] X data set
 * \param[in,out] W weights matrix
 * \param[in] alpha_min terminal value of alpha
 */
void kohonen_som(const std::vector<std::valarray<double>> &X,
                 std::vector<std::vector<std::valarray<double>>> *W,
                 double alpha_min) {
    int num_samples = X.size();      // number of rows
    int num_features = X[0].size();  // number of columns
    int num_out = W->size();         // output matrix size
    int R = num_out >> 2, iter = 0;
    double alpha = 1.f;

    std::vector<std::valarray<double>> D(num_out);
    for (int i = 0; i < num_out; i++) D[i] = std::valarray<double>(num_out);

    double dmin = 1.f;        // average minimum distance of all samples
    double past_dmin = 1.f;   // average minimum distance of all samples
    double dmin_ratio = 1.f;  // change per step

    // Loop alpha from 1 to slpha_min
    for (; alpha > 0 && dmin_ratio > 1e-5; alpha -= 1e-4, iter++) {
        // Loop for each sample pattern in the data set
        for (int sample = 0; sample < num_samples; sample++) {
            // update weights for the current input pattern sample
            dmin += update_weights(X[sample], W, &D, alpha, R);
        }

        // every 100th iteration, reduce the neighborhood range
        if (iter % 300 == 0 && R > 1)
            R--;

        dmin /= num_samples;

        // termination condition variable -> % change in minimum distance
        dmin_ratio = (past_dmin - dmin) / past_dmin;
        if (dmin_ratio < 0)
            dmin_ratio = 1.f;
        past_dmin = dmin;

        std::cout << "iter: " << iter << "\t alpha: " << alpha << "\t R: " << R
                  << "\t d_min: " << dmin_ratio << "\r";
    }

    std::cout << "\n";
}

}  // namespace machine_learning

using machine_learning::kohonen_som;
using machine_learning::save_u_matrix;

/** @} */

/** Creates a random set of points distributed in four clusters in
 * 3D space with centroids at the points
 * * \f$(0,5, 0.5, 0.5)\f$
 * * \f$(0,5,-0.5, -0.5)\f$
 * * \f$(-0,5, 0.5, 0.5)\f$
 * * \f$(-0,5,-0.5, -0.5)\f$
 *
 * \param[out] data matrix to store data in
 */
void test_2d_classes(std::vector<std::valarray<double>> *data) {
    const int N = data->size();
    const double R = 0.3;  // radius of cluster
    int i;
    const int num_classes = 4;
    const double centres[][2] = {
        // centres of each class cluster
        {.5, .5},   // centre of class 1
        {.5, -.5},  // centre of class 2
        {-.5, .5},  // centre of class 3
        {-.5, -.5}  // centre of class 4
    };

#ifdef _OPENMP
#pragma omp for
#endif
    for (i = 0; i < N; i++) {
        // select a random class for the point
        int cls = std::rand() % num_classes;

        // create random coordinates (x,y,z) around the centre of the class
        data[0][i][0] = _random(centres[cls][0] - R, centres[cls][0] + R);
        data[0][i][1] = _random(centres[cls][1] - R, centres[cls][1] + R);

        /* The follosing can also be used
        for (int j = 0; j < 2; j++)
            data[i][j] = _random(centres[class][j] - R, centres[class][j] + R);
        */
    }
}

/** Test that creates a random set of points distributed in four clusters in
 * circumference of a circle and trains an SOM that finds that circular pattern.
 * The following [CSV](https://en.wikipedia.org/wiki/Comma-separated_values)
 * files are created to validate the execution:
 * * `test1.csv`: random test samples points with a circular pattern
 * * `w11.csv`: initial random map
 * * `w12.csv`: trained SOM map
 */
void test1() {
    int j, N = 300;
    int features = 2;
    int num_out = 30;
    std::vector<std::valarray<double>> X(N);
    std::vector<std::vector<std::valarray<double>>> W(num_out);
    for (int i = 0; i < std::max(num_out, N); i++) {
        // loop till max(N, num_out)
        if (i < N)  // only add new arrays if i < N
            X[i] = std::valarray<double>(features);
        if (i < num_out) {  // only add new arrays if i < num_out
            W[i] = std::vector<std::valarray<double>>(num_out);
            for (int k = 0; k < num_out; k++) {
                W[i][k] = std::valarray<double>(features);
#ifdef _OPENMP
#pragma omp for
#endif
                for (j = 0; j < features; j++)
                    // preallocate with random initial weights
                    W[i][k][j] = _random(-10, 10);
            }
        }
    }

    test_2d_classes(&X);  // create test data around circumference of a circle
    save_2d_data("test1.csv", X);  // save test data points
    save_u_matrix("w11.csv", W);   // save initial random weights
    kohonen_som(X, &W, 1e-4);      // train the SOM
    save_u_matrix("w12.csv", W);   // save the resultant weights
}

/** Creates a random set of points distributed in four clusters in
 * 3D space with centroids at the points
 * * \f$(0,5, 0.5, 0.5)\f$
 * * \f$(0,5,-0.5, -0.5)\f$
 * * \f$(-0,5, 0.5, 0.5)\f$
 * * \f$(-0,5,-0.5, -0.5)\f$
 *
 * \param[out] data matrix to store data in
 */
void test_3d_classes1(std::vector<std::valarray<double>> *data) {
    const int N = data->size();
    const double R = 0.3;  // radius of cluster
    int i;
    const int num_classes = 4;
    const double centres[][3] = {
        // centres of each class cluster
        {.5, .5, .5},    // centre of class 1
        {.5, -.5, -.5},  // centre of class 2
        {-.5, .5, .5},   // centre of class 3
        {-.5, -.5 - .5}  // centre of class 4
    };

#ifdef _OPENMP
#pragma omp for
#endif
    for (i = 0; i < N; i++) {
        // select a random class for the point
        int cls = std::rand() % num_classes;

        // create random coordinates (x,y,z) around the centre of the class
        data[0][i][0] = _random(centres[cls][0] - R, centres[cls][0] + R);
        data[0][i][1] = _random(centres[cls][1] - R, centres[cls][1] + R);
        data[0][i][2] = _random(centres[cls][2] - R, centres[cls][2] + R);

        /* The follosing can also be used
        for (int j = 0; j < 3; j++)
            data[i][j] = _random(centres[class][j] - R, centres[class][j] + R);
        */
    }
}

/** Test that creates a random set of points distributed in 4 clusters in
 * 3D space and trains an SOM that finds the topological pattern. The following
 * [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created
 * to validate the execution:
 * * `test2.csv`: random test samples points with a lamniscate pattern
 * * `w21.csv`: initial random map
 * * `w22.csv`: trained SOM map
 */
void test2() {
    int j, N = 300;
    int features = 3;
    int num_out = 30;
    std::vector<std::valarray<double>> X(N);
    std::vector<std::vector<std::valarray<double>>> W(num_out);
    for (int i = 0; i < std::max(num_out, N); i++) {
        // loop till max(N, num_out)
        if (i < N)  // only add new arrays if i < N
            X[i] = std::valarray<double>(features);
        if (i < num_out) {  // only add new arrays if i < num_out
            W[i] = std::vector<std::valarray<double>>(num_out);
            for (int k = 0; k < num_out; k++) {
                W[i][k] = std::valarray<double>(features);
#ifdef _OPENMP
#pragma omp for
#endif
                for (j = 0; j < features; j++)
                    // preallocate with random initial weights
                    W[i][k][j] = _random(-10, 10);
            }
        }
    }

    test_3d_classes1(&X);  // create test data around circumference of a circle
    save_2d_data("test2.csv", X);  // save test data points
    save_u_matrix("w21.csv", W);   // save initial random weights
    kohonen_som(X, &W, 1e-4);      // train the SOM
    save_u_matrix("w22.csv", W);   // save the resultant weights
}

/** Creates a random set of points distributed in four clusters in
 * 3D space with centroids at the points
 * * \f$(0,5, 0.5, 0.5)\f$
 * * \f$(0,5,-0.5, -0.5)\f$
 * * \f$(-0,5, 0.5, 0.5)\f$
 * * \f$(-0,5,-0.5, -0.5)\f$
 *
 * \param[out] data matrix to store data in
 */
void test_3d_classes2(std::vector<std::valarray<double>> *data) {
    const int N = data->size();
    const double R = 0.2;  // radius of cluster
    int i;
    const int num_classes = 8;
    const double centres[][3] = {
        // centres of each class cluster
        {.5, .5, .5},    // centre of class 1
        {.5, .5, -.5},   // centre of class 2
        {.5, -.5, .5},   // centre of class 3
        {.5, -.5, -.5},  // centre of class 4
        {-.5, .5, .5},   // centre of class 5
        {-.5, .5, -.5},  // centre of class 6
        {-.5, -.5, .5},  // centre of class 7
        {-.5, -.5, -.5}  // centre of class 8
    };

#ifdef _OPENMP
#pragma omp for
#endif
    for (i = 0; i < N; i++) {
        // select a random class for the point
        int cls = std::rand() % num_classes;

        // create random coordinates (x,y,z) around the centre of the class
        data[0][i][0] = _random(centres[cls][0] - R, centres[cls][0] + R);
        data[0][i][1] = _random(centres[cls][1] - R, centres[cls][1] + R);
        data[0][i][2] = _random(centres[cls][2] - R, centres[cls][2] + R);

        /* The follosing can also be used
        for (int j = 0; j < 3; j++)
            data[i][j] = _random(centres[class][j] - R, centres[class][j] + R);
        */
    }
}

/** Test that creates a random set of points distributed in eight clusters in
 * 3D space and trains an SOM that finds the topological pattern. The following
 * [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created
 * to validate the execution:
 * * `test3.csv`: random test samples points with a circular pattern
 * * `w31.csv`: initial random map
 * * `w32.csv`: trained SOM map
 */
void test3() {
    int j, N = 500;
    int features = 3;
    int num_out = 30;
    std::vector<std::valarray<double>> X(N);
    std::vector<std::vector<std::valarray<double>>> W(num_out);
    for (int i = 0; i < std::max(num_out, N); i++) {
        // loop till max(N, num_out)
        if (i < N)  // only add new arrays if i < N
            X[i] = std::valarray<double>(features);
        if (i < num_out) {  // only add new arrays if i < num_out
            W[i] = std::vector<std::valarray<double>>(num_out);
            for (int k = 0; k < num_out; k++) {
                W[i][k] = std::valarray<double>(features);
#ifdef _OPENMP
#pragma omp for
#endif
                for (j = 0; j < features; j++)
                    // preallocate with random initial weights
                    W[i][k][j] = _random(-10, 10);
            }
        }
    }

    test_3d_classes2(&X);  // create test data around circumference of a circle
    save_2d_data("test3.csv", X);  // save test data points
    save_u_matrix("w31.csv", W);   // save initial random weights
    kohonen_som(X, &W, 1e-4);      // train the SOM
    save_u_matrix("w32.csv", W);   // save the resultant weights
}

/**
 * Convert clock cycle difference to time in seconds
 *
 * \param[in] start_t start clock
 * \param[in] end_t end clock
 * \returns time difference in seconds
 */
double get_clock_diff(clock_t start_t, clock_t end_t) {
    return static_cast<double>(end_t - start_t) / CLOCKS_PER_SEC;
}

/** Main function */
int main(int argc, char **argv) {
#ifdef _OPENMP
    std::cout << "Using OpenMP based parallelization\n";
#else
    std::cout << "NOT using OpenMP based parallelization\n";
#endif

    std::srand(std::time(nullptr));

    std::clock_t start_clk = std::clock();
    test1();
    auto end_clk = std::clock();
    std::cout << "Test 1 completed in " << get_clock_diff(start_clk, end_clk)
              << " sec\n";

    start_clk = std::clock();
    test2();
    end_clk = std::clock();
    std::cout << "Test 2 completed in " << get_clock_diff(start_clk, end_clk)
              << " sec\n";

    start_clk = std::clock();
    test3();
    end_clk = std::clock();
    std::cout << "Test 3 completed in " << get_clock_diff(start_clk, end_clk)
              << " sec\n";

    std::cout
        << "(Note: Calculated times include: creating test sets, training "
           "model and writing files to disk.)\n\n";
    return 0;
}