core-beans.adoc 326.2 KB
Newer Older
B
Brian Clozel 已提交
1 2 3 4
[[beans]]
= The IoC container


5 6


B
Brian Clozel 已提交
7 8
[[beans-introduction]]
== Introduction to the Spring IoC container and beans
9

B
Brian Clozel 已提交
10
This chapter covers the Spring Framework implementation of the Inversion of Control
11 12
(IoC) footnote:[See pass:specialcharacters,macros[<<overview.adoc#background-ioc,
Inversion of Control>>] ] principle. IoC
B
Brian Clozel 已提交
13 14 15 16 17 18 19 20 21 22 23
is also known as __dependency injection__ (DI). It is a process whereby objects define
their dependencies, that is, the other objects they work with, only through constructor
arguments, arguments to a factory method, or properties that are set on the object
instance after it is constructed or returned from a factory method. The container then
__injects__ those dependencies when it creates the bean. This process is fundamentally
the inverse, hence the name __Inversion of Control__ (IoC), of the bean itself
controlling the instantiation or location of its dependencies by using direct
construction of classes, or a mechanism such as the __Service Locator__ pattern.

The `org.springframework.beans` and `org.springframework.context` packages are the basis
for Spring Framework's IoC container. The
24
{api-spring-framework}/beans/factory/BeanFactory.html[`BeanFactory`]
B
Brian Clozel 已提交
25 26
interface provides an advanced configuration mechanism capable of managing any type of
object.
27
{api-spring-framework}/context/ApplicationContext.html[`ApplicationContext`]
B
Brian Clozel 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
is a sub-interface of `BeanFactory`. It adds easier integration with Spring's AOP
features; message resource handling (for use in internationalization), event
publication; and application-layer specific contexts such as the `WebApplicationContext`
for use in web applications.

In short, the `BeanFactory` provides the configuration framework and basic
functionality, and the `ApplicationContext` adds more enterprise-specific functionality.
The `ApplicationContext` is a complete superset of the `BeanFactory`, and is used
exclusively in this chapter in descriptions of Spring's IoC container. For more
information on using the `BeanFactory` instead of the `ApplicationContext,` refer to
<<beans-beanfactory>>.

In Spring, the objects that form the backbone of your application and that are managed
by the Spring IoC __container__ are called __beans__. A bean is an object that is
instantiated, assembled, and otherwise managed by a Spring IoC container. Otherwise, a
bean is simply one of many objects in your application. Beans, and the __dependencies__
among them, are reflected in the __configuration metadata__ used by a container.




[[beans-basics]]
== Container overview
51

B
Brian Clozel 已提交
52 53 54 55 56 57 58 59 60 61 62
The interface `org.springframework.context.ApplicationContext` represents the Spring IoC
container and is responsible for instantiating, configuring, and assembling the
aforementioned beans. The container gets its instructions on what objects to
instantiate, configure, and assemble by reading configuration metadata. The
configuration metadata is represented in XML, Java annotations, or Java code. It allows
you to express the objects that compose your application and the rich interdependencies
between such objects.

Several implementations of the `ApplicationContext` interface are supplied
out-of-the-box with Spring. In standalone applications it is common to create an
instance of
63 64
{api-spring-framework}/context/support/ClassPathXmlApplicationContext.html[`ClassPathXmlApplicationContext`]
or {api-spring-framework}/context/support/FileSystemXmlApplicationContext.html[`FileSystemXmlApplicationContext`].
B
Brian Clozel 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 While XML has been the traditional format for defining configuration metadata you can
instruct the container to use Java annotations or code as the metadata format by
providing a small amount of XML configuration to declaratively enable support for these
additional metadata formats.

In most application scenarios, explicit user code is not required to instantiate one or
more instances of a Spring IoC container. For example, in a web application scenario, a
simple eight (or so) lines of boilerplate web descriptor XML in the `web.xml` file
of the application will typically suffice (see <<context-create>>). If you are using the
https://spring.io/tools/sts[Spring Tool Suite] Eclipse-powered development
environment this boilerplate configuration can be easily created with few mouse clicks or
keystrokes.

The following diagram is a high-level view of how Spring works. Your application classes
are combined with configuration metadata so that after the `ApplicationContext` is
created and initialized, you have a fully configured and executable system or
application.

.The Spring IoC container
84
image::images/container-magic.png[]
B
Brian Clozel 已提交
85 86 87 88 89



[[beans-factory-metadata]]
=== Configuration metadata
S
Sam Brannen 已提交
90

B
Brian Clozel 已提交
91 92 93 94 95 96 97 98 99 100
As the preceding diagram shows, the Spring IoC container consumes a form of
__configuration metadata__; this configuration metadata represents how you as an
application developer tell the Spring container to instantiate, configure, and assemble
the objects in your application.

Configuration metadata is traditionally supplied in a simple and intuitive XML format,
which is what most of this chapter uses to convey key concepts and features of the
Spring IoC container.

[NOTE]
101
====
B
Brian Clozel 已提交
102 103 104 105
XML-based metadata is __not__ the only allowed form of configuration metadata. The
Spring IoC container itself is __totally__ decoupled from the format in which this
configuration metadata is actually written. These days many developers choose
<<beans-java,Java-based configuration>> for their Spring applications.
106
====
B
Brian Clozel 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

For information about using other forms of metadata with the Spring container, see:

* <<beans-annotation-config,Annotation-based configuration>>: Spring 2.5 introduced
  support for annotation-based configuration metadata.
* <<beans-java,Java-based configuration>>: Starting with Spring 3.0, many features
  provided by the Spring JavaConfig project became part of the core Spring Framework.
  Thus you can define beans external to your application classes by using Java rather
  than XML files. To use these new features, see the `@Configuration`, `@Bean`, `@Import`
  and `@DependsOn` annotations.

Spring configuration consists of at least one and typically more than one bean
definition that the container must manage. XML-based configuration metadata shows these
beans configured as `<bean/>` elements inside a top-level `<beans/>` element. Java
configuration typically uses `@Bean` annotated methods within a `@Configuration` class.

These bean definitions correspond to the actual objects that make up your application.
Typically you define service layer objects, data access objects (DAOs), presentation
objects such as Struts `Action` instances, infrastructure objects such as Hibernate
`SessionFactories`, JMS `Queues`, and so forth. Typically one does not configure
fine-grained domain objects in the container, because it is usually the responsibility
of DAOs and business logic to create and load domain objects. However, you can use
Spring's integration with AspectJ to configure objects that have been created outside
the control of an IoC container. See <<aop-atconfigurable,Using AspectJ to
dependency-inject domain objects with Spring>>.

The following example shows the basic structure of XML-based configuration metadata:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<?xml version="1.0" encoding="UTF-8"?>
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xsi:schemaLocation="http://www.springframework.org/schema/beans
			http://www.springframework.org/schema/beans/spring-beans.xsd">

		<bean id="..." class="...">
			<!-- collaborators and configuration for this bean go here -->
		</bean>

		<bean id="..." class="...">
			<!-- collaborators and configuration for this bean go here -->
		</bean>

		<!-- more bean definitions go here -->

	</beans>
----

The `id` attribute is a string that you use to identify the individual bean definition.
The `class` attribute defines the type of the bean and uses the fully qualified
classname. The value of the id attribute refers to collaborating objects. The XML for
referring to collaborating objects is not shown in this example; see
<<beans-dependencies,Dependencies>> for more information.



[[beans-factory-instantiation]]
=== Instantiating a container
S
Sam Brannen 已提交
167

B
Brian Clozel 已提交
168 169 170 171 172 173 174 175
Instantiating a Spring IoC container is straightforward. The location path or paths
supplied to an `ApplicationContext` constructor are actually resource strings that allow
the container to load configuration metadata from a variety of external resources such
as the local file system, from the Java `CLASSPATH`, and so on.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
176
	ApplicationContext context = new ClassPathXmlApplicationContext("services.xml", "daos.xml");
B
Brian Clozel 已提交
177 178 179
----

[NOTE]
180
====
B
Brian Clozel 已提交
181 182 183 184 185
After you learn about Spring's IoC container, you may want to know more about Spring's
`Resource` abstraction, as described in <<resources>>, which provides a convenient
mechanism for reading an InputStream from locations defined in a URI syntax. In
particular, `Resource` paths are used to construct applications contexts as described in
<<resources-app-ctx>>.
186
====
B
Brian Clozel 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

The following example shows the service layer objects `(services.xml)` configuration file:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<?xml version="1.0" encoding="UTF-8"?>
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xsi:schemaLocation="http://www.springframework.org/schema/beans
			http://www.springframework.org/schema/beans/spring-beans.xsd">

		<!-- services -->

		<bean id="petStore" class="org.springframework.samples.jpetstore.services.PetStoreServiceImpl">
			<property name="accountDao" ref="accountDao"/>
			<property name="itemDao" ref="itemDao"/>
			<!-- additional collaborators and configuration for this bean go here -->
		</bean>

		<!-- more bean definitions for services go here -->

	</beans>
----

The following example shows the data access objects `daos.xml` file:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<?xml version="1.0" encoding="UTF-8"?>
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xsi:schemaLocation="http://www.springframework.org/schema/beans
			http://www.springframework.org/schema/beans/spring-beans.xsd">

		<bean id="accountDao"
			class="org.springframework.samples.jpetstore.dao.jpa.JpaAccountDao">
			<!-- additional collaborators and configuration for this bean go here -->
		</bean>

		<bean id="itemDao" class="org.springframework.samples.jpetstore.dao.jpa.JpaItemDao">
			<!-- additional collaborators and configuration for this bean go here -->
		</bean>

		<!-- more bean definitions for data access objects go here -->

	</beans>
----

In the preceding example, the service layer consists of the class `PetStoreServiceImpl`,
and two data access objects of the type `JpaAccountDao` and `JpaItemDao` (based
on the JPA Object/Relational mapping standard). The `property name` element refers to the
name of the JavaBean property, and the `ref` element refers to the name of another bean
definition. This linkage between `id` and `ref` elements expresses the dependency between
collaborating objects. For details of configuring an object's dependencies, see
<<beans-dependencies,Dependencies>>.


[[beans-factory-xml-import]]
==== Composing XML-based configuration metadata
S
Sam Brannen 已提交
248

B
Brian Clozel 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
It can be useful to have bean definitions span multiple XML files. Often each individual
XML configuration file represents a logical layer or module in your architecture.

You can use the application context constructor to load bean definitions from all these
XML fragments. This constructor takes multiple `Resource` locations, as was shown in the
previous section. Alternatively, use one or more occurrences of the `<import/>` element
to load bean definitions from another file or files. For example:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>
		<import resource="services.xml"/>
		<import resource="resources/messageSource.xml"/>
		<import resource="/resources/themeSource.xml"/>

		<bean id="bean1" class="..."/>
		<bean id="bean2" class="..."/>
	</beans>
----

In the preceding example, external bean definitions are loaded from three files:
`services.xml`, `messageSource.xml`, and `themeSource.xml`. All location paths are
relative to the definition file doing the importing, so `services.xml` must be in the
same directory or classpath location as the file doing the importing, while
`messageSource.xml` and `themeSource.xml` must be in a `resources` location below the
location of the importing file. As you can see, a leading slash is ignored, but given
that these paths are relative, it is better form not to use the slash at all. The
contents of the files being imported, including the top level `<beans/>` element, must
be valid XML bean definitions according to the Spring Schema.

[NOTE]
281
====
B
Brian Clozel 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294
It is possible, but not recommended, to reference files in parent directories using a
relative "../" path. Doing so creates a dependency on a file that is outside the current
application. In particular, this reference is not recommended for "classpath:" URLs (for
example, "classpath:../services.xml"), where the runtime resolution process chooses the
"nearest" classpath root and then looks into its parent directory. Classpath
configuration changes may lead to the choice of a different, incorrect directory.

You can always use fully qualified resource locations instead of relative paths: for
example, "file:C:/config/services.xml" or "classpath:/config/services.xml". However, be
aware that you are coupling your application's configuration to specific absolute
locations. It is generally preferable to keep an indirection for such absolute
locations, for example, through "${...}" placeholders that are resolved against JVM
system properties at runtime.
295
====
B
Brian Clozel 已提交
296

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
The import directive is a feature provided by the beans namespace itself. Further
configuration features beyond plain bean definitions are available in a selection
of XML namespaces provided by Spring, e.g. the "context" and the "util" namespace.


[[groovy-bean-definition-dsl]]
==== The Groovy Bean Definition DSL

As a further example for externalized configuration metadata, bean definitions can also
be expressed in Spring's Groovy Bean Definition DSL, as known from the Grails framework.
Typically, such configuration will live in a ".groovy" file with a structure as follows:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
	beans {
		dataSource(BasicDataSource) {
			driverClassName = "org.hsqldb.jdbcDriver"
			url = "jdbc:hsqldb:mem:grailsDB"
			username = "sa"
			password = ""
			settings = [mynew:"setting"]
		}
		sessionFactory(SessionFactory) {
			dataSource = dataSource
		}
		myService(MyService) {
			nestedBean = { AnotherBean bean ->
				dataSource = dataSource
			}
		}
	}
329 330 331 332 333 334
----

This configuration style is largely equivalent to XML bean definitions and even
supports Spring's XML configuration namespaces. It also allows for importing XML
bean definition files through an "importBeans" directive.

B
Brian Clozel 已提交
335 336 337 338


[[beans-factory-client]]
=== Using the container
S
Sam Brannen 已提交
339

B
Brian Clozel 已提交
340 341 342 343 344 345 346 347 348 349
The `ApplicationContext` is the interface for an advanced factory capable of maintaining
a registry of different beans and their dependencies. Using the method `T getBean(String
name, Class<T> requiredType)` you can retrieve instances of your beans.

The `ApplicationContext` enables you to read bean definitions and access them as follows:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	// create and configure beans
350
	ApplicationContext context = new ClassPathXmlApplicationContext("services.xml", "daos.xml");
B
Brian Clozel 已提交
351 352 353 354 355 356 357 358

	// retrieve configured instance
	PetStoreService service = context.getBean("petStore", PetStoreService.class);

	// use configured instance
	List<String> userList = service.getUsernameList();
----

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
With Groovy configuration, bootstrapping looks very similar, just a different context
implementation class which is Groovy-aware (but also understands XML bean definitions):

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	ApplicationContext context = new GenericGroovyApplicationContext("services.groovy", "daos.groovy");
----

The most flexible variant is `GenericApplicationContext` in combination with reader
delegates, e.g. with `XmlBeanDefinitionReader` for XML files:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	GenericApplicationContext context = new GenericApplicationContext();
A
Aviskar Basnet 已提交
375
	new XmlBeanDefinitionReader(context).loadBeanDefinitions("services.xml", "daos.xml");
376
	context.refresh();
377 378 379 380 381 382 383 384
----

Or with `GroovyBeanDefinitionReader` for Groovy files:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	GenericApplicationContext context = new GenericApplicationContext();
A
Aviskar Basnet 已提交
385
	new GroovyBeanDefinitionReader(context).loadBeanDefinitions("services.groovy", "daos.groovy");
386
	context.refresh();
387 388 389 390 391 392
----

Such reader delegates can be mixed and matched on the same `ApplicationContext`,
reading bean definitions from diverse configuration sources, if desired.

You can then use `getBean` to retrieve instances of your beans. The `ApplicationContext`
B
Brian Clozel 已提交
393 394 395
interface has a few other methods for retrieving beans, but ideally your application
code should never use them. Indeed, your application code should have no calls to the
`getBean()` method at all, and thus no dependency on Spring APIs at all. For example,
396 397 398
Spring's integration with web frameworks provides dependency injection for various web
framework components such as controllers and JSF-managed beans, allowing you to declare
a dependency on a specific bean through metadata (e.g. an autowiring annotation).
B
Brian Clozel 已提交
399 400 401 402 403 404




[[beans-definition]]
== Bean overview
405

B
Brian Clozel 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
A Spring IoC container manages one or more __beans__. These beans are created with the
configuration metadata that you supply to the container, for example, in the form of XML
`<bean/>` definitions.

Within the container itself, these bean definitions are represented as `BeanDefinition`
objects, which contain (among other information) the following metadata:

* __A package-qualified class name:__ typically the actual implementation class of the
  bean being defined.
* Bean behavioral configuration elements, which state how the bean should behave in the
  container (scope, lifecycle callbacks, and so forth).
* References to other beans that are needed for the bean to do its work; these
  references are also called __collaborators__ or __dependencies__.
* Other configuration settings to set in the newly created object, for example, the
  number of connections to use in a bean that manages a connection pool, or the size
  limit of the pool.

This metadata translates to a set of properties that make up each bean definition.

[[beans-factory-bean-definition-tbl]]
.The bean definition
|===
| Property| Explained in...

| class
| <<beans-factory-class>>

| name
| <<beans-beanname>>

| scope
| <<beans-factory-scopes>>

| constructor arguments
| <<beans-factory-collaborators>>

| properties
| <<beans-factory-collaborators>>

| autowiring mode
| <<beans-factory-autowire>>

| lazy-initialization mode
| <<beans-factory-lazy-init>>

| initialization method
| <<beans-factory-lifecycle-initializingbean>>

| destruction method
| <<beans-factory-lifecycle-disposablebean>>
|===

In addition to bean definitions that contain information on how to create a specific
bean, the `ApplicationContext` implementations also permit the registration of existing
objects that are created outside the container, by users. This is done by accessing the
ApplicationContext's BeanFactory via the method `getBeanFactory()` which returns the
BeanFactory implementation `DefaultListableBeanFactory`. `DefaultListableBeanFactory`
supports this registration through the methods `registerSingleton(..)` and
`registerBeanDefinition(..)`. However, typical applications work solely with beans
defined through metadata bean definitions.

467 468 469 470 471 472 473 474 475 476
[NOTE]
====
Bean metadata and manually supplied singleton instances need to be registered as early
as possible, in order for the container to properly reason about them during autowiring
and other introspection steps. While overriding of existing metadata and existing
singleton instances is supported to some degree, the registration of new beans at
runtime (concurrently with live access to factory) is not officially supported and may
lead to concurrent access exceptions and/or inconsistent state in the bean container.
====

B
Brian Clozel 已提交
477 478 479 480


[[beans-beanname]]
=== Naming beans
S
Sam Brannen 已提交
481

B
Brian Clozel 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
Every bean has one or more identifiers. These identifiers must be unique within the
container that hosts the bean. A bean usually has only one identifier, but if it
requires more than one, the extra ones can be considered aliases.

In XML-based configuration metadata, you use the `id` and/or `name` attributes
to specify the bean identifier(s). The `id` attribute allows you to specify
exactly one id. Conventionally these names are alphanumeric ('myBean',
'fooService', etc.), but may contain special characters as well. If you want to
introduce other aliases to the bean, you can also specify them in the `name`
attribute, separated by a comma (`,`), semicolon (`;`), or white space. As a
historical note, in versions prior to Spring 3.1, the `id` attribute was
defined as an `xsd:ID` type, which constrained possible characters. As of 3.1,
it is defined as an `xsd:string` type. Note that bean `id` uniqueness is still
enforced by the container, though no longer by XML parsers.

You are not required to supply a name or id for a bean. If no name or id is supplied
explicitly, the container generates a unique name for that bean. However, if you want to
refer to that bean by name, through the use of the `ref` element or
<<beans-servicelocator,Service Locator>> style lookup, you must provide a name.
Motivations for not supplying a name are related to using <<beans-inner-beans,inner
beans>> and <<beans-factory-autowire,autowiring collaborators>>.

.Bean Naming Conventions
****
The convention is to use the standard Java convention for instance field names when
naming beans. That is, bean names start with a lowercase letter, and are camel-cased
from then on. Examples of such names would be (without quotes) `'accountManager'`,
`'accountService'`, `'userDao'`, `'loginController'`, and so forth.

Naming beans consistently makes your configuration easier to read and understand, and if
you are using Spring AOP it helps a lot when applying advice to a set of beans related
by name.
****

516 517 518 519 520 521 522 523 524 525
[NOTE]
====
With component scanning in the classpath, Spring generates bean names for unnamed
components, following the rules above: essentially, taking the simple class name
and turning its initial character to lower-case. However, in the (unusual) special
case when there is more than one character and both the first and second characters
are upper case, the original casing gets preserved. These are the same rules as
defined by `java.beans.Introspector.decapitalize` (which Spring is using here).
====

B
Brian Clozel 已提交
526 527 528

[[beans-beanname-alias]]
==== Aliasing a bean outside the bean definition
S
Sam Brannen 已提交
529

B
Brian Clozel 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
In a bean definition itself, you can supply more than one name for the bean, by using a
combination of up to one name specified by the `id` attribute, and any number of other
names in the `name` attribute. These names can be equivalent aliases to the same bean,
and are useful for some situations, such as allowing each component in an application to
refer to a common dependency by using a bean name that is specific to that component
itself.

Specifying all aliases where the bean is actually defined is not always adequate,
however. It is sometimes desirable to introduce an alias for a bean that is defined
elsewhere. This is commonly the case in large systems where configuration is split
amongst each subsystem, each subsystem having its own set of object definitions. In
XML-based configuration metadata, you can use the `<alias/>` element to accomplish this.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<alias name="fromName" alias="toName"/>
----

In this case, a bean in the same container which is named `fromName`, may also,
after the use of this alias definition, be referred to as `toName`.

For example, the configuration metadata for subsystem A may refer to a DataSource via
the name `subsystemA-dataSource`. The configuration metadata for subsystem B may refer to
a DataSource via the name `subsystemB-dataSource`. When composing the main application
that uses both these subsystems the main application refers to the DataSource via the
name `myApp-dataSource`. To have all three names refer to the same object you add to the
MyApp configuration metadata the following aliases definitions:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<alias name="subsystemA-dataSource" alias="subsystemB-dataSource"/>
	<alias name="subsystemA-dataSource" alias="myApp-dataSource" />
----

Now each component and the main application can refer to the dataSource through a name
that is unique and guaranteed not to clash with any other definition (effectively
creating a namespace), yet they refer to the same bean.

.Java-configuration
****
If you are using Java-configuration, the `@Bean` annotation can be used to provide aliases
see <<beans-java-bean-annotation>> for details.
****

576 577


B
Brian Clozel 已提交
578 579
[[beans-factory-class]]
=== Instantiating beans
S
Sam Brannen 已提交
580

B
Brian Clozel 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
A bean definition essentially is a recipe for creating one or more objects. The
container looks at the recipe for a named bean when asked, and uses the configuration
metadata encapsulated by that bean definition to create (or acquire) an actual object.

If you use XML-based configuration metadata, you specify the type (or class) of object
that is to be instantiated in the `class` attribute of the `<bean/>` element. This
`class` attribute, which internally is a `Class` property on a `BeanDefinition`
instance, is usually mandatory. (For exceptions, see
<<beans-factory-class-instance-factory-method>> and <<beans-child-bean-definitions>>.)
You use the `Class` property in one of two ways:

* Typically, to specify the bean class to be constructed in the case where the container
  itself directly creates the bean by calling its constructor reflectively, somewhat
  equivalent to Java code using the `new` operator.
* To specify the actual class containing the `static` factory method that will be
  invoked to create the object, in the less common case where the container invokes a
  `static` __factory__ method on a class to create the bean. The object type returned
  from the invocation of the `static` factory method may be the same class or another
  class entirely.

****
.Inner class names
If you want to configure a bean definition for a `static` nested class, you have to use
the __binary__ name of the nested class.

For example, if you have a class called `Foo` in the `com.example` package, and this
`Foo` class has a `static` nested class called `Bar`, the value of the `'class'`
attribute on a bean definition would be...

`com.example.Foo$Bar`

Notice the use of the `$` character in the name to separate the nested class name from
the outer class name.
****


[[beans-factory-class-ctor]]
==== Instantiation with a constructor
S
Sam Brannen 已提交
619

B
Brian Clozel 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
When you create a bean by the constructor approach, all normal classes are usable by and
compatible with Spring. That is, the class being developed does not need to implement
any specific interfaces or to be coded in a specific fashion. Simply specifying the bean
class should suffice. However, depending on what type of IoC you use for that specific
bean, you may need a default (empty) constructor.

The Spring IoC container can manage virtually __any__ class you want it to manage; it is
not limited to managing true JavaBeans. Most Spring users prefer actual JavaBeans with
only a default (no-argument) constructor and appropriate setters and getters modeled
after the properties in the container. You can also have more exotic non-bean-style
classes in your container. If, for example, you need to use a legacy connection pool
that absolutely does not adhere to the JavaBean specification, Spring can manage it as
well.

With XML-based configuration metadata you can specify your bean class as follows:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="exampleBean" class="examples.ExampleBean"/>

	<bean name="anotherExample" class="examples.ExampleBeanTwo"/>
----

For details about the mechanism for supplying arguments to the constructor (if required)
and setting object instance properties after the object is constructed, see
<<beans-factory-collaborators,Injecting Dependencies>>.


[[beans-factory-class-static-factory-method]]
==== Instantiation with a static factory method
S
Sam Brannen 已提交
651

B
Brian Clozel 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
When defining a bean that you create with a static factory method, you use the `class`
attribute to specify the class containing the `static` factory method and an attribute
named `factory-method` to specify the name of the factory method itself. You should be
able to call this method (with optional arguments as described later) and return a live
object, which subsequently is treated as if it had been created through a constructor.
One use for such a bean definition is to call `static` factories in legacy code.

The following bean definition specifies that the bean will be created by calling a
factory-method. The definition does not specify the type (class) of the returned object,
only the class containing the factory method. In this example, the `createInstance()`
method must be a __static__ method.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="clientService"
		class="examples.ClientService"
		factory-method="createInstance"/>
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class ClientService {
		private static ClientService clientService = new ClientService();
		private ClientService() {}

		public static ClientService createInstance() {
			return clientService;
		}
	}
----

For details about the mechanism for supplying (optional) arguments to the factory method
and setting object instance properties after the object is returned from the factory,
see <<beans-factory-properties-detailed,Dependencies and configuration in detail>>.


[[beans-factory-class-instance-factory-method]]
==== Instantiation using an instance factory method
S
Sam Brannen 已提交
692

B
Brian Clozel 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
Similar to instantiation through a <<beans-factory-class-static-factory-method,static
factory method>>, instantiation with an instance factory method invokes a non-static
method of an existing bean from the container to create a new bean. To use this
mechanism, leave the `class` attribute empty, and in the `factory-bean` attribute,
specify the name of a bean in the current (or parent/ancestor) container that contains
the instance method that is to be invoked to create the object. Set the name of the
factory method itself with the `factory-method` attribute.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<!-- the factory bean, which contains a method called createInstance() -->
	<bean id="serviceLocator" class="examples.DefaultServiceLocator">
		<!-- inject any dependencies required by this locator bean -->
	</bean>

	<!-- the bean to be created via the factory bean -->
	<bean id="clientService"
		factory-bean="serviceLocator"
		factory-method="createClientServiceInstance"/>
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class DefaultServiceLocator {

		private static ClientService clientService = new ClientServiceImpl();

		public ClientService createClientServiceInstance() {
			return clientService;
		}
	}
----

One factory class can also hold more than one factory method as shown here:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="serviceLocator" class="examples.DefaultServiceLocator">
		<!-- inject any dependencies required by this locator bean -->
	</bean>

	<bean id="clientService"
		factory-bean="serviceLocator"
		factory-method="createClientServiceInstance"/>

	<bean id="accountService"
		factory-bean="serviceLocator"
		factory-method="createAccountServiceInstance"/>
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class DefaultServiceLocator {

		private static ClientService clientService = new ClientServiceImpl();

753
		private static AccountService accountService = new AccountServiceImpl();
B
Brian Clozel 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769

		public ClientService createClientServiceInstance() {
			return clientService;
		}

		public AccountService createAccountServiceInstance() {
			return accountService;
		}
	}
----

This approach shows that the factory bean itself can be managed and configured through
dependency injection (DI). See <<beans-factory-properties-detailed,Dependencies and
configuration in detail>>.

[NOTE]
770
====
B
Brian Clozel 已提交
771 772 773 774 775 776
In Spring documentation,__ factory bean__ refers to a bean that is configured in the
Spring container that will create objects through an
<<beans-factory-class-instance-factory-method,instance>> or
<<beans-factory-class-static-factory-method,static>> factory method. By contrast,
`FactoryBean` (notice the capitalization) refers to a Spring-specific
<<beans-factory-extension-factorybean, `FactoryBean` >>.
777
====
B
Brian Clozel 已提交
778 779 780 781 782 783




[[beans-dependencies]]
== Dependencies
784

B
Brian Clozel 已提交
785 786 787 788 789 790 791 792 793
A typical enterprise application does not consist of a single object (or bean in the
Spring parlance). Even the simplest application has a few objects that work together to
present what the end-user sees as a coherent application. This next section explains how
you go from defining a number of bean definitions that stand alone to a fully realized
application where objects collaborate to achieve a goal.



[[beans-factory-collaborators]]
S
Sam Brannen 已提交
794 795
=== Dependency Injection

B
Brian Clozel 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
__Dependency injection__ (DI) is a process whereby objects define their dependencies,
that is, the other objects they work with, only through constructor arguments, arguments
to a factory method, or properties that are set on the object instance after it is
constructed or returned from a factory method. The container then __injects__ those
dependencies when it creates the bean. This process is fundamentally the inverse, hence
the name __Inversion of Control__ (IoC), of the bean itself controlling the instantiation
or location of its dependencies on its own by using direct construction of classes, or
the __Service Locator__ pattern.

Code is cleaner with the DI principle and decoupling is more effective when objects are
provided with their dependencies. The object does not look up its dependencies, and does
not know the location or class of the dependencies. As such, your classes become easier
to test, in particular when the dependencies are on interfaces or abstract base classes,
which allow for stub or mock implementations to be used in unit tests.

DI exists in two major variants, <<beans-constructor-injection,Constructor-based
dependency injection>> and <<beans-setter-injection,Setter-based dependency injection>>.


[[beans-constructor-injection]]
==== Constructor-based dependency injection
S
Sam Brannen 已提交
817

B
Brian Clozel 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
__Constructor-based__ DI is accomplished by the container invoking a constructor with a
number of arguments, each representing a dependency. Calling a `static` factory method
with specific arguments to construct the bean is nearly equivalent, and this discussion
treats arguments to a constructor and to a `static` factory method similarly. The
following example shows a class that can only be dependency-injected with constructor
injection. Notice that there is nothing __special__ about this class, it is a POJO that
has no dependencies on container specific interfaces, base classes or annotations.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class SimpleMovieLister {

		// the SimpleMovieLister has a dependency on a MovieFinder
		private MovieFinder movieFinder;

		// a constructor so that the Spring container can inject a MovieFinder
		public SimpleMovieLister(MovieFinder movieFinder) {
			this.movieFinder = movieFinder;
		}

		// business logic that actually uses the injected MovieFinder is omitted...
	}
----

[[beans-factory-ctor-arguments-resolution]]
===== Constructor argument resolution
S
Sam Brannen 已提交
845

B
Brian Clozel 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
Constructor argument resolution matching occurs using the argument's type. If no
potential ambiguity exists in the constructor arguments of a bean definition, then the
order in which the constructor arguments are defined in a bean definition is the order
in which those arguments are supplied to the appropriate constructor when the bean is
being instantiated. Consider the following class:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	package x.y;

	public class Foo {

		public Foo(Bar bar, Baz baz) {
			// ...
		}
	}
----

No potential ambiguity exists, assuming that `Bar` and `Baz` classes are not related by
inheritance. Thus the following configuration works fine, and you do not need to specify
the constructor argument indexes and/or types explicitly in the `<constructor-arg/>`
element.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>
		<bean id="foo" class="x.y.Foo">
			<constructor-arg ref="bar"/>
			<constructor-arg ref="baz"/>
		</bean>

		<bean id="bar" class="x.y.Bar"/>

		<bean id="baz" class="x.y.Baz"/>
	</beans>
----

When another bean is referenced, the type is known, and matching can occur (as was the
case with the preceding example). When a simple type is used, such as
`<value>true</value>`, Spring cannot determine the type of the value, and so cannot match
by type without help. Consider the following class:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	package examples;

	public class ExampleBean {

		// Number of years to calculate the Ultimate Answer
		private int years;

		// The Answer to Life, the Universe, and Everything
		private String ultimateAnswer;

		public ExampleBean(int years, String ultimateAnswer) {
			this.years = years;
			this.ultimateAnswer = ultimateAnswer;
		}
	}
----

.[[beans-factory-ctor-arguments-type]]Constructor argument type matching
--
In the preceding scenario, the container __can__ use type matching with simple types if
you explicitly specify the type of the constructor argument using the `type` attribute.
For example:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="exampleBean" class="examples.ExampleBean">
		<constructor-arg type="int" value="7500000"/>
		<constructor-arg type="java.lang.String" value="42"/>
	</bean>
----
--

.[[beans-factory-ctor-arguments-index]]Constructor argument index
--
Use the `index` attribute to specify explicitly the index of constructor arguments. For
example:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="exampleBean" class="examples.ExampleBean">
		<constructor-arg index="0" value="7500000"/>
		<constructor-arg index="1" value="42"/>
	</bean>
----

In addition to resolving the ambiguity of multiple simple values, specifying an index
resolves ambiguity where a constructor has two arguments of the same type. Note that the
__index is 0 based__.
--

.[[beans-factory-ctor-arguments-name]]Constructor argument name
--
You can also use the constructor parameter name for value disambiguation:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="exampleBean" class="examples.ExampleBean">
		<constructor-arg name="years" value="7500000"/>
		<constructor-arg name="ultimateAnswer" value="42"/>
	</bean>
----

Keep in mind that to make this work out of the box your code must be compiled with the
debug flag enabled so that Spring can look up the parameter name from the constructor.
If you can't compile your code with debug flag (or don't want to) you can use
http://download.oracle.com/javase/6/docs/api/java/beans/ConstructorProperties.html[@ConstructorProperties]
JDK annotation to explicitly name your constructor arguments. The sample class would
then have to look as follows:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	package examples;

	public class ExampleBean {

		// Fields omitted

		@ConstructorProperties({"years", "ultimateAnswer"})
		public ExampleBean(int years, String ultimateAnswer) {
			this.years = years;
			this.ultimateAnswer = ultimateAnswer;
		}
	}
----
--


[[beans-setter-injection]]
==== Setter-based dependency injection
S
Sam Brannen 已提交
986

B
Brian Clozel 已提交
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
__Setter-based__ DI is accomplished by the container calling setter methods on your
beans after invoking a no-argument constructor or no-argument `static` factory method to
instantiate your bean.

The following example shows a class that can only be dependency-injected using pure
setter injection. This class is conventional Java. It is a POJO that has no dependencies
on container specific interfaces, base classes or annotations.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class SimpleMovieLister {

		// the SimpleMovieLister has a dependency on the MovieFinder
		private MovieFinder movieFinder;

		// a setter method so that the Spring container can inject a MovieFinder
		public void setMovieFinder(MovieFinder movieFinder) {
			this.movieFinder = movieFinder;
		}

		// business logic that actually uses the injected MovieFinder is omitted...
	}
----

The `ApplicationContext` supports constructor-based and setter-based DI for the beans it
manages. It also supports setter-based DI after some dependencies have already been
injected through the constructor approach. You configure the dependencies in the form of
a `BeanDefinition`, which you use in conjunction with `PropertyEditor` instances to
convert properties from one format to another. However, most Spring users do not work
with these classes directly (i.e., programmatically) but rather with XML `bean`
definitions, annotated components (i.e., classes annotated with `@Component`,
`@Controller`, etc.), or `@Bean` methods in Java-based `@Configuration` classes. These
sources are then converted internally into instances of `BeanDefinition` and used to
load an entire Spring IoC container instance.

.Constructor-based or setter-based DI?
****
Since you can mix constructor-based and setter-based DI, it is a good rule of thumb to
use constructors for _mandatory dependencies_ and setter methods or configuration methods
for _optional dependencies_. Note that use of the <<beans-required-annotation,@Required>>
annotation on a setter method can be used to make the property a required dependency.

The Spring team generally advocates constructor injection as it enables one to implement
application components as _immutable objects_ and to ensure that required dependencies
are not `null`. Furthermore constructor-injected components are always returned to client
(calling) code in a fully initialized state. As a side note, a large number of constructor
arguments is a _bad code smell_, implying that the class likely has too many
responsibilities and should be refactored to better address proper separation of concerns.

Setter injection should primarily only be used for optional dependencies that can be
assigned reasonable default values within the class. Otherwise, not-null checks must be
performed everywhere the code uses the dependency. One benefit of setter injection is that
setter methods make objects of that class amenable to reconfiguration or re-injection
1041 1042
later. Management through <<integration.adoc#jmx,JMX MBeans>> is therefore a compelling
use case for setter injection.
B
Brian Clozel 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

Use the DI style that makes the most sense for a particular class. Sometimes, when dealing
with third-party classes for which you do not have the source, the choice is made for you.
For example, if a third-party class does not expose any setter methods, then constructor
injection may be the only available form of DI.
****


[[beans-dependency-resolution]]
==== Dependency resolution process
S
Sam Brannen 已提交
1053

B
Brian Clozel 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
The container performs bean dependency resolution as follows:

* The `ApplicationContext` is created and initialized with configuration metadata that
  describes all the beans. Configuration metadata can be specified via XML, Java code, or
  annotations.
* For each bean, its dependencies are expressed in the form of properties, constructor
  arguments, or arguments to the static-factory method if you are using that instead of
  a normal constructor. These dependencies are provided to the bean, __when the bean is
  actually created__.
* Each property or constructor argument is an actual definition of the value to set, or
  a reference to another bean in the container.
* Each property or constructor argument which is a value is converted from its specified
  format to the actual type of that property or constructor argument. By default Spring
  can convert a value supplied in string format to all built-in types, such as `int`,
  `long`, `String`, `boolean`, etc.

The Spring container validates the configuration of each bean as the container is created.
However, the bean properties themselves are not set until the bean __is actually created__.
Beans that are singleton-scoped and set to be pre-instantiated (the default) are created
when the container is created. Scopes are defined in <<beans-factory-scopes>>. Otherwise,
the bean is created only when it is requested. Creation of a bean potentially causes a
graph of beans to be created, as the bean's dependencies and its dependencies'
dependencies (and so on) are created and assigned. Note that resolution mismatches among
those dependencies may show up late, i.e. on first creation of the affected bean.

.Circular dependencies
****
If you use predominantly constructor injection, it is possible to create an unresolvable
circular dependency scenario.

For example: Class A requires an instance of class B through constructor injection, and
class B requires an instance of class A through constructor injection. If you configure
beans for classes A and B to be injected into each other, the Spring IoC container
detects this circular reference at runtime, and throws a
`BeanCurrentlyInCreationException`.

One possible solution is to edit the source code of some classes to be configured by
setters rather than constructors. Alternatively, avoid constructor injection and use
setter injection only. In other words, although it is not recommended, you can configure
circular dependencies with setter injection.

Unlike the __typical__ case (with no circular dependencies), a circular dependency
between bean A and bean B forces one of the beans to be injected into the other prior to
being fully initialized itself (a classic chicken/egg scenario).
****

You can generally trust Spring to do the right thing. It detects configuration problems,
such as references to non-existent beans and circular dependencies, at container
load-time. Spring sets properties and resolves dependencies as late as possible, when
the bean is actually created. This means that a Spring container which has loaded
correctly can later generate an exception when you request an object if there is a
problem creating that object or one of its dependencies. For example, the bean throws an
exception as a result of a missing or invalid property. This potentially delayed
visibility of some configuration issues is why `ApplicationContext` implementations by
default pre-instantiate singleton beans. At the cost of some upfront time and memory to
create these beans before they are actually needed, you discover configuration issues
when the `ApplicationContext` is created, not later. You can still override this default
behavior so that singleton beans will lazy-initialize, rather than be pre-instantiated.

If no circular dependencies exist, when one or more collaborating beans are being
injected into a dependent bean, each collaborating bean is __totally__ configured prior
to being injected into the dependent bean. This means that if bean A has a dependency on
bean B, the Spring IoC container completely configures bean B prior to invoking the
setter method on bean A. In other words, the bean is instantiated (if not a
pre-instantiated singleton), its dependencies are set, and the relevant lifecycle
methods (such as a <<beans-factory-lifecycle-initializingbean,configured init method>>
or the <<beans-factory-lifecycle-initializingbean,InitializingBean callback method>>)
are invoked.


[[beans-some-examples]]
==== Examples of dependency injection
S
Sam Brannen 已提交
1126

B
Brian Clozel 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
The following example uses XML-based configuration metadata for setter-based DI. A small
part of a Spring XML configuration file specifies some bean definitions:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="exampleBean" class="examples.ExampleBean">
		<!-- setter injection using the nested ref element -->
		<property name="beanOne">
			<ref bean="anotherExampleBean"/>
		</property>

		<!-- setter injection using the neater ref attribute -->
		<property name="beanTwo" ref="yetAnotherBean"/>
		<property name="integerProperty" value="1"/>
	</bean>

	<bean id="anotherExampleBean" class="examples.AnotherBean"/>
	<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class ExampleBean {

		private AnotherBean beanOne;
1154

B
Brian Clozel 已提交
1155
		private YetAnotherBean beanTwo;
1156

B
Brian Clozel 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
		private int i;

		public void setBeanOne(AnotherBean beanOne) {
			this.beanOne = beanOne;
		}

		public void setBeanTwo(YetAnotherBean beanTwo) {
			this.beanTwo = beanTwo;
		}

		public void setIntegerProperty(int i) {
			this.i = i;
		}
	}
----

In the preceding example, setters are declared to match against the properties specified
in the XML file. The following example uses constructor-based DI:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="exampleBean" class="examples.ExampleBean">
		<!-- constructor injection using the nested ref element -->
		<constructor-arg>
			<ref bean="anotherExampleBean"/>
		</constructor-arg>

		<!-- constructor injection using the neater ref attribute -->
		<constructor-arg ref="yetAnotherBean"/>

		<constructor-arg type="int" value="1"/>
	</bean>

	<bean id="anotherExampleBean" class="examples.AnotherBean"/>
	<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class ExampleBean {

		private AnotherBean beanOne;
1201

B
Brian Clozel 已提交
1202
		private YetAnotherBean beanTwo;
1203

B
Brian Clozel 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		private int i;

		public ExampleBean(
			AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) {
			this.beanOne = anotherBean;
			this.beanTwo = yetAnotherBean;
			this.i = i;
		}
	}
----

The constructor arguments specified in the bean definition will be used as arguments to
the constructor of the `ExampleBean`.

Now consider a variant of this example, where instead of using a constructor, Spring is
told to call a `static` factory method to return an instance of the object:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="exampleBean" class="examples.ExampleBean" factory-method="createInstance">
		<constructor-arg ref="anotherExampleBean"/>
		<constructor-arg ref="yetAnotherBean"/>
		<constructor-arg value="1"/>
	</bean>

	<bean id="anotherExampleBean" class="examples.AnotherBean"/>
	<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class ExampleBean {

		// a private constructor
		private ExampleBean(...) {
			...
		}

		// a static factory method; the arguments to this method can be
		// considered the dependencies of the bean that is returned,
		// regardless of how those arguments are actually used.
		public static ExampleBean createInstance (
			AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) {

			ExampleBean eb = new ExampleBean (...);
			// some other operations...
			return eb;
		}
	}
----

Arguments to the `static` factory method are supplied via `<constructor-arg/>` elements,
exactly the same as if a constructor had actually been used. The type of the class being
returned by the factory method does not have to be of the same type as the class that
contains the `static` factory method, although in this example it is. An instance
(non-static) factory method would be used in an essentially identical fashion (aside
from the use of the `factory-bean` attribute instead of the `class` attribute), so
details will not be discussed here.



[[beans-factory-properties-detailed]]
=== Dependencies and configuration in detail
S
Sam Brannen 已提交
1269

B
Brian Clozel 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
As mentioned in the previous section, you can define bean properties and constructor
arguments as references to other managed beans (collaborators), or as values defined
inline. Spring's XML-based configuration metadata supports sub-element types within its
`<property/>` and `<constructor-arg/>` elements for this purpose.


[[beans-value-element]]
==== Straight values (primitives, Strings, and so on)

The `value` attribute of the `<property/>` element specifies a property or constructor
argument as a human-readable string representation. Spring's
<<core-convert-ConversionService-API, conversion service>> is used to convert these
values from a `String` to the actual type of the property or argument.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
		<!-- results in a setDriverClassName(String) call -->
		<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
		<property name="url" value="jdbc:mysql://localhost:3306/mydb"/>
		<property name="username" value="root"/>
		<property name="password" value="masterkaoli"/>
	</bean>
----

The following example uses the <<beans-p-namespace,p-namespace>> for even more succinct
XML configuration.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xmlns:p="http://www.springframework.org/schema/p"
		xsi:schemaLocation="http://www.springframework.org/schema/beans
		http://www.springframework.org/schema/beans/spring-beans.xsd">

		<bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource"
			destroy-method="close"
			p:driverClassName="com.mysql.jdbc.Driver"
			p:url="jdbc:mysql://localhost:3306/mydb"
			p:username="root"
			p:password="masterkaoli"/>

	</beans>
----

The preceding XML is more succinct; however, typos are discovered at runtime rather than
design time, unless you use an IDE such as http://www.jetbrains.com/idea/[IntelliJ
IDEA] or the https://spring.io/tools/sts[Spring Tool Suite] (STS)
that support automatic property completion when you create bean definitions. Such IDE
assistance is highly recommended.

You can also configure a `java.util.Properties` instance as:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="mappings"
		class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

		<!-- typed as a java.util.Properties -->
		<property name="properties">
			<value>
				jdbc.driver.className=com.mysql.jdbc.Driver
				jdbc.url=jdbc:mysql://localhost:3306/mydb
			</value>
		</property>
	</bean>
----

The Spring container converts the text inside the `<value/>` element into a
`java.util.Properties` instance by using the JavaBeans `PropertyEditor` mechanism. This
is a nice shortcut, and is one of a few places where the Spring team do favor the use of
the nested `<value/>` element over the `value` attribute style.

[[beans-idref-element]]
===== The idref element

The `idref` element is simply an error-proof way to pass the __id__ (string value - not
a reference) of another bean in the container to a `<constructor-arg/>` or `<property/>`
element.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="theTargetBean" class="..."/>

	<bean id="theClientBean" class="...">
		<property name="targetName">
J
Juergen Hoeller 已提交
1361
			<idref bean="theTargetBean"/>
B
Brian Clozel 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
		</property>
	</bean>
----

The above bean definition snippet is __exactly__ equivalent (at runtime) to the
following snippet:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="theTargetBean" class="..." />

	<bean id="client" class="...">
J
Juergen Hoeller 已提交
1375
		<property name="targetName" value="theTargetBean"/>
B
Brian Clozel 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	</bean>
----

The first form is preferable to the second, because using the `idref` tag allows the
container to validate __at deployment time__ that the referenced, named bean actually
exists. In the second variation, no validation is performed on the value that is passed
to the `targetName` property of the `client` bean. Typos are only discovered (with most
likely fatal results) when the `client` bean is actually instantiated. If the `client`
bean is a <<beans-factory-scopes,prototype>> bean, this typo and the resulting exception
may only be discovered long after the container is deployed.

[NOTE]
1388
====
B
Brian Clozel 已提交
1389 1390 1391
The `local` attribute on the `idref` element is no longer supported in the 4.0 beans xsd
since it does not provide value over a regular `bean` reference anymore. Simply change
your existing `idref local` references to `idref bean` when upgrading to the 4.0 schema.
1392
====
B
Brian Clozel 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401

A common place (at least in versions earlier than Spring 2.0) where the `<idref/>` element
brings value is in the configuration of <<aop-pfb-1,AOP interceptors>> in a
`ProxyFactoryBean` bean definition. Using `<idref/>` elements when you specify the
interceptor names prevents you from misspelling an interceptor id.


[[beans-ref-element]]
==== References to other beans (collaborators)
S
Sam Brannen 已提交
1402

B
Brian Clozel 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
The `ref` element is the final element inside a `<constructor-arg/>` or `<property/>`
definition element. Here you set the value of the specified property of a bean to be a
reference to another bean (a collaborator) managed by the container. The referenced bean
is a dependency of the bean whose property will be set, and it is initialized on demand
as needed before the property is set. (If the collaborator is a singleton bean, it may
be initialized already by the container.) All references are ultimately a reference to
another object. Scoping and validation depend on whether you specify the id/name of the
other object through the `bean`, `local,` or `parent` attributes.

Specifying the target bean through the `bean` attribute of the `<ref/>` tag is the most
general form, and allows creation of a reference to any bean in the same container or
parent container, regardless of whether it is in the same XML file. The value of the
`bean` attribute may be the same as the `id` attribute of the target bean, or as one of
the values in the `name` attribute of the target bean.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<ref bean="someBean"/>
----

Specifying the target bean through the `parent` attribute creates a reference to a bean
that is in a parent container of the current container. The value of the `parent`
attribute may be the same as either the `id` attribute of the target bean, or one of the
values in the `name` attribute of the target bean, and the target bean must be in a
parent container of the current one. You use this bean reference variant mainly when you
have a hierarchy of containers and you want to wrap an existing bean in a parent
container with a proxy that will have the same name as the parent bean.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<!-- in the parent context -->
	<bean id="accountService" class="com.foo.SimpleAccountService">
		<!-- insert dependencies as required as here -->
	</bean>
----

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<!-- in the child (descendant) context -->
	<bean id="accountService" <!-- bean name is the same as the parent bean -->
		class="org.springframework.aop.framework.ProxyFactoryBean">
		<property name="target">
			<ref parent="accountService"/> <!-- notice how we refer to the parent bean -->
		</property>
		<!-- insert other configuration and dependencies as required here -->
	</bean>
----

[NOTE]
1455
====
B
Brian Clozel 已提交
1456 1457 1458
The `local` attribute on the `ref` element is no longer supported in the 4.0 beans xsd
since it does not provide value over a regular `bean` reference anymore. Simply change
your existing `ref local` references to `ref bean` when upgrading to the 4.0 schema.
1459
====
B
Brian Clozel 已提交
1460 1461 1462 1463


[[beans-inner-beans]]
==== Inner beans
S
Sam Brannen 已提交
1464

B
Brian Clozel 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
A `<bean/>` element inside the `<property/>` or `<constructor-arg/>` elements defines a
so-called __inner bean__.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="outer" class="...">
		<!-- instead of using a reference to a target bean, simply define the target bean inline -->
		<property name="target">
			<bean class="com.example.Person"> <!-- this is the inner bean -->
				<property name="name" value="Fiona Apple"/>
				<property name="age" value="25"/>
			</bean>
		</property>
	</bean>
----

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
An inner bean definition does not require a defined id or name; if specified, the container
does not use such a value as an identifier. The container also ignores the `scope` flag on
creation: Inner beans are __always__ anonymous and they are __always__ created with the outer
bean. It is __not__ possible to inject inner beans into collaborating beans other than into
the enclosing bean or to access them independently.

As a corner case, it is possible to receive destruction callbacks from a custom scope, e.g.
for a request-scoped inner bean contained within a singleton bean: The creation of the inner
bean instance will be tied to its containing bean, but destruction callbacks allow it to
participate in the request scope's lifecycle. This is not a common scenario; inner beans
typically simply share their containing bean's scope.
B
Brian Clozel 已提交
1493 1494 1495 1496


[[beans-collection-elements]]
==== Collections
S
Sam Brannen 已提交
1497

B
Brian Clozel 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
In the `<list/>`, `<set/>`, `<map/>`, and `<props/>` elements, you set the properties
and arguments of the Java `Collection` types `List`, `Set`, `Map`, and `Properties`,
respectively.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="moreComplexObject" class="example.ComplexObject">
		<!-- results in a setAdminEmails(java.util.Properties) call -->
		<property name="adminEmails">
			<props>
				<prop key="administrator">administrator@example.org</prop>
				<prop key="support">support@example.org</prop>
				<prop key="development">development@example.org</prop>
			</props>
		</property>
		<!-- results in a setSomeList(java.util.List) call -->
		<property name="someList">
			<list>
				<value>a list element followed by a reference</value>
				<ref bean="myDataSource" />
			</list>
		</property>
		<!-- results in a setSomeMap(java.util.Map) call -->
		<property name="someMap">
			<map>
				<entry key="an entry" value="just some string"/>
				<entry key ="a ref" value-ref="myDataSource"/>
			</map>
		</property>
		<!-- results in a setSomeSet(java.util.Set) call -->
		<property name="someSet">
			<set>
				<value>just some string</value>
				<ref bean="myDataSource" />
			</set>
		</property>
	</bean>
----

__The value of a map key or value, or a set value, can also again be any of the
following elements:__

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	bean | ref | idref | list | set | map | props | value | null
----

[[beans-collection-elements-merging]]
===== Collection merging
S
Sam Brannen 已提交
1549

B
Brian Clozel 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
The Spring container also supports the __merging__ of collections. An application
developer can define a parent-style `<list/>`, `<map/>`, `<set/>` or `<props/>` element,
and have child-style `<list/>`, `<map/>`, `<set/>` or `<props/>` elements inherit and
override values from the parent collection. That is, the child collection's values are
the result of merging the elements of the parent and child collections, with the child's
collection elements overriding values specified in the parent collection.

__This section on merging discusses the parent-child bean mechanism. Readers unfamiliar
with parent and child bean definitions may wish to read the
<<beans-child-bean-definitions,relevant section>> before continuing.__

The following example demonstrates collection merging:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>
		<bean id="parent" abstract="true" class="example.ComplexObject">
			<property name="adminEmails">
				<props>
					<prop key="administrator">administrator@example.com</prop>
					<prop key="support">support@example.com</prop>
				</props>
			</property>
		</bean>
		<bean id="child" parent="parent">
			<property name="adminEmails">
				<!-- the merge is specified on the child collection definition -->
				<props merge="true">
					<prop key="sales">sales@example.com</prop>
					<prop key="support">support@example.co.uk</prop>
				</props>
			</property>
		</bean>
	<beans>
----

Notice the use of the `merge=true` attribute on the `<props/>` element of the
`adminEmails` property of the `child` bean definition. When the `child` bean is resolved
and instantiated by the container, the resulting instance has an `adminEmails`
`Properties` collection that contains the result of the merging of the child's
`adminEmails` collection with the parent's `adminEmails` collection.

[literal]
[subs="verbatim,quotes"]
----
administrator=administrator@example.com
sales=sales@example.com
support=support@example.co.uk
----

The child `Properties` collection's value set inherits all property elements from the
parent `<props/>`, and the child's value for the `support` value overrides the value in
the parent collection.

This merging behavior applies similarly to the `<list/>`, `<map/>`, and `<set/>`
collection types. In the specific case of the `<list/>` element, the semantics
associated with the `List` collection type, that is, the notion of an `ordered`
collection of values, is maintained; the parent's values precede all of the child list's
values. In the case of the `Map`, `Set`, and `Properties` collection types, no ordering
exists. Hence no ordering semantics are in effect for the collection types that underlie
the associated `Map`, `Set`, and `Properties` implementation types that the container
uses internally.

[[beans-collection-merge-limitations]]
===== Limitations of collection merging
S
Sam Brannen 已提交
1616

B
Brian Clozel 已提交
1617 1618 1619 1620 1621 1622 1623
You cannot merge different collection types (such as a `Map` and a `List`), and if you
do attempt to do so an appropriate `Exception` is thrown. The `merge` attribute must be
specified on the lower, inherited, child definition; specifying the `merge` attribute on
a parent collection definition is redundant and will not result in the desired merging.

[[beans-collection-elements-strongly-typed]]
===== Strongly-typed collection
S
Sam Brannen 已提交
1624

B
Brian Clozel 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
With the introduction of generic types in Java 5, you can use strongly typed collections.
That is, it is possible to declare a `Collection` type such that it can only contain
`String` elements (for example). If you are using Spring to dependency-inject a
strongly-typed `Collection` into a bean, you can take advantage of Spring's
type-conversion support such that the elements of your strongly-typed `Collection`
instances are converted to the appropriate type prior to being added to the `Collection`.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class Foo {

		private Map<String, Float> accounts;

		public void setAccounts(Map<String, Float> accounts) {
			this.accounts = accounts;
		}
	}
----

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>
		<bean id="foo" class="x.y.Foo">
			<property name="accounts">
				<map>
					<entry key="one" value="9.99"/>
					<entry key="two" value="2.75"/>
					<entry key="six" value="3.99"/>
				</map>
			</property>
		</bean>
	</beans>
----

When the `accounts` property of the `foo` bean is prepared for injection, the generics
information about the element type of the strongly-typed `Map<String, Float>` is
available by reflection. Thus Spring's type conversion infrastructure recognizes the
various value elements as being of type `Float`, and the string values `9.99, 2.75`, and
`3.99` are converted into an actual `Float` type.


[[beans-null-element]]
==== Null and empty string values
S
Sam Brannen 已提交
1670

B
Brian Clozel 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
Spring treats empty arguments for properties and the like as empty `Strings`. The
following XML-based configuration metadata snippet sets the email property to the empty
`String` value ("").

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean class="ExampleBean">
		<property name="email" value=""/>
	</bean>
----

The preceding example is equivalent to the following Java code:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
J
Juergen Hoeller 已提交
1688
	exampleBean.setEmail("");
B
Brian Clozel 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
----

The `<null/>` element handles `null` values. For example:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean class="ExampleBean">
		<property name="email">
			<null/>
		</property>
	</bean>
----

The above configuration is equivalent to the following Java code:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
J
Juergen Hoeller 已提交
1708
	exampleBean.setEmail(null);
B
Brian Clozel 已提交
1709 1710 1711 1712 1713
----


[[beans-p-namespace]]
==== XML shortcut with the p-namespace
S
Sam Brannen 已提交
1714

B
Brian Clozel 已提交
1715 1716 1717
The p-namespace enables you to use the `bean` element's attributes, instead of nested
`<property/>` elements, to describe your property values and/or collaborating beans.

R
Rossen Stoyanchev 已提交
1718 1719
Spring supports extensible configuration formats
<<core.adoc#xsd-schemas,with namespaces>>,
1720
which are based on an XML Schema definition. The `beans` configuration format discussed in this
B
Brian Clozel 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
chapter is defined in an XML Schema document. However, the p-namespace is not defined in
an XSD file and exists only in the core of Spring.

The following example shows two XML snippets that resolve to the same result: The first
uses standard XML format and the second uses the p-namespace.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xmlns:p="http://www.springframework.org/schema/p"
		xsi:schemaLocation="http://www.springframework.org/schema/beans
			http://www.springframework.org/schema/beans/spring-beans.xsd">

		<bean name="classic" class="com.example.ExampleBean">
			<property name="email" value="foo@bar.com"/>
		</bean>

		<bean name="p-namespace" class="com.example.ExampleBean"
			p:email="foo@bar.com"/>
	</beans>
----

The example shows an attribute in the p-namespace called email in the bean definition.
This tells Spring to include a property declaration. As previously mentioned, the
p-namespace does not have a schema definition, so you can set the name of the attribute
to the property name.

This next example includes two more bean definitions that both have a reference to
another bean:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xmlns:p="http://www.springframework.org/schema/p"
		xsi:schemaLocation="http://www.springframework.org/schema/beans
			http://www.springframework.org/schema/beans/spring-beans.xsd">

		<bean name="john-classic" class="com.example.Person">
			<property name="name" value="John Doe"/>
			<property name="spouse" ref="jane"/>
		</bean>

		<bean name="john-modern"
			class="com.example.Person"
			p:name="John Doe"
			p:spouse-ref="jane"/>

		<bean name="jane" class="com.example.Person">
			<property name="name" value="Jane Doe"/>
		</bean>
	</beans>
----

As you can see, this example includes not only a property value using the p-namespace,
but also uses a special format to declare property references. Whereas the first bean
definition uses `<property name="spouse" ref="jane"/>` to create a reference from bean
`john` to bean `jane`, the second bean definition uses `p:spouse-ref="jane"` as an
attribute to do the exact same thing. In this case `spouse` is the property name,
whereas the `-ref` part indicates that this is not a straight value but rather a
reference to another bean.

[NOTE]
1787
====
B
Brian Clozel 已提交
1788 1789 1790 1791 1792
The p-namespace is not as flexible as the standard XML format. For example, the format
for declaring property references clashes with properties that end in `Ref`, whereas the
standard XML format does not. We recommend that you choose your approach carefully and
communicate this to your team members, to avoid producing XML documents that use all
three approaches at the same time.
1793
====
B
Brian Clozel 已提交
1794 1795 1796 1797


[[beans-c-namespace]]
==== XML shortcut with the c-namespace
S
Sam Brannen 已提交
1798

B
Brian Clozel 已提交
1799 1800 1801 1802 1803 1804
Similar to the <<beans-p-namespace>>, the __c-namespace__, newly introduced in Spring
3.1, allows usage of inlined attributes for configuring the constructor arguments rather
then nested `constructor-arg` elements.

Let's review the examples from <<beans-constructor-injection>> with the `c:` namespace:

1805
[source,xml,indent=0]
B
Brian Clozel 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
[subs="verbatim,quotes"]
----
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xmlns:c="http://www.springframework.org/schema/c"
		xsi:schemaLocation="http://www.springframework.org/schema/beans
			http://www.springframework.org/schema/beans/spring-beans.xsd">

		<bean id="bar" class="x.y.Bar"/>
		<bean id="baz" class="x.y.Baz"/>

		<!-- traditional declaration -->
		<bean id="foo" class="x.y.Foo">
			<constructor-arg ref="bar"/>
			<constructor-arg ref="baz"/>
			<constructor-arg value="foo@bar.com"/>
		</bean>

		<!-- c-namespace declaration -->
		<bean id="foo" class="x.y.Foo" c:bar-ref="bar" c:baz-ref="baz" c:email="foo@bar.com"/>

	</beans>
----

The `c:` namespace uses the same conventions as the `p:` one (trailing `-ref` for bean
references) for setting the constructor arguments by their names. And just as well, it
needs to be declared even though it is not defined in an XSD schema (but it exists
inside the Spring core).

For the rare cases where the constructor argument names are not available (usually if
the bytecode was compiled without debugging information), one can use fallback to the
argument indexes:

1839
[source,xml,indent=0]
B
Brian Clozel 已提交
1840 1841 1842 1843 1844 1845 1846
[subs="verbatim,quotes"]
----
	<!-- c-namespace index declaration -->
	<bean id="foo" class="x.y.Foo" c:_0-ref="bar" c:_1-ref="baz"/>
----

[NOTE]
1847
====
B
Brian Clozel 已提交
1848 1849
Due to the XML grammar, the index notation requires the presence of the leading `_` as
XML attribute names cannot start with a number (even though some IDE allow it).
1850
====
B
Brian Clozel 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859

In practice, the constructor resolution
<<beans-factory-ctor-arguments-resolution,mechanism>> is quite efficient in matching
arguments so unless one really needs to, we recommend using the name notation
through-out your configuration.


[[beans-compound-property-names]]
==== Compound property names
S
Sam Brannen 已提交
1860

B
Brian Clozel 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
You can use compound or nested property names when you set bean properties, as long as
all components of the path except the final property name are not `null`. Consider the
following bean definition.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="foo" class="foo.Bar">
		<property name="fred.bob.sammy" value="123" />
	</bean>
----

The `foo` bean has a `fred` property, which has a `bob` property, which has a `sammy`
property, and that final `sammy` property is being set to the value `123`. In order for
this to work, the `fred` property of `foo`, and the `bob` property of `fred` must not be
`null` after the bean is constructed, or a `NullPointerException` is thrown.



[[beans-factory-dependson]]
=== Using depends-on

If a bean is a dependency of another that usually means that one bean is set as a
property of another. Typically you accomplish this with the <<beans-ref-element, `<ref/>`
element>> in XML-based configuration metadata. However, sometimes dependencies between
beans are less direct; for example, a static initializer in a class needs to be
triggered, such as database driver registration. The `depends-on` attribute can
explicitly force one or more beans to be initialized before the bean using this element
is initialized. The following example uses the `depends-on` attribute to express a
dependency on a single bean:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="beanOne" class="ExampleBean" depends-on="manager"/>
	<bean id="manager" class="ManagerBean" />
----

To express a dependency on multiple beans, supply a list of bean names as the value of
the `depends-on` attribute, with commas, whitespace and semicolons, used as valid
delimiters:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="beanOne" class="ExampleBean" depends-on="manager,accountDao">
		<property name="manager" ref="manager" />
	</bean>

	<bean id="manager" class="ManagerBean" />
	<bean id="accountDao" class="x.y.jdbc.JdbcAccountDao" />
----

[NOTE]
1915
====
B
Brian Clozel 已提交
1916 1917 1918 1919 1920
The `depends-on` attribute in the bean definition can specify both an initialization
time dependency and, in the case of <<beans-factory-scopes-singleton,singleton>> beans
only, a corresponding destroy time dependency. Dependent beans that define a
`depends-on` relationship with a given bean are destroyed first, prior to the given bean
itself being destroyed. Thus `depends-on` can also control shutdown order.
1921
====
B
Brian Clozel 已提交
1922 1923 1924 1925 1926



[[beans-factory-lazy-init]]
=== Lazy-initialized beans
S
Sam Brannen 已提交
1927

B
Brian Clozel 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
By default, `ApplicationContext` implementations eagerly create and configure all
<<beans-factory-scopes-singleton,singleton>> beans as part of the initialization
process. Generally, this pre-instantiation is desirable, because errors in the
configuration or surrounding environment are discovered immediately, as opposed to hours
or even days later. When this behavior is __not__ desirable, you can prevent
pre-instantiation of a singleton bean by marking the bean definition as
lazy-initialized. A lazy-initialized bean tells the IoC container to create a bean
instance when it is first requested, rather than at startup.

In XML, this behavior is controlled by the `lazy-init` attribute on the `<bean/>`
element; for example:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="lazy" class="com.foo.ExpensiveToCreateBean" lazy-init="true"/>
	<bean name="not.lazy" class="com.foo.AnotherBean"/>
----

When the preceding configuration is consumed by an `ApplicationContext`, the bean named
`lazy` is not eagerly pre-instantiated when the `ApplicationContext` is starting up,
whereas the `not.lazy` bean is eagerly pre-instantiated.

However, when a lazy-initialized bean is a dependency of a singleton bean that is
__not__ lazy-initialized, the `ApplicationContext` creates the lazy-initialized bean at
startup, because it must satisfy the singleton's dependencies. The lazy-initialized bean
is injected into a singleton bean elsewhere that is not lazy-initialized.

You can also control lazy-initialization at the container level by using the
`default-lazy-init` attribute on the `<beans/>` element; for example:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans default-lazy-init="true">
		<!-- no beans will be pre-instantiated... -->
	</beans>
----



[[beans-factory-autowire]]
=== Autowiring collaborators
S
Sam Brannen 已提交
1971

B
Brian Clozel 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
The Spring container can __autowire__ relationships between collaborating beans. You can
allow Spring to resolve collaborators (other beans) automatically for your bean by
inspecting the contents of the `ApplicationContext`. Autowiring has the following
advantages:

* Autowiring can significantly reduce the need to specify properties or constructor
  arguments. (Other mechanisms such as a bean template
  <<beans-child-bean-definitions,discussed elsewhere in this chapter>> are also valuable
  in this regard.)
* Autowiring can update a configuration as your objects evolve. For example, if you need
  to add a dependency to a class, that dependency can be satisfied automatically without
  you needing to modify the configuration. Thus autowiring can be especially useful
  during development, without negating the option of switching to explicit wiring when
  the code base becomes more stable.

When using XML-based configuration metadata footnote:[See
pass:specialcharacters,macros[<<beans-factory-collaborators>>]], you specify autowire
mode for a bean definition with the `autowire` attribute of the `<bean/>` element. The
1990
autowiring functionality has four modes. You specify autowiring __per__ bean and thus
B
Brian Clozel 已提交
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
can choose which ones to autowire.

[[beans-factory-autowiring-modes-tbl]]
.Autowiring modes
|===
| Mode| Explanation

| no
| (Default) No autowiring. Bean references must be defined via a `ref` element. Changing
  the default setting is not recommended for larger deployments, because specifying
  collaborators explicitly gives greater control and clarity. To some extent, it
  documents the structure of a system.

| byName
| Autowiring by property name. Spring looks for a bean with the same name as the
  property that needs to be autowired. For example, if a bean definition is set to
  autowire by name, and it contains a __master__ property (that is, it has a
  __setMaster(..)__ method), Spring looks for a bean definition named `master`, and uses
  it to set the property.

| byType
| Allows a property to be autowired if exactly one bean of the property type exists in
  the container. If more than one exists, a fatal exception is thrown, which indicates
  that you may not use __byType__ autowiring for that bean. If there are no matching
  beans, nothing happens; the property is not set.

| constructor
| Analogous to __byType__, but applies to constructor arguments. If there is not exactly
  one bean of the constructor argument type in the container, a fatal error is raised.
|===

With __byType__ or __constructor__ autowiring mode, you can wire arrays and
typed-collections. In such cases __all__ autowire candidates within the container that
match the expected type are provided to satisfy the dependency. You can autowire
strongly-typed Maps if the expected key type is `String`. An autowired Maps values will
consist of all bean instances that match the expected type, and the Maps keys will
contain the corresponding bean names.

You can combine autowire behavior with dependency checking, which is performed after
autowiring completes.


[[beans-autowired-exceptions]]
==== Limitations and disadvantages of autowiring
S
Sam Brannen 已提交
2035

B
Brian Clozel 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
Autowiring works best when it is used consistently across a project. If autowiring is
not used in general, it might be confusing to developers to use it to wire only one or
two bean definitions.

Consider the limitations and disadvantages of autowiring:

* Explicit dependencies in `property` and `constructor-arg` settings always override
  autowiring. You cannot autowire so-called __simple__ properties such as primitives,
  `Strings`, and `Classes` (and arrays of such simple properties). This limitation is
  by-design.
* Autowiring is less exact than explicit wiring. Although, as noted in the above table,
  Spring is careful to avoid guessing in case of ambiguity that might have unexpected
  results, the relationships between your Spring-managed objects are no longer
  documented explicitly.
* Wiring information may not be available to tools that may generate documentation from
  a Spring container.
* Multiple bean definitions within the container may match the type specified by the
  setter method or constructor argument to be autowired. For arrays, collections, or
  Maps, this is not necessarily a problem. However for dependencies that expect a single
  value, this ambiguity is not arbitrarily resolved. If no unique bean definition is
  available, an exception is thrown.

In the latter scenario, you have several options:

* Abandon autowiring in favor of explicit wiring.
* Avoid autowiring for a bean definition by setting its `autowire-candidate` attributes
  to `false` as described in the next section.
* Designate a single bean definition as the __primary__ candidate by setting the
  `primary` attribute of its `<bean/>` element to `true`.
* Implement the more fine-grained control available
  with annotation-based configuration, as described in <<beans-annotation-config>>.


[[beans-factory-autowire-candidate]]
==== Excluding a bean from autowiring
S
Sam Brannen 已提交
2071

B
Brian Clozel 已提交
2072 2073 2074 2075 2076 2077
On a per-bean basis, you can exclude a bean from autowiring. In Spring's XML format, set
the `autowire-candidate` attribute of the `<bean/>` element to `false`; the container
makes that specific bean definition unavailable to the autowiring infrastructure
(including annotation style configurations such as <<beans-autowired-annotation,
`@Autowired`>>).

2078 2079 2080 2081 2082 2083 2084 2085
[NOTE]
====
The `autowire-candidate` attribute is designed to only affect type-based autowiring.
It does not affect explicit references by name, which will get resolved even if the
specified bean is not marked as an autowire candidate. As a consequence, autowiring
by name will nevertheless inject a bean if the name matches.
====

B
Brian Clozel 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
You can also limit autowire candidates based on pattern-matching against bean names. The
top-level `<beans/>` element accepts one or more patterns within its
`default-autowire-candidates` attribute. For example, to limit autowire candidate status
to any bean whose name ends with __Repository,__ provide a value of *Repository. To
provide multiple patterns, define them in a comma-separated list. An explicit value of
`true` or `false` for a bean definitions `autowire-candidate` attribute always takes
precedence, and for such beans, the pattern matching rules do not apply.

These techniques are useful for beans that you never want to be injected into other
beans by autowiring. It does not mean that an excluded bean cannot itself be configured
using autowiring. Rather, the bean itself is not a candidate for autowiring other beans.



S
Sam Brannen 已提交
2100

B
Brian Clozel 已提交
2101 2102
[[beans-factory-method-injection]]
=== Method injection
S
Sam Brannen 已提交
2103

B
Brian Clozel 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
In most application scenarios, most beans in the container are
<<beans-factory-scopes-singleton,singletons>>. When a singleton bean needs to
collaborate with another singleton bean, or a non-singleton bean needs to collaborate
with another non-singleton bean, you typically handle the dependency by defining one
bean as a property of the other. A problem arises when the bean lifecycles are
different. Suppose singleton bean A needs to use non-singleton (prototype) bean B,
perhaps on each method invocation on A. The container only creates the singleton bean A
once, and thus only gets one opportunity to set the properties. The container cannot
provide bean A with a new instance of bean B every time one is needed.

A solution is to forego some inversion of control. You can <<beans-factory-aware,make
bean A aware of the container>> by implementing the `ApplicationContextAware` interface,
and by <<beans-factory-client,making a getBean("B") call to the container>> ask for (a
typically new) bean B instance every time bean A needs it. The following is an example
of this approach:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	// a class that uses a stateful Command-style class to perform some processing
	package fiona.apple;

	// Spring-API imports
	import org.springframework.beans.BeansException;
	import org.springframework.context.ApplicationContext;
	import org.springframework.context.ApplicationContextAware;

	public class CommandManager implements ApplicationContextAware {

		private ApplicationContext applicationContext;

		public Object process(Map commandState) {
			// grab a new instance of the appropriate Command
			Command command = createCommand();
			// set the state on the (hopefully brand new) Command instance
			command.setState(commandState);
			return command.execute();
		}

		protected Command createCommand() {
			// notice the Spring API dependency!
			return this.applicationContext.getBean("command", Command.class);
		}

		public void setApplicationContext(
				ApplicationContext applicationContext) throws BeansException {
			this.applicationContext = applicationContext;
		}
	}
----

The preceding is not desirable, because the business code is aware of and coupled to the
Spring Framework. Method Injection, a somewhat advanced feature of the Spring IoC
container, allows this use case to be handled in a clean fashion.

****
You can read more about the motivation for Method Injection in
https://spring.io/blog/2004/08/06/method-injection/[this blog entry].
****


[[beans-factory-lookup-method-injection]]
==== Lookup method injection
S
Sam Brannen 已提交
2167

B
Brian Clozel 已提交
2168 2169 2170 2171 2172 2173 2174 2175
Lookup method injection is the ability of the container to override methods on
__container managed beans__, to return the lookup result for another named bean in the
container. The lookup typically involves a prototype bean as in the scenario described
in the preceding section. The Spring Framework implements this method injection by using
bytecode generation from the CGLIB library to generate dynamically a subclass that
overrides the method.

[NOTE]
2176
====
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
* For this dynamic subclassing to work, the class that the Spring bean container will
  subclass cannot be `final`, and the method to be overridden cannot be `final` either.
* Unit-testing a class that has an `abstract` method requires you to subclass the class
  yourself and to supply a stub implementation of the `abstract` method.
* Concrete methods are also necessary for component scanning which requires concrete
  classes to pick up.
* A further key limitation is that lookup methods won't work with factory methods and
  in particular not with `@Bean` methods in configuration classes, since the container
  is not in charge of creating the instance in that case and therefore cannot create
  a runtime-generated subclass on the fly.
2187
====
B
Brian Clozel 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

Looking at the `CommandManager` class in the previous code snippet, you see that the
Spring container will dynamically override the implementation of the `createCommand()`
method. Your `CommandManager` class will not have any Spring dependencies, as can be
seen in the reworked example:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	package fiona.apple;

	// no more Spring imports!

	public abstract class CommandManager {

		public Object process(Object commandState) {
			// grab a new instance of the appropriate Command interface
			Command command = createCommand();
			// set the state on the (hopefully brand new) Command instance
			command.setState(commandState);
			return command.execute();
		}

		// okay... but where is the implementation of this method?
		protected abstract Command createCommand();
	}
----

In the client class containing the method to be injected (the `CommandManager` in this
case), the method to be injected requires a signature of the following form:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<public|protected> [abstract] <return-type> theMethodName(no-arguments);
----

If the method is `abstract`, the dynamically-generated subclass implements the method.
Otherwise, the dynamically-generated subclass overrides the concrete method defined in
the original class. For example:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<!-- a stateful bean deployed as a prototype (non-singleton) -->
J
Juergen Hoeller 已提交
2233
	<bean id="myCommand" class="fiona.apple.AsyncCommand" scope="prototype">
B
Brian Clozel 已提交
2234 2235 2236 2237 2238
		<!-- inject dependencies here as required -->
	</bean>

	<!-- commandProcessor uses statefulCommandHelper -->
	<bean id="commandManager" class="fiona.apple.CommandManager">
J
Juergen Hoeller 已提交
2239
		<lookup-method name="createCommand" bean="myCommand"/>
B
Brian Clozel 已提交
2240 2241 2242 2243
	</bean>
----

The bean identified as __commandManager__ calls its own method `createCommand()`
J
Juergen Hoeller 已提交
2244 2245 2246
whenever it needs a new instance of the __myCommand__ bean. You must be careful to deploy
the `myCommand` bean as a prototype, if that is actually what is needed. If it is
 as a <<beans-factory-scopes-singleton,singleton>>, the same instance of the `myCommand`
B
Brian Clozel 已提交
2247 2248
bean is returned each time.

J
Juergen Hoeller 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
Alternatively, within the annotation-based component model, you may declare a lookup
method through the `@Lookup` annotation:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public abstract class CommandManager {

		public Object process(Object commandState) {
			Command command = createCommand();
			command.setState(commandState);
			return command.execute();
		}

		@Lookup("myCommand")
		protected abstract Command createCommand();
	}
----

Or, more idiomatically, you may rely on the target bean getting resolved against the
declared return type of the lookup method:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public abstract class CommandManager {

		public Object process(Object commandState) {
			MyCommand command = createCommand();
			command.setState(commandState);
			return command.execute();
		}

		@Lookup
		protected abstract MyCommand createCommand();
	}
----

Note that you will typically declare such annotated lookup methods with a concrete
stub implementation, in order for them to be compatible with Spring's component
scanning rules where abstract classes get ignored by default. This limitation does not
apply in case of explicitly registered or explicitly imported bean classes.

B
Brian Clozel 已提交
2292
[TIP]
S
Stephane Nicoll 已提交
2293
====
J
Juergen Hoeller 已提交
2294 2295 2296
Another way of accessing differently scoped target beans is an `ObjectFactory`/
`Provider` injection point. Check out <<beans-factory-scopes-other-injection>>.

B
Brian Clozel 已提交
2297
The interested reader may also find the `ServiceLocatorFactoryBean` (in the
J
Juergen Hoeller 已提交
2298
`org.springframework.beans.factory.config` package) to be of use.
S
Stephane Nicoll 已提交
2299
====
B
Brian Clozel 已提交
2300 2301 2302 2303


[[beans-factory-arbitrary-method-replacement]]
==== Arbitrary method replacement
S
Sam Brannen 已提交
2304

2305
A less useful form of method injection than lookup method injection is the ability to
B
Brian Clozel 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
replace arbitrary methods in a managed bean with another method implementation. Users
may safely skip the rest of this section until the functionality is actually needed.

With XML-based configuration metadata, you can use the `replaced-method` element to
replace an existing method implementation with another, for a deployed bean. Consider
the following class, with a method computeValue, which we want to override:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class MyValueCalculator {

		public String computeValue(String input) {
			// some real code...
		}

		// some other methods...
	}
----

A class implementing the `org.springframework.beans.factory.support.MethodReplacer`
interface provides the new method definition.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	/**
	 * meant to be used to override the existing computeValue(String)
	 * implementation in MyValueCalculator
	 */
	public class ReplacementComputeValue implements MethodReplacer {

		public Object reimplement(Object o, Method m, Object[] args) throws Throwable {
			// get the input value, work with it, and return a computed result
			String input = (String) args[0];
			...
			return ...;
		}
	}
----

The bean definition to deploy the original class and specify the method override would
look like this:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="myValueCalculator" class="x.y.z.MyValueCalculator">
		<!-- arbitrary method replacement -->
		<replaced-method name="computeValue" replacer="replacementComputeValue">
			<arg-type>String</arg-type>
		</replaced-method>
	</bean>

	<bean id="replacementComputeValue" class="a.b.c.ReplacementComputeValue"/>
----

You can use one or more contained `<arg-type/>` elements within the `<replaced-method/>`
element to indicate the method signature of the method being overridden. The signature
for the arguments is necessary only if the method is overloaded and multiple variants
exist within the class. For convenience, the type string for an argument may be a
substring of the fully qualified type name. For example, the following all match
`java.lang.String`:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	java.lang.String
	String
	Str
----

Because the number of arguments is often enough to distinguish between each possible
choice, this shortcut can save a lot of typing, by allowing you to type only the
shortest string that will match an argument type.




[[beans-factory-scopes]]
== Bean scopes
2387

B
Brian Clozel 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
When you create a bean definition, you create a __recipe__ for creating actual instances
of the class defined by that bean definition. The idea that a bean definition is a
recipe is important, because it means that, as with a class, you can create many object
instances from a single recipe.

You can control not only the various dependencies and configuration values that are to
be plugged into an object that is created from a particular bean definition, but also
the __scope__ of the objects created from a particular bean definition. This approach is
powerful and flexible in that you can __choose__ the scope of the objects you create
through configuration instead of having to bake in the scope of an object at the Java
class level. Beans can be defined to be deployed in one of a number of scopes: out of
2399
the box, the Spring Framework supports six scopes, four of which are available only if
B
Brian Clozel 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
you use a web-aware `ApplicationContext`.

The following scopes are supported out of the box. You can also create
<<beans-factory-scopes-custom,a custom scope.>>

[[beans-factory-scopes-tbl]]
.Bean scopes
|===
| Scope| Description

| <<beans-factory-scopes-singleton,singleton>>
| (Default) Scopes a single bean definition to a single object instance per Spring IoC
  container.

| <<beans-factory-scopes-prototype,prototype>>
| Scopes a single bean definition to any number of object instances.

| <<beans-factory-scopes-request,request>>
| Scopes a single bean definition to the lifecycle of a single HTTP request; that is,
  each HTTP request has its own instance of a bean created off the back of a single bean
  definition. Only valid in the context of a web-aware Spring `ApplicationContext`.

| <<beans-factory-scopes-session,session>>
| Scopes a single bean definition to the lifecycle of an HTTP `Session`. Only valid in
  the context of a web-aware Spring `ApplicationContext`.

| <<beans-factory-scopes-application,application>>
| Scopes a single bean definition to the lifecycle of a `ServletContext`. Only valid in
  the context of a web-aware Spring `ApplicationContext`.
2429

2430
| <<web.adoc#websocket-stomp-websocket-scope,websocket>>
2431 2432
| Scopes a single bean definition to the lifecycle of a `WebSocket`. Only valid in
  the context of a web-aware Spring `ApplicationContext`.
B
Brian Clozel 已提交
2433 2434 2435
|===

[NOTE]
2436
====
B
Brian Clozel 已提交
2437 2438
As of Spring 3.0, a __thread scope__ is available, but is not registered by default. For
more information, see the documentation for
2439
{api-spring-framework}/context/support/SimpleThreadScope.html[`SimpleThreadScope`].
B
Brian Clozel 已提交
2440 2441
For instructions on how to register this or any other custom scope, see
<<beans-factory-scopes-custom-using>>.
2442
====
B
Brian Clozel 已提交
2443 2444 2445 2446 2447



[[beans-factory-scopes-singleton]]
=== The singleton scope
S
Sam Brannen 已提交
2448

B
Brian Clozel 已提交
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
Only one __shared__ instance of a singleton bean is managed, and all requests for beans
with an id or ids matching that bean definition result in that one specific bean
instance being returned by the Spring container.

To put it another way, when you define a bean definition and it is scoped as a
singleton, the Spring IoC container creates __exactly one__ instance of the object
defined by that bean definition. This single instance is stored in a cache of such
singleton beans, and __all subsequent requests and references__ for that named bean
return the cached object.

2459
image::images/singleton.png[]
B
Brian Clozel 已提交
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482

Spring's concept of a singleton bean differs from the Singleton pattern as defined in
the Gang of Four (GoF) patterns book. The GoF Singleton hard-codes the scope of an
object such that one __and only one__ instance of a particular class is created __per
ClassLoader__. The scope of the Spring singleton is best described as __per container
and per bean__. This means that if you define one bean for a particular class in a
single Spring container, then the Spring container creates one __and only one__ instance
of the class defined by that bean definition. __The singleton scope is the default scope
in Spring__. To define a bean as a singleton in XML, you would write, for example:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="accountService" class="com.foo.DefaultAccountService"/>

	<!-- the following is equivalent, though redundant (singleton scope is the default) -->
	<bean id="accountService" class="com.foo.DefaultAccountService" scope="singleton"/>
----



[[beans-factory-scopes-prototype]]
=== The prototype scope
S
Sam Brannen 已提交
2483

B
Brian Clozel 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
The non-singleton, prototype scope of bean deployment results in the __creation of a new
bean instance__ every time a request for that specific bean is made. That is, the bean
is injected into another bean or you request it through a `getBean()` method call on the
container. As a rule, use the prototype scope for all stateful beans and the singleton
scope for stateless beans.

The following diagram illustrates the Spring prototype scope. __A data access object
(DAO) is not typically configured as a prototype, because a typical DAO does not hold
any conversational state; it was just easier for this author to reuse the core of the
singleton diagram.__

2495
image::images/prototype.png[]
B
Brian Clozel 已提交
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524

The following example defines a bean as a prototype in XML:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="accountService" class="com.foo.DefaultAccountService" scope="prototype"/>
----

In contrast to the other scopes, Spring does not manage the complete lifecycle of a
prototype bean: the container instantiates, configures, and otherwise assembles a
prototype object, and hands it to the client, with no further record of that prototype
instance. Thus, although__ initialization__ lifecycle callback methods are called on all
objects regardless of scope, in the case of prototypes, configured __destruction__
lifecycle callbacks are __not__ called. The client code must clean up prototype-scoped
objects and release expensive resources that the prototype bean(s) are holding. To get
the Spring container to release resources held by prototype-scoped beans, try using a
custom <<beans-factory-extension-bpp,bean post-processor>>, which holds a reference to
beans that need to be cleaned up.

In some respects, the Spring container's role in regard to a prototype-scoped bean is a
replacement for the Java `new` operator. All lifecycle management past that point must
be handled by the client. (For details on the lifecycle of a bean in the Spring
container, see <<beans-factory-lifecycle>>.)



[[beans-factory-scopes-sing-prot-interaction]]
=== Singleton beans with prototype-bean dependencies
S
Sam Brannen 已提交
2525

B
Brian Clozel 已提交
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
When you use singleton-scoped beans with dependencies on prototype beans, be aware that
__dependencies are resolved at instantiation time__. Thus if you dependency-inject a
prototype-scoped bean into a singleton-scoped bean, a new prototype bean is instantiated
and then dependency-injected into the singleton bean. The prototype instance is the sole
instance that is ever supplied to the singleton-scoped bean.

However, suppose you want the singleton-scoped bean to acquire a new instance of the
prototype-scoped bean repeatedly at runtime. You cannot dependency-inject a
prototype-scoped bean into your singleton bean, because that injection occurs only
__once__, when the Spring container is instantiating the singleton bean and resolving
and injecting its dependencies. If you need a new instance of a prototype bean at
runtime more than once, see <<beans-factory-method-injection>>



[[beans-factory-scopes-other]]
J
Juergen Hoeller 已提交
2542
=== Request, session, application, and WebSocket scopes
S
Sam Brannen 已提交
2543

J
Juergen Hoeller 已提交
2544 2545 2546 2547 2548
The `request`, `session`, `application`, and `websocket` scopes are __only__ available
if you use a web-aware Spring `ApplicationContext` implementation (such as
`XmlWebApplicationContext`). If you use these scopes with regular Spring IoC containers
such as the `ClassPathXmlApplicationContext`, an `IllegalStateException` will be thrown
complaining about an unknown bean scope.
B
Brian Clozel 已提交
2549 2550 2551 2552


[[beans-factory-scopes-other-web-configuration]]
==== Initial web configuration
S
Sam Brannen 已提交
2553

J
Juergen Hoeller 已提交
2554 2555 2556 2557
To support the scoping of beans at the `request`, `session`, `application`, and
`websocket` levels (web-scoped beans), some minor initial configuration is
required before you define your beans. (This initial setup is __not__ required
for the standard scopes, `singleton` and `prototype`.)
B
Brian Clozel 已提交
2558

S
Sam Brannen 已提交
2559
How you accomplish this initial setup depends on your particular Servlet environment.
B
Brian Clozel 已提交
2560 2561

If you access scoped beans within Spring Web MVC, in effect, within a request that is
J
Juergen Hoeller 已提交
2562 2563
processed by the Spring `DispatcherServlet`, then no special setup is necessary:
`DispatcherServlet` already exposes all relevant state.
B
Brian Clozel 已提交
2564 2565

If you use a Servlet 2.5 web container, with requests processed outside of Spring's
S
Sam Brannen 已提交
2566
`DispatcherServlet` (for example, when using JSF or Struts), you need to register the
B
Brian Clozel 已提交
2567
`org.springframework.web.context.request.RequestContextListener` `ServletRequestListener`.
S
Sam Brannen 已提交
2568
For Servlet 3.0+, this can be done programmatically via the `WebApplicationInitializer`
B
Brian Clozel 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
interface. Alternatively, or for older containers, add the following declaration to
your web application's `web.xml` file:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<web-app>
		...
		<listener>
			<listener-class>
				org.springframework.web.context.request.RequestContextListener
			</listener-class>
		</listener>
		...
	</web-app>
----

S
Sam Brannen 已提交
2586
Alternatively, if there are issues with your listener setup, consider using Spring's
B
Brian Clozel 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
`RequestContextFilter`. The filter mapping depends on the surrounding web
application configuration, so you have to change it as appropriate.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<web-app>
		...
		<filter>
			<filter-name>requestContextFilter</filter-name>
			<filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
		</filter>
		<filter-mapping>
			<filter-name>requestContextFilter</filter-name>
			<url-pattern>/*</url-pattern>
		</filter-mapping>
		...
	</web-app>
----

S
Sam Brannen 已提交
2607
`DispatcherServlet`, `RequestContextListener`, and `RequestContextFilter` all do exactly
B
Brian Clozel 已提交
2608 2609 2610 2611 2612 2613 2614
the same thing, namely bind the HTTP request object to the `Thread` that is servicing
that request. This makes beans that are request- and session-scoped available further
down the call chain.


[[beans-factory-scopes-request]]
==== Request scope
S
Sam Brannen 已提交
2615

2616
Consider the following XML configuration for a bean definition:
B
Brian Clozel 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="loginAction" class="com.foo.LoginAction" scope="request"/>
----

The Spring container creates a new instance of the `LoginAction` bean by using the
`loginAction` bean definition for each and every HTTP request. That is, the
`loginAction` bean is scoped at the HTTP request level. You can change the internal
state of the instance that is created as much as you want, because other instances
created from the same `loginAction` bean definition will not see these changes in state;
they are particular to an individual request. When the request completes processing, the
bean that is scoped to the request is discarded.

2632 2633
When using annotation-driven components or Java Config, the `@RequestScope` annotation
can be used to assign a component to the `request` scope.
2634 2635 2636 2637

[source,java,indent=0]
[subs="verbatim,quotes"]
----
2638
	**@RequestScope**
2639 2640 2641 2642 2643 2644
	@Component
	public class LoginAction {
		// ...
	}
----

B
Brian Clozel 已提交
2645 2646 2647

[[beans-factory-scopes-session]]
==== Session scope
S
Sam Brannen 已提交
2648

2649
Consider the following XML configuration for a bean definition:
B
Brian Clozel 已提交
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/>
----

The Spring container creates a new instance of the `UserPreferences` bean by using the
`userPreferences` bean definition for the lifetime of a single HTTP `Session`. In other
words, the `userPreferences` bean is effectively scoped at the HTTP `Session` level. As
with `request-scoped` beans, you can change the internal state of the instance that is
created as much as you want, knowing that other HTTP `Session` instances that are also
using instances created from the same `userPreferences` bean definition do not see these
changes in state, because they are particular to an individual HTTP `Session`. When the
HTTP `Session` is eventually discarded, the bean that is scoped to that particular HTTP
`Session` is also discarded.

2667 2668
When using annotation-driven components or Java Config, the `@SessionScope` annotation
can be used to assign a component to the `session` scope.
2669 2670 2671 2672

[source,java,indent=0]
[subs="verbatim,quotes"]
----
2673
	**@SessionScope**
2674 2675 2676 2677 2678 2679
	@Component
	public class UserPreferences {
		// ...
	}
----

B
Brian Clozel 已提交
2680 2681 2682

[[beans-factory-scopes-application]]
==== Application scope
S
Sam Brannen 已提交
2683

2684
Consider the following XML configuration for a bean definition:
B
Brian Clozel 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="appPreferences" class="com.foo.AppPreferences" scope="application"/>
----

The Spring container creates a new instance of the `AppPreferences` bean by using the
`appPreferences` bean definition once for the entire web application. That is, the
`appPreferences` bean is scoped at the `ServletContext` level, stored as a regular
`ServletContext` attribute. This is somewhat similar to a Spring singleton bean but
differs in two important ways: It is a singleton per `ServletContext`, not per Spring
L
logicg8 已提交
2697
'ApplicationContext' (for which there may be several in any given web application),
B
Brian Clozel 已提交
2698 2699
and it is actually exposed and therefore visible as a `ServletContext` attribute.

2700 2701
When using annotation-driven components or Java Config, the `@ApplicationScope`
annotation can be used to assign a component to the `application` scope.
2702 2703 2704 2705

[source,java,indent=0]
[subs="verbatim,quotes"]
----
2706
	**@ApplicationScope**
2707 2708 2709 2710 2711 2712
	@Component
	public class AppPreferences {
		// ...
	}
----

B
Brian Clozel 已提交
2713 2714 2715

[[beans-factory-scopes-other-injection]]
==== Scoped beans as dependencies
S
Sam Brannen 已提交
2716

2717 2718 2719 2720 2721 2722 2723
The Spring IoC container manages not only the instantiation of your objects (beans),
but also the wiring up of collaborators (or dependencies). If you want to inject (for
example) an HTTP request scoped bean into another bean of a longer-lived scope, you may
choose to inject an AOP proxy in place of the scoped bean. That is, you need to inject
a proxy object that exposes the same public interface as the scoped object but that can
also retrieve the real target object from the relevant scope (such as an HTTP request)
and delegate method calls onto the real object.
B
Brian Clozel 已提交
2724 2725

[NOTE]
2726
====
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
You may also use `<aop:scoped-proxy/>` between beans that are scoped as `singleton`,
with the reference then going through an intermediate proxy that is serializable
and therefore able to re-obtain the target singleton bean on deserialization.

When declaring `<aop:scoped-proxy/>` against a bean of scope `prototype`, every method
call on the shared proxy will lead to the creation of a new target instance which the
call is then being forwarded to.

Also, scoped proxies are not the only way to access beans from shorter scopes in a
lifecycle-safe fashion. You may also simply declare your injection point (i.e. the
constructor/setter argument or autowired field) as `ObjectFactory<MyTargetBean>`,
allowing for a `getObject()` call to retrieve the current instance on demand every
time it is needed - without holding on to the instance or storing it separately.

J
Juergen Hoeller 已提交
2741 2742 2743
As an extended variant, you may declare `ObjectProvider<MyTargetBean>` which delivers
several additional access variants, including `getIfAvailable` and `getIfUnique`.

2744 2745 2746
The JSR-330 variant of this is called `Provider`, used with a `Provider<MyTargetBean>`
declaration and a corresponding `get()` call for every retrieval attempt.
See <<beans-standard-annotations,here>> for more details on JSR-330 overall.
2747
====
B
Brian Clozel 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778

The configuration in the following example is only one line, but it is important to
understand the "why" as well as the "how" behind it.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<?xml version="1.0" encoding="UTF-8"?>
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xmlns:aop="http://www.springframework.org/schema/aop"
		xsi:schemaLocation="http://www.springframework.org/schema/beans
			http://www.springframework.org/schema/beans/spring-beans.xsd
			http://www.springframework.org/schema/aop
			http://www.springframework.org/schema/aop/spring-aop.xsd">

		<!-- an HTTP Session-scoped bean exposed as a proxy -->
		<bean id="userPreferences" class="com.foo.UserPreferences" scope="session">
			<!-- instructs the container to proxy the surrounding bean -->
			<aop:scoped-proxy/>
		</bean>

		<!-- a singleton-scoped bean injected with a proxy to the above bean -->
		<bean id="userService" class="com.foo.SimpleUserService">
			<!-- a reference to the proxied userPreferences bean -->
			<property name="userPreferences" ref="userPreferences"/>
		</bean>
	</beans>
----

To create such a proxy, you insert a child `<aop:scoped-proxy/>` element into a scoped
S
Polish  
Stephane Nicoll 已提交
2779
bean definition (see <<beans-factory-scopes-other-injection-proxies>> and
R
Rossen Stoyanchev 已提交
2780
<<core.adoc#xsd-schemas, XML Schema-based configuration>>).
2781 2782 2783 2784 2785
Why do definitions of beans scoped at the `request`, `session` and custom-scope
levels require the `<aop:scoped-proxy/>` element?
Let's examine the following singleton bean definition and contrast it with
what you need to define for the aforementioned scopes (note that the following
`userPreferences` bean definition as it stands is __incomplete__).
B
Brian Clozel 已提交
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/>

	<bean id="userManager" class="com.foo.UserManager">
		<property name="userPreferences" ref="userPreferences"/>
	</bean>
----

In the preceding example, the singleton bean `userManager` is injected with a reference
to the HTTP `Session`-scoped bean `userPreferences`. The salient point here is that the
`userManager` bean is a singleton: it will be instantiated __exactly once__ per
container, and its dependencies (in this case only one, the `userPreferences` bean) are
also injected only once. This means that the `userManager` bean will only operate on the
exact same `userPreferences` object, that is, the one that it was originally injected
with.

This is __not__ the behavior you want when injecting a shorter-lived scoped bean into a
longer-lived scoped bean, for example injecting an HTTP `Session`-scoped collaborating
bean as a dependency into singleton bean. Rather, you need a single `userManager`
object, and for the lifetime of an HTTP `Session`, you need a `userPreferences` object
that is specific to said HTTP `Session`. Thus the container creates an object that
exposes the exact same public interface as the `UserPreferences` class (ideally an
object that __is a__ `UserPreferences` instance) which can fetch the real
`UserPreferences` object from the scoping mechanism (HTTP request, `Session`, etc.). The
container injects this proxy object into the `userManager` bean, which is unaware that
this `UserPreferences` reference is a proxy. In this example, when a `UserManager`
instance invokes a method on the dependency-injected `UserPreferences` object, it
actually is invoking a method on the proxy. The proxy then fetches the real
`UserPreferences` object from (in this case) the HTTP `Session`, and delegates the
method invocation onto the retrieved real `UserPreferences` object.

Thus you need the following, correct and complete, configuration when injecting
J
Juergen Hoeller 已提交
2821
`request-` and `session-scoped` beans into collaborating objects:
B
Brian Clozel 已提交
2822 2823 2824 2825 2826 2827 2828

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="userPreferences" class="com.foo.UserPreferences" scope="session">
		<aop:scoped-proxy/>
	</bean>
2829

B
Brian Clozel 已提交
2830 2831 2832 2833 2834 2835 2836
	<bean id="userManager" class="com.foo.UserManager">
		<property name="userPreferences" ref="userPreferences"/>
	</bean>
----

[[beans-factory-scopes-other-injection-proxies]]
===== Choosing the type of proxy to create
S
Sam Brannen 已提交
2837

B
Brian Clozel 已提交
2838 2839 2840 2841
By default, when the Spring container creates a proxy for a bean that is marked up with
the `<aop:scoped-proxy/>` element, __a CGLIB-based class proxy is created__.

[NOTE]
2842
====
B
Brian Clozel 已提交
2843 2844
CGLIB proxies only intercept public method calls! Do not call non-public methods
on such a proxy; they will not be delegated to the actual scoped target object.
2845
====
B
Brian Clozel 已提交
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862

Alternatively, you can configure the Spring container to create standard JDK
interface-based proxies for such scoped beans, by specifying `false` for the value of
the `proxy-target-class` attribute of the `<aop:scoped-proxy/>` element. Using JDK
interface-based proxies means that you do not need additional libraries in your
application classpath to effect such proxying. However, it also means that the class of
the scoped bean must implement at least one interface, and __that all__ collaborators
into which the scoped bean is injected must reference the bean through one of its
interfaces.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<!-- DefaultUserPreferences implements the UserPreferences interface -->
	<bean id="userPreferences" class="com.foo.DefaultUserPreferences" scope="session">
		<aop:scoped-proxy proxy-target-class="false"/>
	</bean>
2863

B
Brian Clozel 已提交
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
	<bean id="userManager" class="com.foo.UserManager">
		<property name="userPreferences" ref="userPreferences"/>
	</bean>
----

For more detailed information about choosing class-based or interface-based proxying,
see <<aop-proxying>>.



[[beans-factory-scopes-custom]]
=== Custom scopes
S
Sam Brannen 已提交
2876

B
Brian Clozel 已提交
2877 2878 2879 2880 2881 2882 2883
The bean scoping mechanism is extensible; You can define your own
scopes, or even redefine existing scopes, although the latter is considered bad practice
and you __cannot__ override the built-in `singleton` and `prototype` scopes.


[[beans-factory-scopes-custom-creating]]
==== Creating a custom scope
S
Sam Brannen 已提交
2884

B
Brian Clozel 已提交
2885 2886 2887 2888
To integrate your custom scope(s) into the Spring container, you need to implement the
`org.springframework.beans.factory.config.Scope` interface, which is described in this
section. For an idea of how to implement your own scopes, see the `Scope`
implementations that are supplied with the Spring Framework itself and the
2889
{api-spring-framework}/beans/factory/config/Scope.html[`Scope` javadocs],
B
Brian Clozel 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
which explains the methods you need to implement in more detail.

The `Scope` interface has four methods to get objects from the scope, remove them from
the scope, and allow them to be destroyed.

The following method returns the object from the underlying scope. The session scope
implementation, for example, returns the session-scoped bean (and if it does not exist,
the method returns a new instance of the bean, after having bound it to the session for
future reference).

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	Object get(String name, ObjectFactory objectFactory)
----

The following method removes the object from the underlying scope. The session scope
implementation for example, removes the session-scoped bean from the underlying session.
The object should be returned, but you can return null if the object with the specified
name is not found.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	Object remove(String name)
----

The following method registers the callbacks the scope should execute when it is
destroyed or when the specified object in the scope is destroyed. Refer to the javadocs
or a Spring scope implementation for more information on destruction callbacks.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	void registerDestructionCallback(String name, Runnable destructionCallback)
----

The following method obtains the conversation identifier for the underlying scope. This
identifier is different for each scope. For a session scoped implementation, this
identifier can be the session identifier.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	String getConversationId()
----


[[beans-factory-scopes-custom-using]]
==== Using a custom scope
S
Sam Brannen 已提交
2940

B
Brian Clozel 已提交
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
After you write and test one or more custom `Scope` implementations, you need to make
the Spring container aware of your new scope(s). The following method is the central
method to register a new `Scope` with the Spring container:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	void registerScope(String scopeName, Scope scope);
----

This method is declared on the `ConfigurableBeanFactory` interface, which is available
on most of the concrete `ApplicationContext` implementations that ship with Spring via
the BeanFactory property.

The first argument to the `registerScope(..)` method is the unique name associated with
a scope; examples of such names in the Spring container itself are `singleton` and
`prototype`. The second argument to the `registerScope(..)` method is an actual instance
of the custom `Scope` implementation that you wish to register and use.

Suppose that you write your custom `Scope` implementation, and then register it as below.

[NOTE]
2963
====
B
Brian Clozel 已提交
2964 2965 2966
The example below uses `SimpleThreadScope` which is included with Spring, but not
registered by default. The instructions would be the same for your own custom `Scope`
implementations.
2967
====
B
Brian Clozel 已提交
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	Scope threadScope = new SimpleThreadScope();
	beanFactory.registerScope("thread", threadScope);
----

You then create bean definitions that adhere to the scoping rules of your custom `Scope`:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="..." class="..." scope="thread">
----

With a custom `Scope` implementation, you are not limited to programmatic registration
of the scope. You can also do the `Scope` registration declaratively, using the
`CustomScopeConfigurer` class:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<?xml version="1.0" encoding="UTF-8"?>
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xmlns:aop="http://www.springframework.org/schema/aop"
		xsi:schemaLocation="http://www.springframework.org/schema/beans
			http://www.springframework.org/schema/beans/spring-beans.xsd
			http://www.springframework.org/schema/aop
			http://www.springframework.org/schema/aop/spring-aop.xsd">

		<bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
			<property name="scopes">
				<map>
					<entry key="thread">
						<bean class="org.springframework.context.support.SimpleThreadScope"/>
					</entry>
				</map>
			</property>
		</bean>

		<bean id="bar" class="x.y.Bar" scope="thread">
			<property name="name" value="Rick"/>
			<aop:scoped-proxy/>
		</bean>

		<bean id="foo" class="x.y.Foo">
			<property name="bar" ref="bar"/>
		</bean>

	</beans>
----

[NOTE]
3023
====
B
Brian Clozel 已提交
3024 3025
When you place `<aop:scoped-proxy/>` in a `FactoryBean` implementation, it is the factory
bean itself that is scoped, not the object returned from `getObject()`.
3026
====
B
Brian Clozel 已提交
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037




[[beans-factory-nature]]
== Customizing the nature of a bean



[[beans-factory-lifecycle]]
=== Lifecycle callbacks
S
Sam Brannen 已提交
3038

B
Brian Clozel 已提交
3039 3040 3041 3042 3043 3044
To interact with the container's management of the bean lifecycle, you can implement the
Spring `InitializingBean` and `DisposableBean` interfaces. The container calls
`afterPropertiesSet()` for the former and `destroy()` for the latter to allow the bean
to perform certain actions upon initialization and destruction of your beans.

[TIP]
S
Stephane Nicoll 已提交
3045
====
B
Brian Clozel 已提交
3046 3047 3048 3049 3050 3051 3052
The JSR-250 `@PostConstruct` and `@PreDestroy` annotations are generally considered best
practice for receiving lifecycle callbacks in a modern Spring application. Using these
annotations means that your beans are not coupled to Spring specific interfaces. For
details see <<beans-postconstruct-and-predestroy-annotations>>.

If you don't want to use the JSR-250 annotations but you are still looking to remove
coupling consider the use of init-method and destroy-method object definition metadata.
S
Stephane Nicoll 已提交
3053
====
B
Brian Clozel 已提交
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069

Internally, the Spring Framework uses `BeanPostProcessor` implementations to process any
callback interfaces it can find and call the appropriate methods. If you need custom
features or other lifecycle behavior Spring does not offer out-of-the-box, you can
implement a `BeanPostProcessor` yourself. For more information, see
<<beans-factory-extension>>.

In addition to the initialization and destruction callbacks, Spring-managed objects may
also implement the `Lifecycle` interface so that those objects can participate in the
startup and shutdown process as driven by the container's own lifecycle.

The lifecycle callback interfaces are described in this section.


[[beans-factory-lifecycle-initializingbean]]
==== Initialization callbacks
S
Sam Brannen 已提交
3070

B
Brian Clozel 已提交
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
The `org.springframework.beans.factory.InitializingBean` interface allows a bean to
perform initialization work after all necessary properties on the bean have been set by
the container. The `InitializingBean` interface specifies a single method:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	void afterPropertiesSet() throws Exception;
----

It is recommended that you do not use the `InitializingBean` interface because it
unnecessarily couples the code to Spring. Alternatively, use
the <<beans-postconstruct-and-predestroy-annotations, `@PostConstruct`>> annotation or
specify a POJO initialization method. In the case of XML-based configuration metadata,
you use the `init-method` attribute to specify the name of the method that has a void
3086
no-argument signature. With Java config, you use the `initMethod` attribute of `@Bean`,
B
Brian Clozel 已提交
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
see <<beans-java-lifecycle-callbacks>>. For example, the following:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="exampleInitBean" class="examples.ExampleBean" init-method="init"/>
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class ExampleBean {

		public void init() {
			// do some initialization work
		}
	}
----

...is exactly the same as...

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="exampleInitBean" class="examples.AnotherExampleBean"/>
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class AnotherExampleBean implements InitializingBean {

		public void afterPropertiesSet() {
			// do some initialization work
		}
	}
----

but does not couple the code to Spring.


[[beans-factory-lifecycle-disposablebean]]
==== Destruction callbacks
S
Sam Brannen 已提交
3130

B
Brian Clozel 已提交
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
Implementing the `org.springframework.beans.factory.DisposableBean` interface allows a
bean to get a callback when the container containing it is destroyed. The
`DisposableBean` interface specifies a single method:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	void destroy() throws Exception;
----

It is recommended that you do not use the `DisposableBean` callback interface because it
unnecessarily couples the code to Spring. Alternatively, use
the <<beans-postconstruct-and-predestroy-annotations, `@PreDestroy`>> annotation or
specify a generic method that is supported by bean definitions. With XML-based
3145 3146
configuration metadata, you use the `destroy-method` attribute on the `<bean/>`.
With Java config, you use the `destroyMethod` attribute of `@Bean`, see
B
Brian Clozel 已提交
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
<<beans-java-lifecycle-callbacks>>. For example, the following definition:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="exampleInitBean" class="examples.ExampleBean" destroy-method="cleanup"/>
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class ExampleBean {

		public void cleanup() {
			// do some destruction work (like releasing pooled connections)
		}
	}
----

is exactly the same as:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="exampleInitBean" class="examples.AnotherExampleBean"/>
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class AnotherExampleBean implements DisposableBean {

		public void destroy() {
			// do some destruction work (like releasing pooled connections)
		}
	}
----

but does not couple the code to Spring.

[TIP]
S
Stephane Nicoll 已提交
3188
====
B
Brian Clozel 已提交
3189 3190
The `destroy-method` attribute of a `<bean>` element can be assigned a special
`(inferred)` value which instructs Spring to automatically detect a public `close` or
3191 3192 3193 3194
`shutdown` method on the specific bean class (any class that implements
`java.lang.AutoCloseable` or `java.io.Closeable` would therefore match). This special
`(inferred)` value can also be set on the `default-destroy-method` attribute of a
`<beans>` element to apply this behavior to an entire set of beans (see
B
Brian Clozel 已提交
3195 3196
<<beans-factory-lifecycle-default-init-destroy-methods>>). Note that this is the
default behavior with Java config.
S
Stephane Nicoll 已提交
3197
====
B
Brian Clozel 已提交
3198 3199 3200

[[beans-factory-lifecycle-default-init-destroy-methods]]
==== Default initialization and destroy methods
S
Sam Brannen 已提交
3201

B
Brian Clozel 已提交
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
When you write initialization and destroy method callbacks that do not use the
Spring-specific `InitializingBean` and `DisposableBean` callback interfaces, you
typically write methods with names such as `init()`, `initialize()`, `dispose()`, and so
on. Ideally, the names of such lifecycle callback methods are standardized across a
project so that all developers use the same method names and ensure consistency.

You can configure the Spring container to `look` for named initialization and destroy
callback method names on __every__ bean. This means that you, as an application
developer, can write your application classes and use an initialization callback called
`init()`, without having to configure an `init-method="init"` attribute with each bean
definition. The Spring IoC container calls that method when the bean is created (and in
accordance with the standard lifecycle callback contract described previously). This
feature also enforces a consistent naming convention for initialization and destroy
method callbacks.

Suppose that your initialization callback methods are named `init()` and destroy
callback methods are named `destroy()`. Your class will resemble the class in the
following example.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class DefaultBlogService implements BlogService {

		private BlogDao blogDao;

		public void setBlogDao(BlogDao blogDao) {
			this.blogDao = blogDao;
		}

		// this is (unsurprisingly) the initialization callback method
		public void init() {
			if (this.blogDao == null) {
				throw new IllegalStateException("The [blogDao] property must be set.");
			}
		}
	}
----

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans default-init-method="init">

		<bean id="blogService" class="com.foo.DefaultBlogService">
			<property name="blogDao" ref="blogDao" />
		</bean>

	</beans>
----

The presence of the `default-init-method` attribute on the top-level `<beans/>` element
attribute causes the Spring IoC container to recognize a method called `init` on beans
as the initialization method callback. When a bean is created and assembled, if the bean
class has such a method, it is invoked at the appropriate time.

You configure destroy method callbacks similarly (in XML, that is) by using the
`default-destroy-method` attribute on the top-level `<beans/>` element.

Where existing bean classes already have callback methods that are named at variance
with the convention, you can override the default by specifying (in XML, that is) the
N
nkjackzhang 已提交
3263
method name using the `init-method` and `destroy-method` attributes of the `<bean/>`
B
Brian Clozel 已提交
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
itself.

The Spring container guarantees that a configured initialization callback is called
immediately after a bean is supplied with all dependencies. Thus the initialization
callback is called on the raw bean reference, which means that AOP interceptors and so
forth are not yet applied to the bean. A target bean is fully created __first__,
__then__ an AOP proxy (for example) with its interceptor chain is applied. If the target
bean and the proxy are defined separately, your code can even interact with the raw
target bean, bypassing the proxy. Hence, it would be inconsistent to apply the
interceptors to the init method, because doing so would couple the lifecycle of the
target bean with its proxy/interceptors and leave strange semantics when your code
interacts directly to the raw target bean.


[[beans-factory-lifecycle-combined-effects]]
==== Combining lifecycle mechanisms
S
Sam Brannen 已提交
3280

B
Brian Clozel 已提交
3281 3282 3283 3284 3285 3286 3287 3288
As of Spring 2.5, you have three options for controlling bean lifecycle behavior: the
<<beans-factory-lifecycle-initializingbean, `InitializingBean`>> and
<<beans-factory-lifecycle-disposablebean, `DisposableBean`>> callback interfaces; custom
`init()` and `destroy()` methods; and the
<<beans-postconstruct-and-predestroy-annotations, `@PostConstruct` and `@PreDestroy`
annotations>>. You can combine these mechanisms to control a given bean.

[NOTE]
3289
====
B
Brian Clozel 已提交
3290 3291 3292 3293 3294
If multiple lifecycle mechanisms are configured for a bean, and each mechanism is
configured with a different method name, then each configured method is executed in the
order listed below. However, if the same method name is configured - for example,
`init()` for an initialization method - for more than one of these lifecycle mechanisms,
that method is executed once, as explained in the preceding section.
3295
====
B
Brian Clozel 已提交
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312

Multiple lifecycle mechanisms configured for the same bean, with different
initialization methods, are called as follows:

* Methods annotated with `@PostConstruct`
* `afterPropertiesSet()` as defined by the `InitializingBean` callback interface
* A custom configured `init()` method

Destroy methods are called in the same order:

* Methods annotated with `@PreDestroy`
* `destroy()` as defined by the `DisposableBean` callback interface
* A custom configured `destroy()` method


[[beans-factory-lifecycle-processor]]
==== Startup and shutdown callbacks
S
Sam Brannen 已提交
3313

B
Brian Clozel 已提交
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
The `Lifecycle` interface defines the essential methods for any object that has its own
lifecycle requirements (e.g. starts and stops some background process):

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public interface Lifecycle {

		void start();

		void stop();

		boolean isRunning();
	}
----

Any Spring-managed object may implement that interface. Then, when the
3331 3332 3333
`ApplicationContext` itself receives start and stop signals, e.g. for a stop/restart
scenario at runtime, it will cascade those calls to all `Lifecycle` implementations
defined within that context. It does this by delegating to a `LifecycleProcessor`:
B
Brian Clozel 已提交
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public interface LifecycleProcessor extends Lifecycle {

		void onRefresh();

		void onClose();
	}
----

Notice that the `LifecycleProcessor` is itself an extension of the `Lifecycle`
interface. It also adds two other methods for reacting to the context being refreshed
and closed.

3350 3351 3352 3353 3354 3355
[TIP]
====
Note that the regular `org.springframework.context.Lifecycle` interface is just a plain
contract for explicit start/stop notifications and does NOT imply auto-startup at context
refresh time. Consider implementing `org.springframework.context.SmartLifecycle` instead
for fine-grained control over auto-startup of a specific bean (including startup phases).
3356 3357 3358 3359
Also, please note that stop notifications are not guaranteed to come before destruction:
On regular shutdown, all `Lifecycle` beans will first receive a stop notification before
the general destruction callbacks are being propagated; however, on hot refresh during a
context's lifetime or on aborted refresh attempts, only destroy methods will be called.
3360 3361
====

B
Brian Clozel 已提交
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
The order of startup and shutdown invocations can be important. If a "depends-on"
relationship exists between any two objects, the dependent side will start __after__ its
dependency, and it will stop __before__ its dependency. However, at times the direct
dependencies are unknown. You may only know that objects of a certain type should start
prior to objects of another type. In those cases, the `SmartLifecycle` interface defines
another option, namely the `getPhase()` method as defined on its super-interface,
`Phased`.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public interface Phased {

		int getPhase();
	}
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public interface SmartLifecycle extends Lifecycle, Phased {

		boolean isAutoStartup();

		void stop(Runnable callback);
	}
----

When starting, the objects with the lowest phase start first, and when stopping, the
reverse order is followed. Therefore, an object that implements `SmartLifecycle` and
whose `getPhase()` method returns `Integer.MIN_VALUE` would be among the first to start
and the last to stop. At the other end of the spectrum, a phase value of
`Integer.MAX_VALUE` would indicate that the object should be started last and stopped
first (likely because it depends on other processes to be running). When considering the
phase value, it's also important to know that the default phase for any "normal"
`Lifecycle` object that does not implement `SmartLifecycle` would be 0. Therefore, any
negative phase value would indicate that an object should start before those standard
components (and stop after them), and vice versa for any positive phase value.

As you can see the stop method defined by `SmartLifecycle` accepts a callback. Any
implementation __must__ invoke that callback's `run()` method after that implementation's
shutdown process is complete. That enables asynchronous shutdown where necessary since
the default implementation of the `LifecycleProcessor` interface,
`DefaultLifecycleProcessor`, will wait up to its timeout value for the group of objects
within each phase to invoke that callback. The default per-phase timeout is 30 seconds.
You can override the default lifecycle processor instance by defining a bean named
"lifecycleProcessor" within the context. If you only want to modify the timeout, then
defining the following would be sufficient:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="lifecycleProcessor" class="org.springframework.context.support.DefaultLifecycleProcessor">
		<!-- timeout value in milliseconds -->
		<property name="timeoutPerShutdownPhase" value="10000"/>
	</bean>
----

As mentioned, the `LifecycleProcessor` interface defines callback methods for the
refreshing and closing of the context as well. The latter will simply drive the shutdown
process as if `stop()` had been called explicitly, but it will happen when the context is
closing. The 'refresh' callback on the other hand enables another feature of
`SmartLifecycle` beans. When the context is refreshed (after all objects have been
instantiated and initialized), that callback will be invoked, and at that point the
default lifecycle processor will check the boolean value returned by each
`SmartLifecycle` object's `isAutoStartup()` method. If "true", then that object will be
started at that point rather than waiting for an explicit invocation of the context's or
its own `start()` method (unlike the context refresh, the context start does not happen
automatically for a standard context implementation). The "phase" value as well as any
"depends-on" relationships will determine the startup order in the same way as described
above.


[[beans-factory-shutdown]]
==== Shutting down the Spring IoC container gracefully in non-web applications
S
Sam Brannen 已提交
3437

B
Brian Clozel 已提交
3438
[NOTE]
3439
====
B
Brian Clozel 已提交
3440 3441 3442
This section applies only to non-web applications. Spring's web-based
`ApplicationContext` implementations already have code in place to shut down the Spring
IoC container gracefully when the relevant web application is shut down.
3443
====
B
Brian Clozel 已提交
3444 3445 3446 3447 3448 3449 3450 3451

If you are using Spring's IoC container in a non-web application environment; for
example, in a rich client desktop environment; you register a shutdown hook with the
JVM. Doing so ensures a graceful shutdown and calls the relevant destroy methods on your
singleton beans so that all resources are released. Of course, you must still configure
and implement these destroy callbacks correctly.

To register a shutdown hook, you call the `registerShutdownHook()` method that is
3452
declared on the `ConfigurableApplicationContext` interface:
B
Brian Clozel 已提交
3453 3454 3455 3456

[source,java,indent=0]
[subs="verbatim,quotes"]
----
3457
	import org.springframework.context.ConfigurableApplicationContext;
B
Brian Clozel 已提交
3458 3459 3460 3461 3462
	import org.springframework.context.support.ClassPathXmlApplicationContext;

	public final class Boot {

		public static void main(final String[] args) throws Exception {
3463
			ConfigurableApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml");
B
Brian Clozel 已提交
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523

			// add a shutdown hook for the above context...
			ctx.registerShutdownHook();

			// app runs here...

			// main method exits, hook is called prior to the app shutting down...
		}
	}
----



[[beans-factory-aware]]
=== ApplicationContextAware and BeanNameAware

When an `ApplicationContext` creates an object instance that implements the
`org.springframework.context.ApplicationContextAware` interface, the instance is provided
with a reference to that `ApplicationContext`.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public interface ApplicationContextAware {

		void setApplicationContext(ApplicationContext applicationContext) throws BeansException;
	}
----

Thus beans can manipulate programmatically the `ApplicationContext` that created them,
through the `ApplicationContext` interface, or by casting the reference to a known
subclass of this interface, such as `ConfigurableApplicationContext`, which exposes
additional functionality. One use would be the programmatic retrieval of other beans.
Sometimes this capability is useful; however, in general you should avoid it, because it
couples the code to Spring and does not follow the Inversion of Control style, where
collaborators are provided to beans as properties. Other methods of the
`ApplicationContext` provide access to file resources, publishing application events, and
accessing a `MessageSource`. These additional features are described in
<<context-introduction>>

As of Spring 2.5, autowiring is another alternative to obtain reference to the
`ApplicationContext`. The "traditional" `constructor` and `byType` autowiring modes (as
described in <<beans-factory-autowire>>) can provide a dependency of type
`ApplicationContext` for a constructor argument or setter method parameter,
respectively. For more flexibility, including the ability to autowire fields and
multiple parameter methods, use the new annotation-based autowiring features. If you do,
the `ApplicationContext` is autowired into a field, constructor argument, or method
parameter that is expecting the `ApplicationContext` type if the field, constructor, or
method in question carries the `@Autowired` annotation. For more information, see
<<beans-autowired-annotation>>.

When an `ApplicationContext` creates a class that implements the
`org.springframework.beans.factory.BeanNameAware` interface, the class is provided with
a reference to the name defined in its associated object definition.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public interface BeanNameAware {

S
Polish  
Stephane Nicoll 已提交
3524
		void setBeanName(String name) throws BeansException;
B
Brian Clozel 已提交
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
	}
----

The callback is invoked after population of normal bean properties but before an
initialization callback such as `InitializingBean` __afterPropertiesSet__ or a custom
init-method.



[[aware-list]]
=== Other Aware interfaces

Besides `ApplicationContextAware` and `BeanNameAware` discussed above, Spring offers a
range of `Aware` interfaces that allow beans to indicate to the container that they
require a certain __infrastructure__ dependency. The most important `Aware` interfaces
are summarized below - as a general rule, the name is a good indication of the
dependency type:

[[beans-factory-nature-aware-list]]
.Aware interfaces
|===
| Name| Injected Dependency| Explained in...

| `ApplicationContextAware`
| Declaring `ApplicationContext`
| <<beans-factory-aware>>

| `ApplicationEventPublisherAware`
| Event publisher of the enclosing `ApplicationContext`
| <<context-introduction>>

| `BeanClassLoaderAware`
| Class loader used to load the bean classes.
| <<beans-factory-class>>

| `BeanFactoryAware`
| Declaring `BeanFactory`
| <<beans-factory-aware>>

| `BeanNameAware`
| Name of the declaring bean
| <<beans-factory-aware>>

| `BootstrapContextAware`
| Resource adapter `BootstrapContext` the container runs in. Typically available only in
S
Sam Brannen 已提交
3570
  JCA aware ``ApplicationContext``s
3571
| <<integration.adoc#cci, JCA CCI>>
B
Brian Clozel 已提交
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

| `LoadTimeWeaverAware`
| Defined __weaver__ for processing class definition at load time
| <<aop-aj-ltw>>

| `MessageSourceAware`
| Configured strategy for resolving messages (with support for parametrization and
  internationalization)
| <<context-introduction>>

| `NotificationPublisherAware`
| Spring JMX notification publisher
3584
| <<integration.adoc#jmx-notifications, Notifications>>
B
Brian Clozel 已提交
3585 3586 3587 3588 3589 3590 3591 3592

| `ResourceLoaderAware`
| Configured loader for low-level access to resources
| <<resources>>

| `ServletConfigAware`
| Current `ServletConfig` the container runs in. Valid only in a web-aware Spring
  `ApplicationContext`
3593
| <<web.adoc#mvc, Spring MVC>>
B
Brian Clozel 已提交
3594 3595 3596 3597

| `ServletContextAware`
| Current `ServletContext` the container runs in. Valid only in a web-aware Spring
  `ApplicationContext`
3598
| <<web.adoc#mvc, Spring MVC>>
B
Brian Clozel 已提交
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
|===

Note again that usage of these interfaces ties your code to the Spring API and does not
follow the Inversion of Control style. As such, they are recommended for infrastructure
beans that require programmatic access to the container.




[[beans-child-bean-definitions]]
== Bean definition inheritance
3610

B
Brian Clozel 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
A bean definition can contain a lot of configuration information, including constructor
arguments, property values, and container-specific information such as initialization
method, static factory method name, and so on. A child bean definition inherits
configuration data from a parent definition. The child definition can override some
values, or add others, as needed. Using parent and child bean definitions can save a lot
of typing. Effectively, this is a form of templating.

If you work with an `ApplicationContext` interface programmatically, child bean
definitions are represented by the `ChildBeanDefinition` class. Most users do not work
with them on this level, instead configuring bean definitions declaratively in something
like the `ClassPathXmlApplicationContext`. When you use XML-based configuration
metadata, you indicate a child bean definition by using the `parent` attribute,
specifying the parent bean as the value of this attribute.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="inheritedTestBean" abstract="true"
			class="org.springframework.beans.TestBean">
		<property name="name" value="parent"/>
		<property name="age" value="1"/>
	</bean>

	<bean id="inheritsWithDifferentClass"
			class="org.springframework.beans.DerivedTestBean"
			**parent="inheritedTestBean"** init-method="initialize">
		<property name="name" value="override"/>
		<!-- the age property value of 1 will be inherited from parent -->
	</bean>
----

A child bean definition uses the bean class from the parent definition if none is
specified, but can also override it. In the latter case, the child bean class must be
compatible with the parent, that is, it must accept the parent's property values.

A child bean definition inherits scope, constructor argument values, property values, and
method overrides from the parent, with the option to add new values. Any scope, initialization
method, destroy method, and/or `static` factory method settings that you specify will
override the corresponding parent settings.

The remaining settings are __always__ taken from the child definition: __depends on__,
__autowire mode__, __dependency check__, __singleton__, __lazy init__.

The preceding example explicitly marks the parent bean definition as abstract by using
the `abstract` attribute. If the parent definition does not specify a class, explicitly
marking the parent bean definition as `abstract` is required, as follows:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="inheritedTestBeanWithoutClass" abstract="true">
		<property name="name" value="parent"/>
		<property name="age" value="1"/>
	</bean>

	<bean id="inheritsWithClass" class="org.springframework.beans.DerivedTestBean"
			parent="inheritedTestBeanWithoutClass" init-method="initialize">
		<property name="name" value="override"/>
		<!-- age will inherit the value of 1 from the parent bean definition-->
	</bean>
----

The parent bean cannot be instantiated on its own because it is incomplete, and it is
also explicitly marked as `abstract`. When a definition is `abstract` like this, it is
usable only as a pure template bean definition that serves as a parent definition for
child definitions. Trying to use such an `abstract` parent bean on its own, by referring
to it as a ref property of another bean or doing an explicit `getBean()` call with the
parent bean id, returns an error. Similarly, the container's internal
`preInstantiateSingletons()` method ignores bean definitions that are defined as
abstract.

[NOTE]
3683
====
B
Brian Clozel 已提交
3684 3685 3686 3687 3688
`ApplicationContext` pre-instantiates all singletons by default. Therefore, it is
important (at least for singleton beans) that if you have a (parent) bean definition
which you intend to use only as a template, and this definition specifies a class, you
must make sure to set the __abstract__ attribute to __true__, otherwise the application
context will actually (attempt to) pre-instantiate the `abstract` bean.
3689
====
B
Brian Clozel 已提交
3690 3691 3692 3693 3694 3695




[[beans-factory-extension]]
== Container Extension Points
3696

B
Brian Clozel 已提交
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
Typically, an application developer does not need to subclass `ApplicationContext`
implementation classes. Instead, the Spring IoC container can be extended by plugging in
implementations of special integration interfaces. The next few sections describe these
integration interfaces.



[[beans-factory-extension-bpp]]
=== Customizing beans using a BeanPostProcessor

The `BeanPostProcessor` interface defines __callback methods__ that you can implement to
provide your own (or override the container's default) instantiation logic,
dependency-resolution logic, and so forth. If you want to implement some custom logic
after the Spring container finishes instantiating, configuring, and initializing a bean,
you can plug in one or more `BeanPostProcessor` implementations.

You can configure multiple `BeanPostProcessor` instances, and you can control the order
S
Sam Brannen 已提交
3714
in which these ``BeanPostProcessor``s execute by setting the `order` property. You can
B
Brian Clozel 已提交
3715 3716 3717 3718 3719
set this property only if the `BeanPostProcessor` implements the `Ordered` interface; if
you write your own `BeanPostProcessor` you should consider implementing the `Ordered`
interface too. For further details, consult the javadocs of the `BeanPostProcessor` and
`Ordered` interfaces. See also the note below on
<<beans-factory-programmatically-registering-beanpostprocessors, programmatic
S
Sam Brannen 已提交
3720
registration of ``BeanPostProcessor``s>>.
B
Brian Clozel 已提交
3721 3722

[NOTE]
3723
====
S
Sam Brannen 已提交
3724 3725
``BeanPostProcessor``s operate on bean (or object) __instances__; that is to say, the
Spring IoC container instantiates a bean instance and __then__ ``BeanPostProcessor``s do
B
Brian Clozel 已提交
3726 3727
their work.

S
Sam Brannen 已提交
3728
``BeanPostProcessor``s are scoped __per-container__. This is only relevant if you are
B
Brian Clozel 已提交
3729 3730 3731 3732 3733 3734 3735 3736
using container hierarchies. If you define a `BeanPostProcessor` in one container, it
will __only__ post-process the beans in that container. In other words, beans that are
defined in one container are not post-processed by a `BeanPostProcessor` defined in
another container, even if both containers are part of the same hierarchy.

To change the actual bean definition (i.e., the __blueprint__ that defines the bean),
you instead need to use a `BeanFactoryPostProcessor` as described in
<<beans-factory-extension-factory-postprocessors>>.
3737
====
B
Brian Clozel 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755

The `org.springframework.beans.factory.config.BeanPostProcessor` interface consists of
exactly two callback methods. When such a class is registered as a post-processor with
the container, for each bean instance that is created by the container, the
post-processor gets a callback from the container both __before__ container
initialization methods (such as InitializingBean's __afterPropertiesSet()__ and any
declared init method) are called as well as __after__ any bean initialization callbacks.
The post-processor can take any action with the bean instance, including ignoring the
callback completely. A bean post-processor typically checks for callback interfaces or
may wrap a bean with a proxy. Some Spring AOP infrastructure classes are implemented as
bean post-processors in order to provide proxy-wrapping logic.

An `ApplicationContext` __automatically detects__ any beans that are defined in the
configuration metadata which implement the `BeanPostProcessor` interface. The
`ApplicationContext` registers these beans as post-processors so that they can be called
later upon bean creation. Bean post-processors can be deployed in the container just
like any other beans.

S
Sam Brannen 已提交
3756
Note that when declaring a `BeanPostProcessor` using an `@Bean` factory method on a
B
Brian Clozel 已提交
3757 3758 3759 3760
configuration class, the return type of the factory method should be the implementation
class itself or at least the `org.springframework.beans.factory.config.BeanPostProcessor`
interface, clearly indicating the post-processor nature of that bean. Otherwise, the
`ApplicationContext` won't be able to autodetect it by type before fully creating it.
S
Sam Brannen 已提交
3761
Since a `BeanPostProcessor` needs to be instantiated early in order to apply to the
B
Brian Clozel 已提交
3762 3763
initialization of other beans in the context, this early type detection is critical.

3764 3765 3766

[[beans-factory-programmatically-registering-beanpostprocessors]]
.Programmatically registering BeanPostProcessors
B
Brian Clozel 已提交
3767
[NOTE]
3768
====
B
Brian Clozel 已提交
3769 3770 3771 3772 3773
While the recommended approach for `BeanPostProcessor` registration is through
`ApplicationContext` auto-detection (as described above), it is also possible to
register them __programmatically__ against a `ConfigurableBeanFactory` using the
`addBeanPostProcessor` method. This can be useful when needing to evaluate conditional
logic before registration, or even for copying bean post processors across contexts in a
S
Sam Brannen 已提交
3774
hierarchy. Note however that ``BeanPostProcessor``s added programmatically __do not
B
Brian Clozel 已提交
3775
respect the `Ordered` interface__. Here it is the __order of registration__ that
S
Sam Brannen 已提交
3776
dictates the order of execution. Note also that ``BeanPostProcessor``s registered
B
Brian Clozel 已提交
3777 3778
programmatically are always processed before those registered through auto-detection,
regardless of any explicit ordering.
3779
====
B
Brian Clozel 已提交
3780

3781
.BeanPostProcessors and AOP auto-proxying
B
Brian Clozel 已提交
3782
[NOTE]
3783
====
B
Brian Clozel 已提交
3784
Classes that implement the `BeanPostProcessor` interface are __special__ and are treated
S
Sam Brannen 已提交
3785
differently by the container. All ``BeanPostProcessor``s __and beans that they reference
B
Brian Clozel 已提交
3786
directly__ are instantiated on startup, as part of the special startup phase of the
S
Sam Brannen 已提交
3787
`ApplicationContext`. Next, all ``BeanPostProcessor``s are registered in a sorted fashion
B
Brian Clozel 已提交
3788
and applied to all further beans in the container. Because AOP auto-proxying is
S
Sam Brannen 已提交
3789
implemented as a `BeanPostProcessor` itself, neither ``BeanPostProcessor``s nor the beans
B
Brian Clozel 已提交
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
they reference directly are eligible for auto-proxying, and thus do not have aspects
woven into them.

For any such bean, you should see an informational log message: "__Bean foo is not
eligible for getting processed by all BeanPostProcessor interfaces (for example: not
eligible for auto-proxying)__".

Note that if you have beans wired into your `BeanPostProcessor` using autowiring or
`@Resource` (which may fall back to autowiring), Spring might access unexpected beans
when searching for type-matching dependency candidates, and therefore make them
ineligible for auto-proxying or other kinds of bean post-processing. For example, if you
have a dependency annotated with `@Resource` where the field/setter name does not
directly correspond to the declared name of a bean and no name attribute is used, then
Spring will access other beans for matching them by type.
3804
====
B
Brian Clozel 已提交
3805

S
Sam Brannen 已提交
3806
The following examples show how to write, register, and use ``BeanPostProcessor``s in an
B
Brian Clozel 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
`ApplicationContext`.


[[beans-factory-extension-bpp-examples-hw]]
==== Example: Hello World, BeanPostProcessor-style

This first example illustrates basic usage. The example shows a custom
`BeanPostProcessor` implementation that invokes the `toString()` method of each bean as
it is created by the container and prints the resulting string to the system console.

Find below the custom `BeanPostProcessor` implementation class definition:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	package scripting;

	import org.springframework.beans.factory.config.BeanPostProcessor;

	public class InstantiationTracingBeanPostProcessor implements BeanPostProcessor {

		// simply return the instantiated bean as-is
3829
		public Object postProcessBeforeInitialization(Object bean, String beanName) {
B
Brian Clozel 已提交
3830 3831 3832
			return bean; // we could potentially return any object reference here...
		}

3833
		public Object postProcessAfterInitialization(Object bean, String beanName) {
3834
			System.out.println("Bean '" + beanName + "' created : " + bean.toString());
B
Brian Clozel 已提交
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
			return bean;
		}
	}
----

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<?xml version="1.0" encoding="UTF-8"?>
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xmlns:lang="http://www.springframework.org/schema/lang"
		xsi:schemaLocation="http://www.springframework.org/schema/beans
			http://www.springframework.org/schema/beans/spring-beans.xsd
			http://www.springframework.org/schema/lang
			http://www.springframework.org/schema/lang/spring-lang.xsd">

		<lang:groovy id="messenger"
				script-source="classpath:org/springframework/scripting/groovy/Messenger.groovy">
			<lang:property name="message" value="Fiona Apple Is Just So Dreamy."/>
		</lang:groovy>

		<!--
		when the above bean (messenger) is instantiated, this custom
		BeanPostProcessor implementation will output the fact to the system console
		-->
		<bean class="scripting.InstantiationTracingBeanPostProcessor"/>

	</beans>
----

Notice how the `InstantiationTracingBeanPostProcessor` is simply defined. It does not
even have a name, and because it is a bean it can be dependency-injected just like any
other bean. (The preceding configuration also defines a bean that is backed by a Groovy
script. The Spring dynamic language support is detailed in the chapter entitled
R
Rossen Stoyanchev 已提交
3870
<<languages.adoc#dynamic-language, Dynamic language support>>.)
B
Brian Clozel 已提交
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922

The following simple Java application executes the preceding code and configuration:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	import org.springframework.context.ApplicationContext;
	import org.springframework.context.support.ClassPathXmlApplicationContext;
	import org.springframework.scripting.Messenger;

	public final class Boot {

		public static void main(final String[] args) throws Exception {
			ApplicationContext ctx = new ClassPathXmlApplicationContext("scripting/beans.xml");
			Messenger messenger = (Messenger) ctx.getBean("messenger");
			System.out.println(messenger);
		}

	}
----

The output of the preceding application resembles the following:

[literal]
[subs="verbatim,quotes"]
----
Bean 'messenger' created : org.springframework.scripting.groovy.GroovyMessenger@272961
org.springframework.scripting.groovy.GroovyMessenger@272961
----


[[beans-factory-extension-bpp-examples-rabpp]]
==== Example: The RequiredAnnotationBeanPostProcessor

Using callback interfaces or annotations in conjunction with a custom
`BeanPostProcessor` implementation is a common means of extending the Spring IoC
container. An example is Spring's `RequiredAnnotationBeanPostProcessor` - a
`BeanPostProcessor` implementation that ships with the Spring distribution which ensures
that JavaBean properties on beans that are marked with an (arbitrary) annotation are
actually (configured to be) dependency-injected with a value.



[[beans-factory-extension-factory-postprocessors]]
=== Customizing configuration metadata with a BeanFactoryPostProcessor

The next extension point that we will look at is the
`org.springframework.beans.factory.config.BeanFactoryPostProcessor`. The semantics of
this interface are similar to those of the `BeanPostProcessor`, with one major
difference: `BeanFactoryPostProcessor` operates on the __bean configuration metadata__;
that is, the Spring IoC container allows a `BeanFactoryPostProcessor` to read the
configuration metadata and potentially change it __before__ the container instantiates
S
Sam Brannen 已提交
3923
any beans other than ``BeanFactoryPostProcessor``s.
B
Brian Clozel 已提交
3924

S
Sam Brannen 已提交
3925 3926
You can configure multiple ``BeanFactoryPostProcessor``s, and you can control the order in
which these ``BeanFactoryPostProcessor``s execute by setting the `order` property.
B
Brian Clozel 已提交
3927 3928 3929 3930 3931 3932
However, you can only set this property if the `BeanFactoryPostProcessor` implements the
`Ordered` interface. If you write your own `BeanFactoryPostProcessor`, you should
consider implementing the `Ordered` interface too. Consult the javadocs of the
`BeanFactoryPostProcessor` and `Ordered` interfaces for more details.

[NOTE]
3933
====
B
Brian Clozel 已提交
3934 3935 3936 3937 3938 3939 3940 3941
If you want to change the actual bean __instances__ (i.e., the objects that are created
from the configuration metadata), then you instead need to use a `BeanPostProcessor`
(described above in <<beans-factory-extension-bpp>>). While it is technically possible
to work with bean instances within a `BeanFactoryPostProcessor` (e.g., using
`BeanFactory.getBean()`), doing so causes premature bean instantiation, violating the
standard container lifecycle. This may cause negative side effects such as bypassing
bean post processing.

S
Sam Brannen 已提交
3942
Also, ``BeanFactoryPostProcessor``s are scoped __per-container__. This is only relevant if
B
Brian Clozel 已提交
3943 3944
you are using container hierarchies. If you define a `BeanFactoryPostProcessor` in one
container, it will __only__ be applied to the bean definitions in that container. Bean
S
Sam Brannen 已提交
3945
definitions in one container will not be post-processed by ``BeanFactoryPostProcessor``s
B
Brian Clozel 已提交
3946
in another container, even if both containers are part of the same hierarchy.
3947
====
B
Brian Clozel 已提交
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963

A bean factory post-processor is executed automatically when it is declared inside an
`ApplicationContext`, in order to apply changes to the configuration metadata that
define the container. Spring includes a number of predefined bean factory
post-processors, such as `PropertyOverrideConfigurer` and
`PropertyPlaceholderConfigurer`. A custom `BeanFactoryPostProcessor` can also be used,
for example, to register custom property editors.

[[null]]

An `ApplicationContext` automatically detects any beans that are deployed into it that
implement the `BeanFactoryPostProcessor` interface. It uses these beans as bean factory
post-processors, at the appropriate time. You can deploy these post-processor beans as
you would any other bean.

[NOTE]
3964
====
S
Sam Brannen 已提交
3965 3966
As with ``BeanPostProcessor``s , you typically do not want to configure
``BeanFactoryPostProcessor``s for lazy initialization. If no other bean references a
B
Brian Clozel 已提交
3967 3968 3969 3970
`Bean(Factory)PostProcessor`, that post-processor will not get instantiated at all.
Thus, marking it for lazy initialization will be ignored, and the
`Bean(Factory)PostProcessor` will be instantiated eagerly even if you set the
`default-lazy-init` attribute to `true` on the declaration of your `<beans />` element.
3971
====
B
Brian Clozel 已提交
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047


[[beans-factory-placeholderconfigurer]]
==== Example: the Class name substitution PropertyPlaceholderConfigurer

You use the `PropertyPlaceholderConfigurer` to externalize property values from a bean
definition in a separate file using the standard Java `Properties` format. Doing so
enables the person deploying an application to customize environment-specific properties
such as database URLs and passwords, without the complexity or risk of modifying the
main XML definition file or files for the container.

Consider the following XML-based configuration metadata fragment, where a `DataSource`
with placeholder values is defined. The example shows properties configured from an
external `Properties` file. At runtime, a `PropertyPlaceholderConfigurer` is applied to
the metadata that will replace some properties of the DataSource. The values to replace
are specified as __placeholders__ of the form `${property-name}` which follows the Ant /
log4j / JSP EL style.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
		<property name="locations" value="classpath:com/foo/jdbc.properties"/>
	</bean>

	<bean id="dataSource" destroy-method="close"
			class="org.apache.commons.dbcp.BasicDataSource">
		<property name="driverClassName" value="${jdbc.driverClassName}"/>
		<property name="url" value="${jdbc.url}"/>
		<property name="username" value="${jdbc.username}"/>
		<property name="password" value="${jdbc.password}"/>
	</bean>
----

The actual values come from another file in the standard Java `Properties` format:

[literal]
[subs="verbatim,quotes"]
----
jdbc.driverClassName=org.hsqldb.jdbcDriver
jdbc.url=jdbc:hsqldb:hsql://production:9002
jdbc.username=sa
jdbc.password=root
----

Therefore, the string `${jdbc.username}` is replaced at runtime with the value 'sa', and
the same applies for other placeholder values that match keys in the properties file.
The `PropertyPlaceholderConfigurer` checks for placeholders in most properties and
attributes of a bean definition. Furthermore, the placeholder prefix and suffix can be
customized.

With the `context` namespace introduced in Spring 2.5, it is possible to configure
property placeholders with a dedicated configuration element. One or more locations can
be provided as a comma-separated list in the `location` attribute.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<context:property-placeholder location="classpath:com/foo/jdbc.properties"/>
----

The `PropertyPlaceholderConfigurer` not only looks for properties in the `Properties`
file you specify. By default it also checks against the Java `System` properties if it
cannot find a property in the specified properties files. You can customize this
behavior by setting the `systemPropertiesMode` property of the configurer with one of
the following three supported integer values:

* __never__ (0): Never check system properties
* __fallback__ (1): Check system properties if not resolvable in the specified
  properties files. This is the default.
* __override__ (2): Check system properties first, before trying the specified
  properties files. This allows system properties to override any other property source.

Consult the `PropertyPlaceholderConfigurer` javadocs for more information.

[TIP]
S
Stephane Nicoll 已提交
4048
====
B
Brian Clozel 已提交
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
You can use the `PropertyPlaceholderConfigurer` to substitute class names, which is
sometimes useful when you have to pick a particular implementation class at runtime. For
example:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
		<property name="locations">
			<value>classpath:com/foo/strategy.properties</value>
		</property>
		<property name="properties">
			<value>custom.strategy.class=com.foo.DefaultStrategy</value>
		</property>
	</bean>

	<bean id="serviceStrategy" class="${custom.strategy.class}"/>
----

If the class cannot be resolved at runtime to a valid class, resolution of the bean
fails when it is about to be created, which is during the `preInstantiateSingletons()`
phase of an `ApplicationContext` for a non-lazy-init bean.
S
Stephane Nicoll 已提交
4071
====
B
Brian Clozel 已提交
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121


[[beans-factory-overrideconfigurer]]
==== Example: the PropertyOverrideConfigurer

The `PropertyOverrideConfigurer`, another bean factory post-processor, resembles the
`PropertyPlaceholderConfigurer`, but unlike the latter, the original definitions can
have default values or no values at all for bean properties. If an overriding
`Properties` file does not have an entry for a certain bean property, the default
context definition is used.

Note that the bean definition is __not__ aware of being overridden, so it is not
immediately obvious from the XML definition file that the override configurer is being
used. In case of multiple `PropertyOverrideConfigurer` instances that define different
values for the same bean property, the last one wins, due to the overriding mechanism.

Properties file configuration lines take this format:

[literal]
[subs="verbatim,quotes"]
----
beanName.property=value
----

For example:

[literal]
[subs="verbatim,quotes"]
----
dataSource.driverClassName=com.mysql.jdbc.Driver
dataSource.url=jdbc:mysql:mydb
----

This example file can be used with a container definition that contains a bean called
__dataSource__, which has __driver__ and __url__ properties.

Compound property names are also supported, as long as every component of the path
except the final property being overridden is already non-null (presumably initialized
by the constructors). In this example...

[literal]
[subs="verbatim,quotes"]
----
foo.fred.bob.sammy=123
----

... the `sammy` property of the `bob` property of the `fred` property of the `foo` bean
is set to the scalar value `123`.

[NOTE]
4122
====
B
Brian Clozel 已提交
4123 4124 4125
Specified override values are always __literal__ values; they are not translated into
bean references. This convention also applies when the original value in the XML bean
definition specifies a bean reference.
4126
====
B
Brian Clozel 已提交
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212

With the `context` namespace introduced in Spring 2.5, it is possible to configure
property overriding with a dedicated configuration element:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<context:property-override location="classpath:override.properties"/>
----



[[beans-factory-extension-factorybean]]
=== Customizing instantiation logic with a FactoryBean

Implement the `org.springframework.beans.factory.FactoryBean` interface for objects that
__are themselves factories__.

The `FactoryBean` interface is a point of pluggability into the Spring IoC container's
instantiation logic. If you have complex initialization code that is better expressed in
Java as opposed to a (potentially) verbose amount of XML, you can create your own
`FactoryBean`, write the complex initialization inside that class, and then plug your
custom `FactoryBean` into the container.

The `FactoryBean` interface provides three methods:

* `Object getObject()`: returns an instance of the object this factory creates. The
  instance can possibly be shared, depending on whether this factory returns singletons
  or prototypes.
* `boolean isSingleton()`: returns `true` if this `FactoryBean` returns singletons,
  `false` otherwise.
* `Class getObjectType()`: returns the object type returned by the `getObject()` method
  or `null` if the type is not known in advance.

The `FactoryBean` concept and interface is used in a number of places within the Spring
Framework; more than 50 implementations of the `FactoryBean` interface ship with Spring
itself.

When you need to ask a container for an actual `FactoryBean` instance itself instead of
the bean it produces, preface the bean's id with the ampersand symbol ( `&`) when
calling the `getBean()` method of the `ApplicationContext`. So for a given `FactoryBean`
with an id of `myBean`, invoking `getBean("myBean")` on the container returns the
product of the `FactoryBean`; whereas, invoking `getBean("&myBean")` returns the
`FactoryBean` instance itself.




[[beans-annotation-config]]
== Annotation-based container configuration

.Are annotations better than XML for configuring Spring?
****
The introduction of annotation-based configurations raised the question of whether this
approach is 'better' than XML. The short answer is __it depends__. The long answer is
that each approach has its pros and cons, and usually it is up to the developer to
decide which strategy suits them better. Due to the way they are defined, annotations
provide a lot of context in their declaration, leading to shorter and more concise
configuration. However, XML excels at wiring up components without touching their source
code or recompiling them. Some developers prefer having the wiring close to the source
while others argue that annotated classes are no longer POJOs and, furthermore, that the
configuration becomes decentralized and harder to control.

No matter the choice, Spring can accommodate both styles and even mix them together.
It's worth pointing out that through its <<beans-java,JavaConfig>> option, Spring allows
annotations to be used in a non-invasive way, without touching the target components
source code and that in terms of tooling, all configuration styles are supported by the
https://spring.io/tools/sts[Spring Tool Suite].
****

An alternative to XML setups is provided by annotation-based configuration which rely on
the bytecode metadata for wiring up components instead of angle-bracket declarations.
Instead of using XML to describe a bean wiring, the developer moves the configuration
into the component class itself by using annotations on the relevant class, method, or
field declaration. As mentioned in <<beans-factory-extension-bpp-examples-rabpp>>, using
a `BeanPostProcessor` in conjunction with annotations is a common means of extending the
Spring IoC container. For example, Spring 2.0 introduced the possibility of enforcing
required properties with the <<beans-required-annotation,@Required>> annotation. Spring
2.5 made it possible to follow that same general approach to drive Spring's dependency
injection. Essentially, the `@Autowired` annotation provides the same capabilities as
described in <<beans-factory-autowire>> but with more fine-grained control and wider
applicability. Spring 2.5 also added support for JSR-250 annotations such as
`@PostConstruct`, and `@PreDestroy`. Spring 3.0 added support for JSR-330 (Dependency
Injection for Java) annotations contained in the javax.inject package such as `@Inject`
and `@Named`. Details about those annotations can be found in the
<<beans-standard-annotations,relevant section>>.
4213

B
Brian Clozel 已提交
4214
[NOTE]
4215
====
B
Brian Clozel 已提交
4216 4217
Annotation injection is performed __before__ XML injection, thus the latter
configuration will override the former for properties wired through both approaches.
4218
====
4219

B
Brian Clozel 已提交
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
As always, you can register them as individual bean definitions, but they can also be
implicitly registered by including the following tag in an XML-based Spring
configuration (notice the inclusion of the `context` namespace):

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<?xml version="1.0" encoding="UTF-8"?>
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xmlns:context="http://www.springframework.org/schema/context"
		xsi:schemaLocation="http://www.springframework.org/schema/beans
			http://www.springframework.org/schema/beans/spring-beans.xsd
			http://www.springframework.org/schema/context
			http://www.springframework.org/schema/context/spring-context.xsd">

		<context:annotation-config/>

	</beans>
----

(The implicitly registered post-processors include
4242 4243 4244
{api-spring-framework}/beans/factory/annotation/AutowiredAnnotationBeanPostProcessor.html[`AutowiredAnnotationBeanPostProcessor`],
 {api-spring-framework}/context/annotation/CommonAnnotationBeanPostProcessor.html[`CommonAnnotationBeanPostProcessor`],
 {api-spring-framework}/orm/jpa/support/PersistenceAnnotationBeanPostProcessor.html[`PersistenceAnnotationBeanPostProcessor`],
B
Brian Clozel 已提交
4245
as well as the aforementioned
4246
{api-spring-framework}/beans/factory/annotation/RequiredAnnotationBeanPostProcessor.html[`RequiredAnnotationBeanPostProcessor`].)
B
Brian Clozel 已提交
4247 4248

[NOTE]
4249
====
B
Brian Clozel 已提交
4250 4251 4252 4253
`<context:annotation-config/>` only looks for annotations on beans in the same
application context in which it is defined. This means that, if you put
`<context:annotation-config/>` in a `WebApplicationContext` for a `DispatcherServlet`,
it only checks for `@Autowired` beans in your controllers, and not your services. See
4254
<<web.adoc#mvc-servlet, The DispatcherServlet>> for more information.
4255
====
B
Brian Clozel 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283



[[beans-required-annotation]]
=== @Required

The `@Required` annotation applies to bean property setter methods, as in the following
example:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class SimpleMovieLister {

		private MovieFinder movieFinder;

		@Required
		public void setMovieFinder(MovieFinder movieFinder) {
			this.movieFinder = movieFinder;
		}

		// ...
	}
----

This annotation simply indicates that the affected bean property must be populated at
configuration time, through an explicit property value in a bean definition or through
autowiring. The container throws an exception if the affected bean property has not been
S
Sam Brannen 已提交
4284
populated; this allows for eager and explicit failure, avoiding ``NullPointerException``s
B
Brian Clozel 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293
or the like later on. It is still recommended that you put assertions into the bean
class itself, for example, into an init method. Doing so enforces those required
references and values even when you use the class outside of a container.



[[beans-autowired-annotation]]
=== @Autowired

S
Stephane Nicoll 已提交
4294 4295 4296 4297 4298 4299 4300
[NOTE]
====
JSR 330's `@Inject` annotation can be used in place of Spring's `@Autowired` annotation
in the examples below. See <<beans-standard-annotations,here>> for more details.
====

You can apply the `@Autowired` annotation to constructors:
B
Brian Clozel 已提交
4301 4302 4303 4304

[source,java,indent=0]
[subs="verbatim,quotes"]
----
S
Stephane Nicoll 已提交
4305
	public class MovieRecommender {
B
Brian Clozel 已提交
4306

S
Stephane Nicoll 已提交
4307
		private final CustomerPreferenceDao customerPreferenceDao;
B
Brian Clozel 已提交
4308 4309

		@Autowired
S
Stephane Nicoll 已提交
4310 4311
		public MovieRecommender(CustomerPreferenceDao customerPreferenceDao) {
			this.customerPreferenceDao = customerPreferenceDao;
B
Brian Clozel 已提交
4312 4313 4314 4315 4316 4317 4318
		}

		// ...
	}
----

[NOTE]
4319
====
4320 4321 4322 4323
As of Spring Framework 4.3, an `@Autowired` annotation on such a constructor is
no longer necessary if the target bean only defines one constructor to begin with.
However, if several constructors are available, at least one must be annotated to
teach the container which one to use.
4324
====
B
Brian Clozel 已提交
4325

S
Stephane Nicoll 已提交
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
As expected, you can also apply the `@Autowired` annotation to "traditional" setter
methods:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class SimpleMovieLister {

		private MovieFinder movieFinder;

		@Autowired
		public void setMovieFinder(MovieFinder movieFinder) {
			this.movieFinder = movieFinder;
		}

		// ...
	}
----

B
Brian Clozel 已提交
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
You can also apply the annotation to methods with arbitrary names and/or multiple
arguments:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class MovieRecommender {

		private MovieCatalog movieCatalog;

		private CustomerPreferenceDao customerPreferenceDao;

		@Autowired
		public void prepare(MovieCatalog movieCatalog,
				CustomerPreferenceDao customerPreferenceDao) {
			this.movieCatalog = movieCatalog;
			this.customerPreferenceDao = customerPreferenceDao;
		}

		// ...
	}
----

S
Stephane Nicoll 已提交
4368
You can apply `@Autowired` to fields as well and even mix it with constructors:
B
Brian Clozel 已提交
4369 4370 4371 4372 4373 4374

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class MovieRecommender {

S
Stephane Nicoll 已提交
4375 4376
		private final CustomerPreferenceDao customerPreferenceDao;

B
Brian Clozel 已提交
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
		@Autowired
		private MovieCatalog movieCatalog;

		@Autowired
		public MovieRecommender(CustomerPreferenceDao customerPreferenceDao) {
			this.customerPreferenceDao = customerPreferenceDao;
		}

		// ...
	}
----

4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
[TIP]
====
Make sure that your target components (e.g. `MovieCatalog`, `CustomerPreferenceDao`)
are consistently declared by the type that you are using for your `@Autowired`-annotated
injection points. Otherwise injection may fail due to no type match found at runtime.

For XML-defined beans or component classes found through a classpath scan, the container
usually knows the concrete type upfront. However, for `@Bean` factory methods, you need
to make sure that the declared return type is sufficiently expressive. For components
implementing several interfaces or for components potentially referred to by their
implementation type, consider declaring the most specific return type on your factory
method (at least as specific as required by the injection points referring to your bean).
====

B
Brian Clozel 已提交
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
It is also possible to provide __all__ beans of a particular type from the
`ApplicationContext` by adding the annotation to a field or method that expects an array
of that type:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class MovieRecommender {

		@Autowired
		private MovieCatalog[] movieCatalogs;

		// ...
	}
----

The same applies for typed collections:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class MovieRecommender {

		private Set<MovieCatalog> movieCatalogs;

		@Autowired
		public void setMovieCatalogs(Set<MovieCatalog> movieCatalogs) {
			this.movieCatalogs = movieCatalogs;
		}

		// ...
	}
----

[TIP]
S
Stephane Nicoll 已提交
4438
====
4439
Your target beans can implement the `org.springframework.core.Ordered` interface or use
B
Brian Clozel 已提交
4440
the `@Order` or standard `@Priority` annotation if you want items in the array or list
S
Sam Brannen 已提交
4441
to be sorted in a specific order. Otherwise their order will follow the registration
4442 4443 4444 4445
order of the corresponding target bean definitions in the container.

The `@Order` annotation may be declared at target class level but also on `@Bean` methods,
potentially being very individual per bean definition (in case of multiple definitions
S
Sam Brannen 已提交
4446
with the same bean class). `@Order` values may influence priorities at injection points,
4447 4448 4449 4450
but please be aware that they do not influence singleton startup order which is an
orthogonal concern determined by dependency relationships and `@DependsOn` declarations.

Note that the standard `javax.annotation.Priority` annotation is not available at the
S
Sam Brannen 已提交
4451
`@Bean` level since it cannot be declared on methods. Its semantics can be modeled
4452
through `@Order` values in combination with `@Primary` on a single bean per type.
S
Stephane Nicoll 已提交
4453
====
B
Brian Clozel 已提交
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485

Even typed Maps can be autowired as long as the expected key type is `String`. The Map
values will contain all beans of the expected type, and the keys will contain the
corresponding bean names:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class MovieRecommender {

		private Map<String, MovieCatalog> movieCatalogs;

		@Autowired
		public void setMovieCatalogs(Map<String, MovieCatalog> movieCatalogs) {
			this.movieCatalogs = movieCatalogs;
		}

		// ...
	}
----

By default, the autowiring fails whenever __zero__ candidate beans are available; the
default behavior is to treat annotated methods, constructors, and fields as
indicating __required__ dependencies. This behavior can be changed as demonstrated below.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class SimpleMovieLister {

		private MovieFinder movieFinder;

4486
		@Autowired(required = false)
B
Brian Clozel 已提交
4487 4488 4489 4490 4491 4492 4493 4494 4495
		public void setMovieFinder(MovieFinder movieFinder) {
			this.movieFinder = movieFinder;
		}

		// ...
	}
----

[NOTE]
4496
====
B
Brian Clozel 已提交
4497 4498 4499 4500 4501
Only __one annotated constructor per-class__ can be marked as __required__, but multiple
non-required constructors can be annotated. In that case, each is considered among the
candidates and Spring uses the __greediest__ constructor whose dependencies can be
satisfied, that is the constructor that has the largest number of arguments.

S
Stephane Nicoll 已提交
4502
The __required__ attribute of `@Autowired` is recommended over the `@Required` annotation.
B
Brian Clozel 已提交
4503 4504 4505 4506
The __required__ attribute indicates that the property is not required for autowiring
purposes, the property is ignored if it cannot be autowired. `@Required`, on the other
hand, is stronger in that it enforces the property that was set by any means supported
by the container. If no value is injected, a corresponding exception is raised.
4507
====
B
Brian Clozel 已提交
4508

4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
Alternatively, you may express the non-required nature of a particular dependency
through Java 8's `java.util.Optional`:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class SimpleMovieLister {

		@Autowired
		public void setMovieFinder(Optional<MovieFinder> movieFinder) {
			...
		}
	}
----

As of Spring Framework 5.0, you may also use an `@Nullable` annotation (of any kind
in any package, e.g. `javax.annotation.Nullable` from JSR-305):

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class SimpleMovieLister {

		@Autowired
		public void setMovieFinder(@Nullable MovieFinder movieFinder) {
			...
		}
	}
----

B
Brian Clozel 已提交
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
You can also use `@Autowired` for interfaces that are well-known resolvable
dependencies: `BeanFactory`, `ApplicationContext`, `Environment`, `ResourceLoader`,
`ApplicationEventPublisher`, and `MessageSource`. These interfaces and their extended
interfaces, such as `ConfigurableApplicationContext` or `ResourcePatternResolver`, are
automatically resolved, with no special setup necessary.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class MovieRecommender {

		@Autowired
		private ApplicationContext context;

		public MovieRecommender() {
		}

		// ...
	}
----

[NOTE]
4561
====
S
Polish  
Stephane Nicoll 已提交
4562
`@Autowired`, `@Inject`, `@Resource`, and `@Value` annotations are handled by Spring
B
Brian Clozel 已提交
4563 4564 4565
`BeanPostProcessor` implementations which in turn means that you __cannot__ apply these
annotations within your own `BeanPostProcessor` or `BeanFactoryPostProcessor` types (if
any). These types must be 'wired up' explicitly via XML or using a Spring `@Bean` method.
4566
====
B
Brian Clozel 已提交
4567 4568


4569

S
Stephane Nicoll 已提交
4570
[[beans-autowired-annotation-primary]]
S
Sam Brannen 已提交
4571
=== Fine-tuning annotation-based autowiring with @Primary
S
Sam Brannen 已提交
4572

S
Sam Brannen 已提交
4573 4574 4575 4576 4577 4578
Because autowiring by type may lead to multiple candidates, it is often necessary to have
more control over the selection process. One way to accomplish this is with Spring's
`@Primary` annotation. `@Primary` indicates that a particular bean should be given
preference when multiple beans are candidates to be autowired to a single-valued
dependency. If exactly one 'primary' bean exists among the candidates, it will be the
autowired value.
S
Stephane Nicoll 已提交
4579

S
Sam Brannen 已提交
4580 4581
Let's assume we have the following configuration that defines `firstMovieCatalog` as the
_primary_ `MovieCatalog`.
S
Stephane Nicoll 已提交
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class MovieConfiguration {

		@Bean
		**@Primary**
		public MovieCatalog firstMovieCatalog() { ... }

		@Bean
		public MovieCatalog secondMovieCatalog() { ... }

		// ...
	}
----

S
Sam Brannen 已提交
4600 4601
With such configuration, the following `MovieRecommender` will be autowired with the
`firstMovieCatalog`.
S
Stephane Nicoll 已提交
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class MovieRecommender {

		@Autowired
		private MovieCatalog movieCatalog;

		// ...
	}
----


The corresponding bean definitions appear as follows.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<?xml version="1.0" encoding="UTF-8"?>
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xmlns:context="http://www.springframework.org/schema/context"
		xsi:schemaLocation="http://www.springframework.org/schema/beans
			http://www.springframework.org/schema/beans/spring-beans.xsd
			http://www.springframework.org/schema/context
			http://www.springframework.org/schema/context/spring-context.xsd">

		<context:annotation-config/>

4632
		<bean class="example.SimpleMovieCatalog" **primary="true"**>
S
Stephane Nicoll 已提交
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
			<!-- inject any dependencies required by this bean -->
		</bean>

		<bean class="example.SimpleMovieCatalog">
			<!-- inject any dependencies required by this bean -->
		</bean>

		<bean id="movieRecommender" class="example.MovieRecommender"/>

	</beans>
----

B
Brian Clozel 已提交
4645

4646

B
Brian Clozel 已提交
4647 4648
[[beans-autowired-annotation-qualifiers]]
=== Fine-tuning annotation-based autowiring with qualifiers
S
Sam Brannen 已提交
4649

S
Stephane Nicoll 已提交
4650 4651 4652 4653 4654
`@Primary` is an effective way to use autowiring by type with several instances when one
primary candidate can be determined. When more control over the selection process is
required, Spring's `@Qualifier` annotation can be used. You can associate qualifier values
with specific arguments, narrowing the set of type matches so that a specific bean is
chosen for each argument. In the simplest case, this can be a plain descriptive value:
B
Brian Clozel 已提交
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class MovieRecommender {

		@Autowired
		**@Qualifier("main")**
		private MovieCatalog movieCatalog;

		// ...
	}
----

The `@Qualifier` annotation can also be specified on individual constructor arguments or
method parameters:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class MovieRecommender {

		private MovieCatalog movieCatalog;

		private CustomerPreferenceDao customerPreferenceDao;

		@Autowired
		public void prepare(**@Qualifier("main")**MovieCatalog movieCatalog,
				CustomerPreferenceDao customerPreferenceDao) {
			this.movieCatalog = movieCatalog;
			this.customerPreferenceDao = customerPreferenceDao;
		}

		// ...
	}
----

The corresponding bean definitions appear as follows. The bean with qualifier value
"main" is wired with the constructor argument that is qualified with the same value.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<?xml version="1.0" encoding="UTF-8"?>
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xmlns:context="http://www.springframework.org/schema/context"
		xsi:schemaLocation="http://www.springframework.org/schema/beans
			http://www.springframework.org/schema/beans/spring-beans.xsd
			http://www.springframework.org/schema/context
			http://www.springframework.org/schema/context/spring-context.xsd">

		<context:annotation-config/>

		<bean class="example.SimpleMovieCatalog">
			**<qualifier value="main"/>**

			<!-- inject any dependencies required by this bean -->
		</bean>

		<bean class="example.SimpleMovieCatalog">
			**<qualifier value="action"/>**

			<!-- inject any dependencies required by this bean -->
		</bean>

		<bean id="movieRecommender" class="example.MovieRecommender"/>

	</beans>
----

For a fallback match, the bean name is considered a default qualifier value. Thus you
can define the bean with an id "main" instead of the nested qualifier element, leading
to the same matching result. However, although you can use this convention to refer to
specific beans by name, `@Autowired` is fundamentally about type-driven injection with
optional semantic qualifiers. This means that qualifier values, even with the bean name
fallback, always have narrowing semantics within the set of type matches; they do not
semantically express a reference to a unique bean id. Good qualifier values are "main"
or "EMEA" or "persistent", expressing characteristics of a specific component that are
S
Sam Brannen 已提交
4734
independent from the bean `id`, which may be auto-generated in case of an anonymous bean
B
Brian Clozel 已提交
4735 4736 4737 4738 4739 4740
definition like the one in the preceding example.

Qualifiers also apply to typed collections, as discussed above, for example, to
`Set<MovieCatalog>`. In this case, all matching beans according to the declared
qualifiers are injected as a collection. This implies that qualifiers do not have to be
unique; they rather simply constitute filtering criteria. For example, you can define
S
Sam Brannen 已提交
4741
multiple `MovieCatalog` beans with the same qualifier value "action", all of which would
B
Brian Clozel 已提交
4742 4743 4744
be injected into a `Set<MovieCatalog>` annotated with `@Qualifier("action")`.

[TIP]
S
Stephane Nicoll 已提交
4745
====
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
Letting qualifier values select against target bean names, within the type-matching
candidates, doesn't even require a `@Qualifier` annotation at the injection point.
If there is no other resolution indicator (e.g. a qualifier or a primary marker),
for a non-unique dependency situation, Spring will match the injection point name
(i.e. field name or parameter name) against the target bean names and choose the
same-named candidate, if any.

That said, if you intend to express annotation-driven injection by name, do not
primarily use `@Autowired`, even if is capable of selecting by bean name among
type-matching candidates. Instead, use the JSR-250 `@Resource` annotation, which is
B
Brian Clozel 已提交
4756
semantically defined to identify a specific target component by its unique name, with
4757 4758 4759 4760
the declared type being irrelevant for the matching process. `@Autowired` has rather
different semantics: After selecting candidate beans by type, the specified String
qualifier value will be considered within those type-selected candidates only, e.g.
matching an "account" qualifier against beans marked with the same qualifier label.
B
Brian Clozel 已提交
4761

4762 4763 4764 4765 4766
For beans that are themselves defined as a collection/map or array type, `@Resource`
is a fine solution, referring to the specific collection or array bean by unique name.
That said, as of 4.3, collection/map and array types can be matched through Spring's
`@Autowired` type matching algorithm as well, as long as the element type information
is preserved in `@Bean` return type signatures or collection inheritance hierarchies.
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
In this case, qualifier values can be used to select among same-typed collections,
as outlined in the previous paragraph.

As of 4.3, `@Autowired` also considers self references for injection, i.e. references
back to the bean that is currently injected. Note that self injection is a fallback;
regular dependencies on other components always have precedence. In that sense, self
references do not participate in regular candidate selection and are therefore in
particular never primary; on the contrary, they always end up as lowest precedence.
In practice, use self references as a last resort only, e.g. for calling other methods
on the same instance through the bean's transactional proxy: Consider factoring out
the affected methods to a separate delegate bean in such a scenario. Alternatively,
use `@Resource` which may obtain a proxy back to the current bean by its unique name.
B
Brian Clozel 已提交
4779 4780 4781

`@Autowired` applies to fields, constructors, and multi-argument methods, allowing for
narrowing through qualifier annotations at the parameter level. By contrast, `@Resource`
4782 4783
is supported only for fields and bean property setter methods with a single argument.
As a consequence, stick with qualifiers if your injection target is a constructor or a
B
Brian Clozel 已提交
4784
multi-argument method.
S
Stephane Nicoll 已提交
4785
====
B
Brian Clozel 已提交
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811

You can create your own custom qualifier annotations. Simply define an annotation and
provide the `@Qualifier` annotation within your definition:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Target({ElementType.FIELD, ElementType.PARAMETER})
	@Retention(RetentionPolicy.RUNTIME)
	**@Qualifier**
	public @interface Genre {

		String value();
	}
----

Then you can provide the custom qualifier on autowired fields and parameters:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class MovieRecommender {

		@Autowired
		**@Genre("Action")**
		private MovieCatalog actionCatalog;
4812

B
Brian Clozel 已提交
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
		private MovieCatalog comedyCatalog;

		@Autowired
		public void setComedyCatalog(**@Genre("Comedy")** MovieCatalog comedyCatalog) {
			this.comedyCatalog = comedyCatalog;
		}

		// ...
	}
----

Next, provide the information for the candidate bean definitions. You can add
`<qualifier/>` tags as sub-elements of the `<bean/>` tag and then specify the `type` and
`value` to match your custom qualifier annotations. The type is matched against the
fully-qualified class name of the annotation. Or, as a convenience if no risk of
conflicting names exists, you can use the short class name. Both approaches are
demonstrated in the following example.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<?xml version="1.0" encoding="UTF-8"?>
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xmlns:context="http://www.springframework.org/schema/context"
		xsi:schemaLocation="http://www.springframework.org/schema/beans
			http://www.springframework.org/schema/beans/spring-beans.xsd
			http://www.springframework.org/schema/context
			http://www.springframework.org/schema/context/spring-context.xsd">

		<context:annotation-config/>

		<bean class="example.SimpleMovieCatalog">
			**<qualifier type="Genre" value="Action"/>**
			<!-- inject any dependencies required by this bean -->
		</bean>

		<bean class="example.SimpleMovieCatalog">
O
Oleg Atamanenko 已提交
4851
			**<qualifier type="example.Genre" value="Comedy"/>**
B
Brian Clozel 已提交
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
			<!-- inject any dependencies required by this bean -->
		</bean>

		<bean id="movieRecommender" class="example.MovieRecommender"/>

	</beans>
----

In <<beans-classpath-scanning>>, you will see an annotation-based alternative to
providing the qualifier metadata in XML. Specifically, see <<beans-scanning-qualifiers>>.

In some cases, it may be sufficient to use an annotation without a value. This may be
useful when the annotation serves a more generic purpose and can be applied across
several different types of dependencies. For example, you may provide an __offline__
catalog that would be searched when no Internet connection is available. First define
the simple annotation:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Target({ElementType.FIELD, ElementType.PARAMETER})
	@Retention(RetentionPolicy.RUNTIME)
	@Qualifier
	public @interface Offline {

	}
----

Then add the annotation to the field or property to be autowired:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class MovieRecommender {

		@Autowired
		**@Offline**
		private MovieCatalog offlineCatalog;

		// ...
	}
----

Now the bean definition only needs a qualifier `type`:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean class="example.SimpleMovieCatalog">
		**<qualifier type="Offline"/>**
		<!-- inject any dependencies required by this bean -->
	</bean>
----

You can also define custom qualifier annotations that accept named attributes in
addition to or instead of the simple `value` attribute. If multiple attribute values are
then specified on a field or parameter to be autowired, a bean definition must match
__all__ such attribute values to be considered an autowire candidate. As an example,
consider the following annotation definition:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Target({ElementType.FIELD, ElementType.PARAMETER})
	@Retention(RetentionPolicy.RUNTIME)
	@Qualifier
	public @interface MovieQualifier {

		String genre();

		Format format();
	}
----

In this case `Format` is an enum:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public enum Format {
		VHS, DVD, BLURAY
	}
----

The fields to be autowired are annotated with the custom qualifier and include values
for both attributes: `genre` and `format`.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class MovieRecommender {

		@Autowired
		@MovieQualifier(format=Format.VHS, genre="Action")
		private MovieCatalog actionVhsCatalog;

		@Autowired
		@MovieQualifier(format=Format.VHS, genre="Comedy")
		private MovieCatalog comedyVhsCatalog;

		@Autowired
		@MovieQualifier(format=Format.DVD, genre="Action")
		private MovieCatalog actionDvdCatalog;

		@Autowired
		@MovieQualifier(format=Format.BLURAY, genre="Comedy")
		private MovieCatalog comedyBluRayCatalog;

		// ...
	}
----

Finally, the bean definitions should contain matching qualifier values. This example
also demonstrates that bean __meta__ attributes may be used instead of the
`<qualifier/>` sub-elements. If available, the `<qualifier/>` and its attributes take
precedence, but the autowiring mechanism falls back on the values provided within the
`<meta/>` tags if no such qualifier is present, as in the last two bean definitions in
the following example.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<?xml version="1.0" encoding="UTF-8"?>
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xmlns:context="http://www.springframework.org/schema/context"
		xsi:schemaLocation="http://www.springframework.org/schema/beans
			http://www.springframework.org/schema/beans/spring-beans.xsd
			http://www.springframework.org/schema/context
			http://www.springframework.org/schema/context/spring-context.xsd">

		<context:annotation-config/>

		<bean class="example.SimpleMovieCatalog">
			<qualifier type="MovieQualifier">
				<attribute key="format" value="VHS"/>
				<attribute key="genre" value="Action"/>
			</qualifier>
			<!-- inject any dependencies required by this bean -->
		</bean>

		<bean class="example.SimpleMovieCatalog">
			<qualifier type="MovieQualifier">
				<attribute key="format" value="VHS"/>
				<attribute key="genre" value="Comedy"/>
			</qualifier>
			<!-- inject any dependencies required by this bean -->
		</bean>

		<bean class="example.SimpleMovieCatalog">
			<meta key="format" value="DVD"/>
			<meta key="genre" value="Action"/>
			<!-- inject any dependencies required by this bean -->
		</bean>

		<bean class="example.SimpleMovieCatalog">
			<meta key="format" value="BLURAY"/>
			<meta key="genre" value="Comedy"/>
			<!-- inject any dependencies required by this bean -->
		</bean>

	</beans>
----



[[beans-generics-as-qualifiers]]
=== Using generics as autowiring qualifiers
S
Sam Brannen 已提交
5020

B
Brian Clozel 已提交
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
In addition to the `@Qualifier` annotation, it is also possible to use Java generic types
as an implicit form of qualification. For example, suppose you have the following
configuration:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class MyConfiguration {

		@Bean
		public StringStore stringStore() {
			return new StringStore();
		}

		@Bean
		public IntegerStore integerStore() {
			return new IntegerStore();
		}
	}
----

Assuming that beans above implement a generic interface, i.e. `Store<String>` and
`Store<Integer>`, you can `@Autowire` the `Store` interface and the __generic__ will
be used as a qualifier:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Autowired
	private Store<String> s1; // <String> qualifier, injects the stringStore bean

	@Autowired
	private Store<Integer> s2; // <Integer> qualifier, injects the integerStore bean
----

Generic qualifiers also apply when autowiring Lists, Maps and Arrays:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	// Inject all Store beans as long as they have an <Integer> generic
	// Store<String> beans will not appear in this list
	@Autowired
	private List<Store<Integer>> s;
----



[[beans-custom-autowire-configurer]]
=== CustomAutowireConfigurer

The
5074
{api-spring-framework}/beans/factory/annotation/CustomAutowireConfigurer.html[`CustomAutowireConfigurer`]
B
Brian Clozel 已提交
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
is a `BeanFactoryPostProcessor` that enables you to register your own custom qualifier
annotation types even if they are not annotated with Spring's `@Qualifier` annotation.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="customAutowireConfigurer"
			class="org.springframework.beans.factory.annotation.CustomAutowireConfigurer">
		<property name="customQualifierTypes">
			<set>
				<value>example.CustomQualifier</value>
			</set>
		</property>
	</bean>
----

The `AutowireCandidateResolver` determines autowire candidates by:

* the `autowire-candidate` value of each bean definition
* any `default-autowire-candidates` pattern(s) available on the `<beans/>` element
* the presence of `@Qualifier` annotations and any custom annotations registered
with the `CustomAutowireConfigurer`

When multiple beans qualify as autowire candidates, the determination of a "primary" is
the following: if exactly one bean definition among the candidates has a `primary`
attribute set to `true`, it will be selected.



[[beans-resource-annotation]]
=== @Resource

Spring also supports injection using the JSR-250 `@Resource` annotation on fields or
bean property setter methods. This is a common pattern in Java EE 5 and 6, for example
in JSF 1.2 managed beans or JAX-WS 2.0 endpoints. Spring supports this pattern for
Spring-managed objects as well.

`@Resource` takes a name attribute, and by default Spring interprets that value as the
bean name to be injected. In other words, it follows __by-name__ semantics, as
demonstrated in this example:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class SimpleMovieLister {

		private MovieFinder movieFinder;

		**@Resource(name="myMovieFinder")**
		public void setMovieFinder(MovieFinder movieFinder) {
			this.movieFinder = movieFinder;
		}
	}
----

If no name is specified explicitly, the default name is derived from the field name or
setter method. In case of a field, it takes the field name; in case of a setter method,
it takes the bean property name. So the following example is going to have the bean with
name "movieFinder" injected into its setter method:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class SimpleMovieLister {

		private MovieFinder movieFinder;

		**@Resource**
		public void setMovieFinder(MovieFinder movieFinder) {
			this.movieFinder = movieFinder;
		}
	}
----

[NOTE]
5150
====
B
Brian Clozel 已提交
5151 5152 5153
The name provided with the annotation is resolved as a bean name by the
`ApplicationContext` of which the `CommonAnnotationBeanPostProcessor` is aware. The
names can be resolved through JNDI if you configure Spring's
5154
{api-spring-framework}/jndi/support/SimpleJndiBeanFactory.html[`SimpleJndiBeanFactory`]
B
Brian Clozel 已提交
5155 5156
explicitly. However, it is recommended that you rely on the default behavior and simply
use Spring's JNDI lookup capabilities to preserve the level of indirection.
5157
====
B
Brian Clozel 已提交
5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221

In the exclusive case of `@Resource` usage with no explicit name specified, and similar
to `@Autowired`, `@Resource` finds a primary type match instead of a specific named bean
and resolves well-known resolvable dependencies: the `BeanFactory`,
`ApplicationContext`, `ResourceLoader`, `ApplicationEventPublisher`, and `MessageSource`
interfaces.

Thus in the following example, the `customerPreferenceDao` field first looks for a bean
named customerPreferenceDao, then falls back to a primary type match for the type
`CustomerPreferenceDao`. The "context" field is injected based on the known resolvable
dependency type `ApplicationContext`.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class MovieRecommender {

		@Resource
		private CustomerPreferenceDao customerPreferenceDao;

		@Resource
		private ApplicationContext context;

		public MovieRecommender() {
		}

		// ...
	}
----



[[beans-postconstruct-and-predestroy-annotations]]
=== @PostConstruct and @PreDestroy

The `CommonAnnotationBeanPostProcessor` not only recognizes the `@Resource` annotation
but also the JSR-250 __lifecycle__ annotations. Introduced in Spring 2.5, the support
for these annotations offers yet another alternative to those described in
<<beans-factory-lifecycle-initializingbean,initialization callbacks>> and
<<beans-factory-lifecycle-disposablebean,destruction callbacks>>. Provided that the
`CommonAnnotationBeanPostProcessor` is registered within the Spring
`ApplicationContext`, a method carrying one of these annotations is invoked at the same
point in the lifecycle as the corresponding Spring lifecycle interface method or
explicitly declared callback method. In the example below, the cache will be
pre-populated upon initialization and cleared upon destruction.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class CachingMovieLister {

		@PostConstruct
		public void populateMovieCache() {
			// populates the movie cache upon initialization...
		}

		@PreDestroy
		public void clearMovieCache() {
			// clears the movie cache upon destruction...
		}
	}
----

[NOTE]
5222
====
B
Brian Clozel 已提交
5223 5224
For details about the effects of combining various lifecycle mechanisms, see
<<beans-factory-lifecycle-combined-effects>>.
5225
====
B
Brian Clozel 已提交
5226 5227 5228 5229 5230 5231




[[beans-classpath-scanning]]
== Classpath scanning and managed components
5232

S
Sam Brannen 已提交
5233 5234
Most examples in this chapter use XML to specify the configuration metadata that produces
each `BeanDefinition` within the Spring container. The previous section
B
Brian Clozel 已提交
5235 5236
(<<beans-annotation-config>>) demonstrates how to provide a lot of the configuration
metadata through source-level annotations. Even in those examples, however, the "base"
S
Sam Brannen 已提交
5237 5238 5239 5240 5241 5242 5243 5244
bean definitions are explicitly defined in the XML file, while the annotations only drive
the dependency injection. This section describes an option for implicitly detecting the
__candidate components__ by scanning the classpath. Candidate components are classes that
match against a filter criteria and have a corresponding bean definition registered with
the container. This removes the need to use XML to perform bean registration; instead you
can use annotations (for example `@Component`), AspectJ type expressions, or your own
custom filter criteria to select which classes will have bean definitions registered with
the container.
B
Brian Clozel 已提交
5245 5246

[NOTE]
5247
====
B
Brian Clozel 已提交
5248 5249 5250 5251
Starting with Spring 3.0, many features provided by the Spring JavaConfig project are
part of the core Spring Framework. This allows you to define beans using Java rather
than using the traditional XML files. Take a look at the `@Configuration`, `@Bean`,
`@Import`, and `@DependsOn` annotations for examples of how to use these new features.
5252
====
B
Brian Clozel 已提交
5253 5254 5255 5256 5257 5258 5259



[[beans-stereotype-annotations]]
=== @Component and further stereotype annotations

The `@Repository` annotation is a marker for any class that fulfills the role or
S
Sam Brannen 已提交
5260
__stereotype__ of a repository (also known as Data Access Object or DAO). Among the uses
B
Brian Clozel 已提交
5261
of this marker is the automatic translation of exceptions as described in
5262
<<data-access.adoc#orm-exception-translation, Exception translation>>.
B
Brian Clozel 已提交
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281

Spring provides further stereotype annotations: `@Component`, `@Service`, and
`@Controller`. `@Component` is a generic stereotype for any Spring-managed component.
`@Repository`, `@Service`, and `@Controller` are specializations of `@Component` for
more specific use cases, for example, in the persistence, service, and presentation
layers, respectively. Therefore, you can annotate your component classes with
`@Component`, but by annotating them with `@Repository`, `@Service`, or `@Controller`
instead, your classes are more properly suited for processing by tools or associating
with aspects. For example, these stereotype annotations make ideal targets for
pointcuts. It is also possible that `@Repository`, `@Service`, and `@Controller` may
carry additional semantics in future releases of the Spring Framework. Thus, if you are
choosing between using `@Component` or `@Service` for your service layer, `@Service` is
clearly the better choice. Similarly, as stated above, `@Repository` is already
supported as a marker for automatic exception translation in your persistence layer.



[[beans-meta-annotations]]
=== Meta-annotations
S
Sam Brannen 已提交
5282

5283 5284
Many of the annotations provided by Spring can be used as __meta-annotations__ in your
own code. A meta-annotation is simply an annotation that can be applied to another
S
Sam Brannen 已提交
5285
annotation. For example, the `@Service` annotation mentioned above is meta-annotated with
5286
`@Component`:
B
Brian Clozel 已提交
5287 5288 5289 5290

[source,java,indent=0]
[subs="verbatim,quotes"]
----
S
Sam Brannen 已提交
5291
	@Target(ElementType.TYPE)
B
Brian Clozel 已提交
5292 5293 5294 5295 5296 5297 5298 5299 5300
	@Retention(RetentionPolicy.RUNTIME)
	@Documented
	**@Component** // Spring will see this and treat @Service in the same way as @Component
	public @interface Service {

		// ....
	}
----

5301 5302 5303
Meta-annotations can also be combined to create __composed annotations__. For example,
the `@RestController` annotation from Spring MVC is __composed__ of `@Controller` and
`@ResponseBody`.
B
Brian Clozel 已提交
5304

5305 5306
In addition, composed annotations may optionally redeclare attributes from
meta-annotations to allow user customization. This can be particularly useful when you
5307 5308 5309
want to only expose a subset of the meta-annotation's attributes. For example, Spring's
`@SessionScope` annotation hardcodes the scope name to `session` but still allows
customization of the `proxyMode`.
B
Brian Clozel 已提交
5310 5311 5312 5313

[source,java,indent=0]
[subs="verbatim,quotes"]
----
5314
	@Target({ElementType.TYPE, ElementType.METHOD})
B
Brian Clozel 已提交
5315
	@Retention(RetentionPolicy.RUNTIME)
5316 5317
	@Documented
	@Scope(WebApplicationContext.SCOPE_SESSION)
B
Brian Clozel 已提交
5318 5319
	public @interface SessionScope {

5320 5321 5322 5323 5324 5325 5326
		/**
		 * Alias for {@link Scope#proxyMode}.
		 * <p>Defaults to {@link ScopedProxyMode#TARGET_CLASS}.
		 */
		@AliasFor(annotation = Scope.class)
		ScopedProxyMode proxyMode() default ScopedProxyMode.TARGET_CLASS;

5327 5328 5329 5330
	}
----

`@SessionScope` can then be used without declaring the `proxyMode` as follows:
B
Brian Clozel 已提交
5331

5332 5333 5334 5335 5336
[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Service
	**@SessionScope**
5337
	public class SessionScopedService {
5338
		// ...
B
Brian Clozel 已提交
5339 5340 5341
	}
----

5342 5343 5344 5345 5346 5347
Or with an overridden value for the `proxyMode` as follows:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Service
5348 5349
	**@SessionScope(proxyMode = ScopedProxyMode.INTERFACES)**
	public class SessionScopedUserService implements UserService {
5350 5351 5352
		// ...
	}
----
B
Brian Clozel 已提交
5353

R
Rossen Stoyanchev 已提交
5354 5355 5356
For further details, consult the
https://github.com/spring-projects/spring-framework/wiki/Spring-Annotation-Programming-Model[Spring Annotation Programming Model]
wiki page.
B
Brian Clozel 已提交
5357 5358


5359

B
Brian Clozel 已提交
5360 5361
[[beans-scanning-autodetection]]
=== Automatically detecting classes and registering bean definitions
S
Sam Brannen 已提交
5362

B
Brian Clozel 已提交
5363
Spring can automatically detect stereotyped classes and register corresponding
S
Sam Brannen 已提交
5364
``BeanDefinition``s with the `ApplicationContext`. For example, the following two classes
B
Brian Clozel 已提交
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
are eligible for such autodetection:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Service
	public class SimpleMovieLister {

		private MovieFinder movieFinder;

		@Autowired
		public SimpleMovieLister(MovieFinder movieFinder) {
			this.movieFinder = movieFinder;
		}
	}
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Repository
	public class JpaMovieFinder implements MovieFinder {
		// implementation elided for clarity
	}
----

To autodetect these classes and register the corresponding beans, you need to add
`@ComponentScan` to your `@Configuration` class, where the `basePackages` attribute
is a common parent package for the two classes. (Alternatively, you can specify a
comma/semicolon/space-separated list that includes the parent package of each class.)

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	@ComponentScan(basePackages = "org.example")
	public class AppConfig  {
5402
		...
B
Brian Clozel 已提交
5403 5404 5405 5406
	}
----

[NOTE]
5407
====
5408
For concision, the above may have used the `value` attribute of the
N
nkjackzhang 已提交
5409
annotation, i.e. `@ComponentScan("org.example")`
5410
====
B
Brian Clozel 已提交
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431

The following is an alternative using XML

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<?xml version="1.0" encoding="UTF-8"?>
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xmlns:context="http://www.springframework.org/schema/context"
		xsi:schemaLocation="http://www.springframework.org/schema/beans
			http://www.springframework.org/schema/beans/spring-beans.xsd
			http://www.springframework.org/schema/context
			http://www.springframework.org/schema/context/spring-context.xsd">

		<context:component-scan base-package="org.example"/>

	</beans>
----

[TIP]
S
Stephane Nicoll 已提交
5432
====
B
Brian Clozel 已提交
5433 5434 5435
The use of `<context:component-scan>` implicitly enables the functionality of
`<context:annotation-config>`. There is usually no need to include the
`<context:annotation-config>` element when using `<context:component-scan>`.
S
Stephane Nicoll 已提交
5436
====
B
Brian Clozel 已提交
5437 5438

[NOTE]
5439
====
B
Brian Clozel 已提交
5440 5441 5442 5443 5444 5445
The scanning of classpath packages requires the presence of corresponding directory
entries in the classpath. When you build JARs with Ant, make sure that you do __not__
activate the files-only switch of the JAR task. Also, classpath directories may not
get exposed based on security policies in some environments, e.g. standalone apps on
JDK 1.7.0_45 and higher (which requires 'Trusted-Library' setup in your manifests; see
http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources).
5446 5447 5448 5449 5450 5451

On JDK 9's module path (Jigsaw), Spring's classpath scanning generally works as expected.
However, please make sure that your component classes are exported in your `module-info`
descriptors; if you expect Spring to invoke non-public members of your classes, make
sure that they are 'opened' (i.e. using an `opens` declaration instead of an `exports`
declaration in your `module-info` descriptor).
5452
====
B
Brian Clozel 已提交
5453 5454 5455 5456 5457 5458 5459

Furthermore, the `AutowiredAnnotationBeanPostProcessor` and
`CommonAnnotationBeanPostProcessor` are both included implicitly when you use the
component-scan element. That means that the two components are autodetected __and__
wired together - all without any bean configuration metadata provided in XML.

[NOTE]
5460
====
B
Brian Clozel 已提交
5461 5462
You can disable the registration of `AutowiredAnnotationBeanPostProcessor` and
`CommonAnnotationBeanPostProcessor` by including the __annotation-config__ attribute
5463
with a value of `false`.
5464
====
B
Brian Clozel 已提交
5465 5466 5467 5468 5469



[[beans-scanning-filters]]
=== Using filters to customize scanning
S
Sam Brannen 已提交
5470

B
Brian Clozel 已提交
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
By default, classes annotated with `@Component`, `@Repository`, `@Service`,
`@Controller`, or a custom annotation that itself is annotated with `@Component` are the
only detected candidate components. However, you can modify and extend this behavior
simply by applying custom filters. Add them as __includeFilters__ or __excludeFilters__
parameters of the `@ComponentScan` annotation (or as __include-filter__ or __exclude-filter__
sub-elements of the `component-scan` element). Each filter element requires the `type`
and `expression` attributes. The following table describes the filtering options.

[[beans-scanning-filters-tbl]]
.Filter Types
|===
| Filter Type| Example Expression| Description

| annotation (default)
| `org.example.SomeAnnotation`
| An annotation to be present at the type level in target components.

| assignable
| `org.example.SomeClass`
| A class (or interface) that the target components are assignable to (extend/implement).

| aspectj
| `org.example..*Service+`
| An AspectJ type expression to be matched by the target components.

| regex
| `org\.example\.Default.*`
| A regex expression to be matched by the target components class names.

| custom
| `org.example.MyTypeFilter`
| A custom implementation of the `org.springframework.core.type .TypeFilter` interface.
|===

The following example shows the configuration ignoring all `@Repository` annotations
and using "stub" repositories instead.


[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
5513 5514 5515 5516 5517 5518
	@ComponentScan(basePackages = "org.example",
			includeFilters = @Filter(type = FilterType.REGEX, pattern = ".*Stub.*Repository"),
			excludeFilters = @Filter(Repository.class))
	public class AppConfig {
		...
	}
B
Brian Clozel 已提交
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536
----

and the equivalent using XML

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>
		<context:component-scan base-package="org.example">
			<context:include-filter type="regex"
					expression=".*Stub.*Repository"/>
			<context:exclude-filter type="annotation"
					expression="org.springframework.stereotype.Repository"/>
		</context:component-scan>
	</beans>
----

[NOTE]
S
Stephane Nicoll 已提交
5537
====
B
Brian Clozel 已提交
5538
You can also disable the default filters by setting `useDefaultFilters=false` on the annotation or
5539
providing `use-default-filters="false"` as an attribute of the `<component-scan/>` element. This
B
Brian Clozel 已提交
5540
will in effect disable automatic detection of classes annotated with `@Component`, `@Repository`,
5541
`@Service`, `@Controller`, or `@Configuration`.
S
Stephane Nicoll 已提交
5542
====
B
Brian Clozel 已提交
5543 5544 5545 5546 5547



[[beans-factorybeans-annotations]]
=== Defining bean metadata within components
S
Sam Brannen 已提交
5548

B
Brian Clozel 已提交
5549
Spring components can also contribute bean definition metadata to the container. You do
5550 5551
this with the same `@Bean` annotation used to define bean metadata within `@Configuration`
annotated classes. Here is a simple example:
B
Brian Clozel 已提交
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Component
	public class FactoryMethodComponent {

		@Bean
		@Qualifier("public")
		public TestBean publicInstance() {
			return new TestBean("publicInstance");
		}

		public void doWork() {
			// Component method implementation omitted
		}
	}
----

This class is a Spring component that has application-specific code contained in its
`doWork()` method. However, it also contributes a bean definition that has a factory
method referring to the method `publicInstance()`. The `@Bean` annotation identifies the
factory method and other bean definition properties, such as a qualifier value through
the `@Qualifier` annotation. Other method level annotations that can be specified are
`@Scope`, `@Lazy`, and custom qualifier annotations.

[TIP]
S
Stephane Nicoll 已提交
5579
====
B
Brian Clozel 已提交
5580 5581 5582
In addition to its role for component initialization, the `@Lazy` annotation may also be
placed on injection points marked with `@Autowired` or `@Inject`. In this context, it
leads to the injection of a lazy-resolution proxy.
S
Stephane Nicoll 已提交
5583
====
B
Brian Clozel 已提交
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618

Autowired fields and methods are supported as previously discussed, with additional
support for autowiring of `@Bean` methods:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Component
	public class FactoryMethodComponent {

		private static int i;

		@Bean
		@Qualifier("public")
		public TestBean publicInstance() {
			return new TestBean("publicInstance");
		}

		// use of a custom qualifier and autowiring of method parameters
		@Bean
		protected TestBean protectedInstance(
				@Qualifier("public") TestBean spouse,
				@Value("#{privateInstance.age}") String country) {
			TestBean tb = new TestBean("protectedInstance", 1);
			tb.setSpouse(spouse);
			tb.setCountry(country);
			return tb;
		}

		@Bean
		private TestBean privateInstance() {
			return new TestBean("privateInstance", i++);
		}

		@Bean
5619
		@RequestScope
B
Brian Clozel 已提交
5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
		public TestBean requestScopedInstance() {
			return new TestBean("requestScopedInstance", 3);
		}
	}
----

The example autowires the `String` method parameter `country` to the value of the `Age`
property on another bean named `privateInstance`. A Spring Expression Language element
defines the value of the property through the notation `#{ <expression> }`. For `@Value`
annotations, an expression resolver is preconfigured to look for bean names when
resolving expression text.

5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
As of Spring Framework 4.3, you may also declare a factory method parameter of type
`InjectionPoint` (or its more specific subclass `DependencyDescriptor`) in order to
access the requesting injection point that triggers the creation of the current bean.
Note that this will only apply to the actual creation of bean instances, not to the
injection of existing instances. As a consequence, this feature makes most sense for
beans of prototype scope. For other scopes, the factory method will only ever see the
injection point which triggered the creation of a new bean instance in the given scope:
for example, the dependency that triggered the creation of a lazy singleton bean.
Use the provided injection point metadata with semantic care in such scenarios.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Component
	public class FactoryMethodComponent {

		@Bean @Scope("prototype")
		public TestBean prototypeInstance(InjectionPoint injectionPoint) {
			return new TestBean("prototypeInstance for " + injectionPoint.getMember());
		}
	}
----

The `@Bean` methods in a regular Spring component are processed differently than their
B
Brian Clozel 已提交
5656 5657
counterparts inside a Spring `@Configuration` class. The difference is that `@Component`
classes are not enhanced with CGLIB to intercept the invocation of methods and fields.
L
logicg8 已提交
5658
CGLIB proxying is the means by which invoking methods or fields within `@Bean` methods
B
Brian Clozel 已提交
5659
in `@Configuration` classes creates bean metadata references to collaborating objects;
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
such methods are __not__ invoked with normal Java semantics but rather go through the
container in order to provide the usual lifecycle management and proxying of Spring
beans even when referring to other beans via programmatic calls to `@Bean` methods.
In contrast, invoking a method or field in an `@Bean` method within a plain `@Component`
class __has__ standard Java semantics, with no special CGLIB processing or other
constraints applying.

[NOTE]
====
You may declare `@Bean` methods as `static`, allowing for them to be called without
creating their containing configuration class as an instance. This makes particular
sense when defining post-processor beans, e.g. of type `BeanFactoryPostProcessor` or
`BeanPostProcessor`, since such beans will get initialized early in the container
lifecycle and should avoid triggering other parts of the configuration at that point.

Note that calls to static `@Bean` methods will never get intercepted by the container,
not even within `@Configuration` classes (see above). This is due to technical
limitations: CGLIB subclassing can only override non-static methods. As a consequence,
a direct call to another `@Bean` method will have standard Java semantics, resulting
in an independent instance being returned straight from the factory method itself.

The Java language visibility of `@Bean` methods does not have an immediate impact on
the resulting bean definition in Spring's container. You may freely declare your
factory methods as you see fit in non-`@Configuration` classes and also for static
methods anywhere. However, regular `@Bean` methods in `@Configuration` classes need
to be overridable, i.e. they must not be declared as `private` or `final`.

5687 5688
`@Bean` methods will also be discovered on base classes of a given component or
configuration class, as well as on Java 8 default methods declared in interfaces
5689 5690 5691
implemented by the component or configuration class. This allows for a lot of
flexibility in composing complex configuration arrangements, with even multiple
inheritance being possible through Java 8 default methods as of Spring 4.2.
5692 5693 5694 5695 5696 5697 5698

Finally, note that a single class may hold multiple `@Bean` methods for the same
bean, as an arrangement of multiple factory methods to use depending on available
dependencies at runtime. This is the same algorithm as for choosing the "greediest"
constructor or factory method in other configuration scenarios: The variant with
the largest number of satisfiable dependencies will be picked at construction time,
analogous to how the container selects between multiple `@Autowired` constructors.
5699
====
B
Brian Clozel 已提交
5700 5701 5702 5703 5704



[[beans-scanning-name-generator]]
=== Naming autodetected components
S
Sam Brannen 已提交
5705

B
Brian Clozel 已提交
5706 5707
When a component is autodetected as part of the scanning process, its bean name is
generated by the `BeanNameGenerator` strategy known to that scanner. By default, any
5708 5709
Spring stereotype annotation (`@Component`, `@Repository`, `@Service`, and
`@Controller`) that contains a _name_ `value` will thereby provide that name to the
B
Brian Clozel 已提交
5710 5711
corresponding bean definition.

5712
If such an annotation contains no _name_ `value` or for any other detected component (such
B
Brian Clozel 已提交
5713 5714
as those discovered by custom filters), the default bean name generator returns the
uncapitalized non-qualified class name. For example, if the following two components
5715
were detected, the names would be `myMovieLister` and `movieFinderImpl`:
B
Brian Clozel 已提交
5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Service("myMovieLister")
	public class SimpleMovieLister {
		// ...
	}
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Repository
	public class MovieFinderImpl implements MovieFinder {
		// ...
	}
----

[NOTE]
5736
====
B
Brian Clozel 已提交
5737 5738
If you do not want to rely on the default bean-naming strategy, you can provide a custom
bean-naming strategy. First, implement the
5739
{api-spring-framework}/beans/factory/support/BeanNameGenerator.html[`BeanNameGenerator`]
B
Brian Clozel 已提交
5740 5741
interface, and be sure to include a default no-arg constructor. Then, provide the
fully-qualified class name when configuring the scanner:
5742
====
B
Brian Clozel 已提交
5743 5744 5745 5746 5747

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
5748 5749 5750 5751
	@ComponentScan(basePackages = "org.example", nameGenerator = MyNameGenerator.class)
	public class AppConfig {
		...
	}
B
Brian Clozel 已提交
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
----

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>
		<context:component-scan base-package="org.example"
			name-generator="org.example.MyNameGenerator" />
	</beans>
----

As a general rule, consider specifying the name with the annotation whenever other
components may be making explicit references to it. On the other hand, the
auto-generated names are adequate whenever the container is responsible for wiring.



[[beans-scanning-scope-resolver]]
=== Providing a scope for autodetected components
S
Sam Brannen 已提交
5771

B
Brian Clozel 已提交
5772
As with Spring-managed components in general, the default and most common scope for
5773 5774
autodetected components is `singleton`. However, sometimes you need a different scope
which can be specified via the `@Scope` annotation. Simply provide the name of the scope
B
Brian Clozel 已提交
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
within the annotation:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Scope("prototype")
	@Repository
	public class MovieFinderImpl implements MovieFinder {
		// ...
	}
----

5787 5788 5789
For details on web-specific scopes, see <<beans-factory-scopes-other>>.


B
Brian Clozel 已提交
5790
[NOTE]
5791
====
B
Brian Clozel 已提交
5792 5793
To provide a custom strategy for scope resolution rather than relying on the
annotation-based approach, implement the
5794
{api-spring-framework}/context/annotation/ScopeMetadataResolver.html[`ScopeMetadataResolver`]
B
Brian Clozel 已提交
5795 5796
interface, and be sure to include a default no-arg constructor. Then, provide the
fully-qualified class name when configuring the scanner:
5797
====
B
Brian Clozel 已提交
5798 5799 5800 5801 5802 5803 5804

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	@ComponentScan(basePackages = "org.example", scopeResolver = MyScopeResolver.class)
	public class AppConfig {
5805 5806
		...
	}
B
Brian Clozel 已提交
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
----

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>
		<context:component-scan base-package="org.example"
				scope-resolver="org.example.MyScopeResolver" />
	</beans>
----

When using certain non-singleton scopes, it may be necessary to generate proxies for the
scoped objects. The reasoning is described in <<beans-factory-scopes-other-injection>>.
For this purpose, a __scoped-proxy__ attribute is available on the component-scan
element. The three possible values are: no, interfaces, and targetClass. For example,
the following configuration will result in standard JDK dynamic proxies:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	@ComponentScan(basePackages = "org.example", scopedProxy = ScopedProxyMode.INTERFACES)
	public class AppConfig {
5830 5831
		...
	}
B
Brian Clozel 已提交
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
----

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>
		<context:component-scan base-package="org.example"
			scoped-proxy="interfaces" />
	</beans>
----



[[beans-scanning-qualifiers]]
=== Providing qualifier metadata with annotations
S
Sam Brannen 已提交
5847

B
Brian Clozel 已提交
5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
The `@Qualifier` annotation is discussed in <<beans-autowired-annotation-qualifiers>>.
The examples in that section demonstrate the use of the `@Qualifier` annotation and
custom qualifier annotations to provide fine-grained control when you resolve autowire
candidates. Because those examples were based on XML bean definitions, the qualifier
metadata was provided on the candidate bean definitions using the `qualifier` or `meta`
sub-elements of the `bean` element in the XML. When relying upon classpath scanning for
autodetection of components, you provide the qualifier metadata with type-level
annotations on the candidate class. The following three examples demonstrate this
technique:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Component
	**@Qualifier("Action")**
	public class ActionMovieCatalog implements MovieCatalog {
		// ...
	}
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Component
	**@Genre("Action")**
	public class ActionMovieCatalog implements MovieCatalog {
		// ...
	}
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Component
	**@Offline**
	public class CachingMovieCatalog implements MovieCatalog {
		// ...
	}
----

[NOTE]
5889
====
B
Brian Clozel 已提交
5890 5891 5892 5893
As with most annotation-based alternatives, keep in mind that the annotation metadata is
bound to the class definition itself, while the use of XML allows for multiple beans
__of the same type__ to provide variations in their qualifier metadata, because that
metadata is provided per-instance rather than per-class.
5894
====
B
Brian Clozel 已提交
5895 5896 5897



5898
[[beans-scanning-index]]
S
Stephane Nicoll 已提交
5899
=== Generating an index of candidate components
5900

S
Stephane Nicoll 已提交
5901 5902 5903 5904 5905
While classpath scanning is very fast, it is possible to improve the startup performance
of large applications by creating a static list of candidates at compilation time. In this
mode, _all modules_ of the application must use this mechanism as, when the
`ApplicationContext` detects such index, it will automatically use it rather than scanning
the classpath.
5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928

To generate the index, simply add an additional dependency to each module that contains
components that are target for component scan directives:

[source,xml,indent=0]
[subs="verbatim,quotes,attributes"]
----
	<dependencies>
		<dependency>
			<groupId>org.springframework</groupId>
			<artifactId>spring-context-indexer</artifactId>
			<version>{spring-version}</version>
			<optional>true</optional>
		</dependency>
	</dependencies>
----

Or, using Gradle:

[source,groovy,indent=0]
[subs="verbatim,quotes,attributes"]
----
	dependencies {
5929
		compileOnly("org.springframework:spring-context-indexer:{spring-version}")
5930 5931 5932 5933 5934 5935
	}
----

That process will generate a `META-INF/spring.components` file that is going to be
included in the jar.

S
Stephane Nicoll 已提交
5936 5937 5938 5939 5940 5941 5942
[NOTE]
====
When working with this mode in your IDE, the `spring-context-indexer` must be registered
as an annotation processor to make sure the index is up to date when candidate components
are updated.
====

5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
[TIP]
====
The index is enabled automatically when a `META-INF/spring.components` is found on the
classpath. If an index is partially available for some libraries (or use cases) but
couldn't be built for the whole application, you can fallback to a regular classpath
arrangement (i.e. as no index was present at all) by setting `spring.index.ignore` to
`true`, either as a system property or in a `spring.properties` file at the root of the
classpath.
====


B
Brian Clozel 已提交
5954

5955

B
Brian Clozel 已提交
5956 5957
[[beans-standard-annotations]]
== Using JSR 330 Standard Annotations
5958

B
Brian Clozel 已提交
5959 5960 5961 5962 5963
Starting with Spring 3.0, Spring offers support for JSR-330 standard annotations
(Dependency Injection). Those annotations are scanned in the same way as the Spring
annotations. You just need to have the relevant jars in your classpath.

[NOTE]
S
Stephane Nicoll 已提交
5964
====
B
Brian Clozel 已提交
5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978
If you are using Maven, the `javax.inject` artifact is available in the standard Maven
repository (
http://repo1.maven.org/maven2/javax/inject/javax.inject/1/[http://repo1.maven.org/maven2/javax/inject/javax.inject/1/]).
You can add the following dependency to your file pom.xml:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<dependency>
		<groupId>javax.inject</groupId>
		<artifactId>javax.inject</artifactId>
		<version>1</version>
	</dependency>
----
S
Stephane Nicoll 已提交
5979
====
B
Brian Clozel 已提交
5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001



[[beans-inject-named]]
=== Dependency Injection with @Inject and @Named

Instead of `@Autowired`, `@javax.inject.Inject` may be used as follows:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	import javax.inject.Inject;

	public class SimpleMovieLister {

		private MovieFinder movieFinder;

		@Inject
		public void setMovieFinder(MovieFinder movieFinder) {
			this.movieFinder = movieFinder;
		}

6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
		public void listMovies() {
			this.movieFinder.findMovies(...);
			...
		}
	}
----

As with `@Autowired`, it is possible to use `@Inject` at the field level, method level
and constructor-argument level. Furthermore, you may declare your injection point as a
`Provider`, allowing for on-demand access to beans of shorter scopes or lazy access to
other beans through a `Provider.get()` call. As a variant of the example above:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	import javax.inject.Inject;
	import javax.inject.Provider;
B
Brian Clozel 已提交
6019

6020 6021 6022
	public class SimpleMovieLister {

		private Provider<MovieFinder> movieFinder;
S
Stephane Nicoll 已提交
6023

6024 6025 6026 6027
		@Inject
		public void setMovieFinder(Provider<MovieFinder> movieFinder) {
			this.movieFinder = movieFinder;
		}
6028 6029 6030 6031 6032

		public void listMovies() {
			this.movieFinder.get().findMovies(...);
			...
		}
B
Brian Clozel 已提交
6033 6034 6035
	}
----

6036 6037
If you would like to use a qualified name for the dependency that should be injected,
you should use the `@Named` annotation as follows:
B
Brian Clozel 已提交
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	import javax.inject.Inject;
	import javax.inject.Named;

	public class SimpleMovieLister {

		private MovieFinder movieFinder;

		@Inject
		public void setMovieFinder(@Named("main") MovieFinder movieFinder) {
			this.movieFinder = movieFinder;
		}

		// ...
	}
----

6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
Like `@Autowired`, `@Inject` can also be used with `java.util.Optional` or
`@Nullable`. This is even more applicable here since `@Inject` does not have
a `required` attribute.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class SimpleMovieLister {

		@Inject
		public void setMovieFinder(Optional<MovieFinder> movieFinder) {
			...
		}
	}
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class SimpleMovieLister {

		@Inject
		public void setMovieFinder(@Nullable MovieFinder movieFinder) {
			...
		}
	}
----

B
Brian Clozel 已提交
6086 6087 6088


[[beans-named]]
6089
=== @Named and @ManagedBean: standard equivalents to the @Component annotation
B
Brian Clozel 已提交
6090

6091 6092
Instead of `@Component`, `@javax.inject.Named` or `javax.annotation.ManagedBean` may be
used as follows:
B
Brian Clozel 已提交
6093 6094 6095 6096 6097 6098 6099

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	import javax.inject.Inject;
	import javax.inject.Named;

6100
	@Named("movieListener")  // @ManagedBean("movieListener") could be used as well
B
Brian Clozel 已提交
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
	public class SimpleMovieLister {

		private MovieFinder movieFinder;

		@Inject
		public void setMovieFinder(MovieFinder movieFinder) {
			this.movieFinder = movieFinder;
		}

		// ...
	}
----

6114 6115
It is very common to use `@Component` without specifying a name for the component.
`@Named` can be used in a similar fashion:
B
Brian Clozel 已提交
6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	import javax.inject.Inject;
	import javax.inject.Named;

	@Named
	public class SimpleMovieLister {

		private MovieFinder movieFinder;

		@Inject
		public void setMovieFinder(MovieFinder movieFinder) {
			this.movieFinder = movieFinder;
		}

		// ...
	}
----

6137 6138
When using `@Named` or `@ManagedBean`, it is possible to use component scanning in the
exact same way as when using Spring annotations:
B
Brian Clozel 已提交
6139 6140 6141 6142 6143 6144 6145

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	@ComponentScan(basePackages = "org.example")
	public class AppConfig  {
6146
		...
B
Brian Clozel 已提交
6147 6148 6149
	}
----

6150 6151
[NOTE]
====
6152 6153 6154
In contrast to `@Component`, the JSR-330 `@Named` and the JSR-250 `ManagedBean`
annotations are not composable. Please use Spring's stereotype model for building custom
component annotations.
6155 6156
====

B
Brian Clozel 已提交
6157 6158 6159


[[beans-standard-annotations-limitations]]
6160
=== Limitations of JSR-330 standard annotations
S
Sam Brannen 已提交
6161

B
Brian Clozel 已提交
6162 6163 6164 6165
When working with standard annotations, it is important to know that some significant
features are not available as shown in the table below:

[[annotations-comparison]]
6166
.Spring component model elements vs. JSR-330 variants
B
Brian Clozel 已提交
6167 6168 6169 6170 6171
|===
| Spring| javax.inject.*| javax.inject restrictions / comments

| @Autowired
| @Inject
6172
| `@Inject` has no 'required' attribute; can be used with Java 8's `Optional` instead.
B
Brian Clozel 已提交
6173 6174

| @Component
6175
| @Named / @ManagedBean
6176
| JSR-330 does not provide a composable model, just a way to identify named components.
B
Brian Clozel 已提交
6177 6178 6179 6180 6181 6182

| @Scope("singleton")
| @Singleton
| The JSR-330 default scope is like Spring's `prototype`. However, in order to keep it
  consistent with Spring's general defaults, a JSR-330 bean declared in the Spring
  container is a `singleton` by default. In order to use a scope other than `singleton`,
6183 6184 6185
  you should use Spring's `@Scope` annotation. `javax.inject` also provides a
  http://download.oracle.com/javaee/6/api/javax/inject/Scope.html[@Scope] annotation.
  Nevertheless, this one is only intended to be used for creating your own annotations.
B
Brian Clozel 已提交
6186 6187

| @Qualifier
6188 6189 6190 6191
| @Qualifier / @Named
| `javax.inject.Qualifier` is just a meta-annotation for building custom qualifiers.
  Concrete String qualifiers (like Spring's `@Qualifier` with a value) can be associated
  through `javax.inject.Named`.
B
Brian Clozel 已提交
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203

| @Value
| -
| no equivalent

| @Required
| -
| no equivalent

| @Lazy
| -
| no equivalent
6204 6205 6206 6207 6208 6209

| ObjectFactory
| Provider
| `javax.inject.Provider` is a direct alternative to Spring's `ObjectFactory`,
  just with a shorter `get()` method name. It can also be used in combination with
  Spring's `@Autowired` or with non-annotated constructors and setter methods.
B
Brian Clozel 已提交
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
|===




[[beans-java]]
== Java-based container configuration



[[beans-java-basic-concepts]]
=== Basic concepts: @Bean and @Configuration

The central artifacts in Spring's new Java-configuration support are
`@Configuration`-annotated classes and `@Bean`-annotated methods.

The `@Bean` annotation is used to indicate that a method instantiates, configures and
initializes a new object to be managed by the Spring IoC container. For those familiar
with Spring's `<beans/>` XML configuration the `@Bean` annotation plays the same role as
the `<bean/>` element. You can use `@Bean` annotated methods with any Spring
`@Component`, however, they are most often used with `@Configuration` beans.

Annotating a class with `@Configuration` indicates that its primary purpose is as a
source of bean definitions. Furthermore, `@Configuration` classes allow inter-bean
dependencies to be defined by simply calling other `@Bean` methods in the same class.
The simplest possible `@Configuration` class would read as follows:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class AppConfig {

		@Bean
		public MyService myService() {
			return new MyServiceImpl();
		}
	}
----

The `AppConfig` class above would be equivalent to the following Spring `<beans/>` XML:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>
		<bean id="myService" class="com.acme.services.MyServiceImpl"/>
	</beans>
----

6260
.Full @Configuration vs 'lite' @Bean mode?
B
Brian Clozel 已提交
6261 6262
****
When `@Bean` methods are declared within classes that are __not__ annotated with
6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
`@Configuration` they are referred to as being processed in a 'lite' mode. Bean methods
declared in a `@Component` or even in a __plain old class__ will be considered 'lite',
with a different primary purpose of the containing class and an `@Bean` method just
being a sort of bonus there. For example, service components may expose management views
to the container through an additional `@Bean` method on each applicable component class.
In such scenarios, `@Bean` methods are a simple general-purpose factory method mechanism.

Unlike full `@Configuration`, lite `@Bean` methods cannot declare inter-bean dependencies.
Instead, they operate on their containing component's internal state and optionally on
arguments that they may declare. Such an `@Bean` method should therefore not invoke other
`@Bean` methods; each such method is literally just a factory method for a particular
bean reference, without any special runtime semantics. The positive side-effect here is
that no CGLIB subclassing has to be applied at runtime, so there are no limitations in
terms of class design (i.e. the containing class may nevertheless be `final` etc).

In common scenarios, `@Bean` methods are to be declared within `@Configuration` classes,
ensuring that 'full' mode is always used and that cross-method references will therefore
get redirected to the container's lifecycle management. This will prevent the same
`@Bean` method from accidentally being invoked through a regular Java call which helps
to reduce subtle bugs that can be hard to track down when operating in 'lite' mode.
B
Brian Clozel 已提交
6283 6284
****

6285 6286 6287
The `@Bean` and `@Configuration` annotations will be discussed in depth in the sections
below. First, however, we'll cover the various ways of creating a spring container using
Java-based configuration.
B
Brian Clozel 已提交
6288

6289 6290


B
Brian Clozel 已提交
6291 6292
[[beans-java-instantiating-container]]
=== Instantiating the Spring container using AnnotationConfigApplicationContext
S
Sam Brannen 已提交
6293

B
Brian Clozel 已提交
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
The sections below document Spring's `AnnotationConfigApplicationContext`, new in Spring
3.0. This versatile `ApplicationContext` implementation is capable of accepting not only
`@Configuration` classes as input, but also plain `@Component` classes and classes
annotated with JSR-330 metadata.

When `@Configuration` classes are provided as input, the `@Configuration` class itself
is registered as a bean definition, and all declared `@Bean` methods within the class
are also registered as bean definitions.

When `@Component` and JSR-330 classes are provided, they are registered as bean
definitions, and it is assumed that DI metadata such as `@Autowired` or `@Inject` are
used within those classes where necessary.


[[beans-java-instantiating-container-contstructor]]
==== Simple construction
S
Sam Brannen 已提交
6310

B
Brian Clozel 已提交
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
In much the same way that Spring XML files are used as input when instantiating a
`ClassPathXmlApplicationContext`, `@Configuration` classes may be used as input when
instantiating an `AnnotationConfigApplicationContext`. This allows for completely
XML-free usage of the Spring container:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public static void main(String[] args) {
		ApplicationContext ctx = new AnnotationConfigApplicationContext(AppConfig.class);
		MyService myService = ctx.getBean(MyService.class);
		myService.doStuff();
	}
----

As mentioned above, `AnnotationConfigApplicationContext` is not limited to working only
with `@Configuration` classes. Any `@Component` or JSR-330 annotated class may be supplied
as input to the constructor. For example:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public static void main(String[] args) {
		ApplicationContext ctx = new AnnotationConfigApplicationContext(MyServiceImpl.class, Dependency1.class, Dependency2.class);
		MyService myService = ctx.getBean(MyService.class);
		myService.doStuff();
	}
----

The above assumes that `MyServiceImpl`, `Dependency1` and `Dependency2` use Spring
dependency injection annotations such as `@Autowired`.


[[beans-java-instantiating-container-register]]
==== Building the container programmatically using register(Class<?>...)

An `AnnotationConfigApplicationContext` may be instantiated using a no-arg constructor
and then configured using the `register()` method. This approach is particularly useful
when programmatically building an `AnnotationConfigApplicationContext`.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public static void main(String[] args) {
		AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext();
		ctx.register(AppConfig.class, OtherConfig.class);
		ctx.register(AdditionalConfig.class);
		ctx.refresh();
		MyService myService = ctx.getBean(MyService.class);
		myService.doStuff();
	}
----


[[beans-java-instantiating-container-scan]]
==== Enabling component scanning with scan(String...)

To enable component scanning, just annotate your `@Configuration` class as follows:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	@ComponentScan(basePackages = "com.acme")
	public class AppConfig  {
6376
		...
B
Brian Clozel 已提交
6377 6378 6379 6380
	}
----

[TIP]
S
Stephane Nicoll 已提交
6381
====
B
Brian Clozel 已提交
6382 6383 6384 6385 6386 6387 6388 6389 6390 6391
Experienced Spring users will be familiar with the XML declaration equivalent from
Spring's `context:` namespace

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>
		<context:component-scan base-package="com.acme"/>
	</beans>
----
S
Stephane Nicoll 已提交
6392
====
B
Brian Clozel 已提交
6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411


In the example above, the `com.acme` package will be scanned, looking for any
`@Component`-annotated classes, and those classes will be registered as Spring bean
definitions within the container. `AnnotationConfigApplicationContext` exposes the
`scan(String...)` method to allow for the same component-scanning functionality:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public static void main(String[] args) {
		AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext();
		ctx.scan("com.acme");
		ctx.refresh();
		MyService myService = ctx.getBean(MyService.class);
	}
----

[NOTE]
6412
====
B
Brian Clozel 已提交
6413 6414 6415 6416 6417 6418
Remember that `@Configuration` classes are <<beans-meta-annotations,meta-annotated>>
with `@Component`, so they are candidates for component-scanning! In the example above,
assuming that `AppConfig` is declared within the `com.acme` package (or any package
underneath), it will be picked up during the call to `scan()`, and upon `refresh()` all
its `@Bean` methods will be processed and registered as bean definitions within the
container.
6419
====
B
Brian Clozel 已提交
6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502


[[beans-java-instantiating-container-web]]
==== Support for web applications with AnnotationConfigWebApplicationContext

A `WebApplicationContext` variant of `AnnotationConfigApplicationContext` is available
with `AnnotationConfigWebApplicationContext`. This implementation may be used when
configuring the Spring `ContextLoaderListener` servlet listener, Spring MVC
`DispatcherServlet`, etc. What follows is a `web.xml` snippet that configures a typical
Spring MVC web application. Note the use of the `contextClass` context-param and
init-param:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<web-app>
		<!-- Configure ContextLoaderListener to use AnnotationConfigWebApplicationContext
			instead of the default XmlWebApplicationContext -->
		<context-param>
			<param-name>contextClass</param-name>
			<param-value>
				org.springframework.web.context.support.AnnotationConfigWebApplicationContext
			</param-value>
		</context-param>

		<!-- Configuration locations must consist of one or more comma- or space-delimited
			fully-qualified @Configuration classes. Fully-qualified packages may also be
			specified for component-scanning -->
		<context-param>
			<param-name>contextConfigLocation</param-name>
			<param-value>com.acme.AppConfig</param-value>
		</context-param>

		<!-- Bootstrap the root application context as usual using ContextLoaderListener -->
		<listener>
			<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
		</listener>

		<!-- Declare a Spring MVC DispatcherServlet as usual -->
		<servlet>
			<servlet-name>dispatcher</servlet-name>
			<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
			<!-- Configure DispatcherServlet to use AnnotationConfigWebApplicationContext
				instead of the default XmlWebApplicationContext -->
			<init-param>
				<param-name>contextClass</param-name>
				<param-value>
					org.springframework.web.context.support.AnnotationConfigWebApplicationContext
				</param-value>
			</init-param>
			<!-- Again, config locations must consist of one or more comma- or space-delimited
				and fully-qualified @Configuration classes -->
			<init-param>
				<param-name>contextConfigLocation</param-name>
				<param-value>com.acme.web.MvcConfig</param-value>
			</init-param>
		</servlet>

		<!-- map all requests for /app/* to the dispatcher servlet -->
		<servlet-mapping>
			<servlet-name>dispatcher</servlet-name>
			<url-pattern>/app/*</url-pattern>
		</servlet-mapping>
	</web-app>
----



[[beans-java-bean-annotation]]
=== Using the @Bean annotation

`@Bean` is a method-level annotation and a direct analog of the XML `<bean/>` element.
The annotation supports some of the attributes offered by `<bean/>`, such as:
<<beans-factory-lifecycle-initializingbean,init-method>>,
<<beans-factory-lifecycle-disposablebean,destroy-method>>,
<<beans-factory-autowire,autowiring>> and `name`.

You can use the `@Bean` annotation in a `@Configuration`-annotated or in a
`@Component`-annotated class.


[[beans-java-declaring-a-bean]]
==== Declaring a bean
S
Sam Brannen 已提交
6503

B
Brian Clozel 已提交
6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
To declare a bean, simply annotate a method with the `@Bean` annotation. You use this
method to register a bean definition within an `ApplicationContext` of the type
specified as the method's return value. By default, the bean name will be the same as
the method name. The following is a simple example of a `@Bean` method declaration:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class AppConfig {

		@Bean
6516
		public TransferServiceImpl transferService() {
B
Brian Clozel 已提交
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540
			return new TransferServiceImpl();
		}
	}
----

The preceding configuration is exactly equivalent to the following Spring XML:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>
		<bean id="transferService" class="com.acme.TransferServiceImpl"/>
	</beans>
----

Both declarations make a bean named `transferService` available in the
`ApplicationContext`, bound to an object instance of type `TransferServiceImpl`:

[literal]
[subs="verbatim,quotes"]
----
transferService -> com.acme.TransferServiceImpl
----

6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
You may also declare your `@Bean` method with an interface (or base class)
return type:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class AppConfig {

		@Bean
		public TransferService transferService() {
			return new TransferServiceImpl();
		}
	}
----

However, this limits the visibility for advance type prediction to the specified
interface type (`TransferService`) then, with the full type (`TransferServiceImpl`)
only known to the container once the affected singleton bean has been instantiated.
Non-lazy singleton beans get instantiated according to their declaration order,
so you may see different type matching results depending on when another component
tries to match by a non-declared type (such as `@Autowired TransferServiceImpl`
which will only resolve once the "transferService" bean has been instantiated).

[TIP]
====
If you consistently refer to your types by a declared service interface, your
`@Bean` return types may safely join that design decision. However, for components
implementing several interfaces or for components potentially referred to by their
implementation type, it is safer to declare the most specific return type possible
(at least as specific as required by the injection points referring to your bean).
====

B
Brian Clozel 已提交
6574

6575 6576
[[beans-java-dependencies]]
==== Bean dependencies
S
Sam Brannen 已提交
6577

6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
A `@Bean` annotated method can have an arbitrary number of parameters describing the
dependencies required to build that bean. For instance if our `TransferService`
requires an `AccountRepository` we can materialize that dependency via a method
parameter:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class AppConfig {

		@Bean
		public TransferService transferService(AccountRepository accountRepository) {
			return new TransferServiceImpl(accountRepository);
		}
	}
----

The resolution mechanism is pretty much identical to constructor-based dependency
injection, see <<beans-constructor-injection,the relevant section>> for more details.


B
Brian Clozel 已提交
6600 6601
[[beans-java-lifecycle-callbacks]]
==== Receiving lifecycle callbacks
S
Sam Brannen 已提交
6602

B
Brian Clozel 已提交
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
Any classes defined with the `@Bean` annotation support the regular lifecycle callbacks
and can use the `@PostConstruct` and `@PreDestroy` annotations from JSR-250, see
<<beans-postconstruct-and-predestroy-annotations,JSR-250 annotations>> for further
details.

The regular Spring <<beans-factory-nature,lifecycle>> callbacks are fully supported as
well. If a bean implements `InitializingBean`, `DisposableBean`, or `Lifecycle`, their
respective methods are called by the container.

The standard set of `*Aware` interfaces such as <<beans-beanfactory,BeanFactoryAware>>,
<<beans-factory-aware,BeanNameAware>>,
<<context-functionality-messagesource,MessageSourceAware>>,
<<beans-factory-aware,ApplicationContextAware>>, and so on are also fully supported.

The `@Bean` annotation supports specifying arbitrary initialization and destruction
callback methods, much like Spring XML's `init-method` and `destroy-method` attributes
on the `bean` element:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class Foo {
6625

B
Brian Clozel 已提交
6626 6627 6628 6629 6630 6631
		public void init() {
			// initialization logic
		}
	}

	public class Bar {
6632

B
Brian Clozel 已提交
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
		public void cleanup() {
			// destruction logic
		}
	}

	@Configuration
	public class AppConfig {

		@Bean(initMethod = "init")
		public Foo foo() {
			return new Foo();
		}

		@Bean(destroyMethod = "cleanup")
		public Bar bar() {
			return new Bar();
		}
	}
----

[NOTE]
S
Stephane Nicoll 已提交
6654
====
B
Brian Clozel 已提交
6655 6656 6657 6658 6659 6660
By default, beans defined using Java config that have a public `close` or `shutdown`
method are automatically enlisted with a destruction callback. If you have a public
`close` or `shutdown` method and you do not wish for it to be called when the container
shuts down, simply add `@Bean(destroyMethod="")` to your bean definition to disable the
default `(inferred)` mode.

6661 6662 6663
You may want to do that by default for a resource that you acquire via JNDI as its
lifecycle is managed outside the application. In particular, make sure to always do it
for a `DataSource` as it is known to be problematic on Java EE application servers.
B
Brian Clozel 已提交
6664 6665 6666 6667 6668 6669 6670 6671 6672 6673

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Bean(destroyMethod="")
	public DataSource dataSource() throws NamingException {
		return (DataSource) jndiTemplate.lookup("MyDS");
	}
----

6674 6675 6676 6677 6678 6679
Also, with `@Bean` methods, you will typically choose to use programmatic JNDI lookups:
either using Spring's `JndiTemplate`/`JndiLocatorDelegate` helpers or straight JNDI
`InitialContext` usage, but not the `JndiObjectFactoryBean` variant which would force
you to declare the return type as the `FactoryBean` type instead of the actual target
type, making it harder to use for cross-reference calls in other `@Bean` methods that
intend to refer to the provided resource here.
S
Stephane Nicoll 已提交
6680
====
B
Brian Clozel 已提交
6681 6682 6683 6684 6685 6686 6687 6688 6689

Of course, in the case of `Foo` above, it would be equally as valid to call the `init()`
method directly during construction:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class AppConfig {
6690

B
Brian Clozel 已提交
6691 6692 6693 6694
		@Bean
		public Foo foo() {
			Foo foo = new Foo();
			foo.init();
6695
			return foo;
B
Brian Clozel 已提交
6696 6697 6698 6699 6700 6701 6702
		}

		// ...
	}
----

[TIP]
S
Stephane Nicoll 已提交
6703
====
B
Brian Clozel 已提交
6704 6705
When you work directly in Java, you can do anything you like with your objects and do
not always need to rely on the container lifecycle!
S
Stephane Nicoll 已提交
6706
====
B
Brian Clozel 已提交
6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752


[[beans-java-specifying-bean-scope]]
==== Specifying bean scope

[[beans-java-available-scopes]]
===== Using the @Scope annotation

You can specify that your beans defined with the `@Bean` annotation should have a
specific scope. You can use any of the standard scopes specified in the
<<beans-factory-scopes,Bean Scopes>> section.

The default scope is `singleton`, but you can override this with the `@Scope` annotation:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class MyConfiguration {

		@Bean
		**@Scope("prototype")**
		public Encryptor encryptor() {
			// ...
		}
	}
----

[[beans-java-scoped-proxy]]
===== @Scope and scoped-proxy

Spring offers a convenient way of working with scoped dependencies through
<<beans-factory-scopes-other-injection,scoped proxies>>. The easiest way to create such
a proxy when using the XML configuration is the `<aop:scoped-proxy/>` element.
Configuring your beans in Java with a @Scope annotation offers equivalent support with
the proxyMode attribute. The default is no proxy ( `ScopedProxyMode.NO`), but you can
specify `ScopedProxyMode.TARGET_CLASS` or `ScopedProxyMode.INTERFACES`.

If you port the scoped proxy example from the XML reference documentation (see preceding
link) to our `@Bean` using Java, it would look like the following:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	// an HTTP Session-scoped bean exposed as a proxy
	@Bean
6753
	**@SessionScope**
B
Brian Clozel 已提交
6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
	public UserPreferences userPreferences() {
		return new UserPreferences();
	}

	@Bean
	public Service userService() {
		UserService service = new SimpleUserService();
		// a reference to the proxied userPreferences bean
		service.setUserPreferences(userPreferences());
		return service;
	}
----


[[beans-java-customizing-bean-naming]]
==== Customizing bean naming
S
Sam Brannen 已提交
6770

B
Brian Clozel 已提交
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789
By default, configuration classes use a `@Bean` method's name as the name of the
resulting bean. This functionality can be overridden, however, with the `name` attribute.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class AppConfig {

		@Bean(name = "myFoo")
		public Foo foo() {
			return new Foo();
		}
	}
----


[[beans-java-bean-aliasing]]
==== Bean aliasing
S
Sam Brannen 已提交
6790

B
Brian Clozel 已提交
6791
As discussed in <<beans-beanname>>, it is sometimes desirable to give a single bean
N
nkjackzhang 已提交
6792
multiple names, otherwise known as __bean aliasing__. The `name` attribute of the `@Bean`
B
Brian Clozel 已提交
6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
annotation accepts a String array for this purpose.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class AppConfig {

		@Bean(name = { "dataSource", "subsystemA-dataSource", "subsystemB-dataSource" })
		public DataSource dataSource() {
			// instantiate, configure and return DataSource bean...
		}
	}
----


[[beans-java-bean-description]]
==== Bean description
S
Sam Brannen 已提交
6811

B
Brian Clozel 已提交
6812 6813 6814 6815
Sometimes it is helpful to provide a more detailed textual description of a bean. This can
be particularly useful when beans are exposed (perhaps via JMX) for monitoring purposes.

To add a description to a `@Bean` the
6816
{api-spring-framework}/context/annotation/Description.html[`@Description`]
B
Brian Clozel 已提交
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
annotation can be used:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class AppConfig {

		@Bean
		**@Description("Provides a basic example of a bean")**
		public Foo foo() {
			return new Foo();
		}
	}
----


6834

B
Brian Clozel 已提交
6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845
[[beans-java-configuration-annotation]]
=== Using the @Configuration annotation

`@Configuration` is a class-level annotation indicating that an object is a source of
bean definitions. `@Configuration` classes declare beans via public `@Bean` annotated
methods. Calls to `@Bean` methods on `@Configuration` classes can also be used to define
inter-bean dependencies. See <<beans-java-basic-concepts>> for a general introduction.


[[beans-java-injecting-dependencies]]
==== Injecting inter-bean dependencies
S
Sam Brannen 已提交
6846

S
Sam Brannen 已提交
6847
When ``@Bean``s have dependencies on one another, expressing that dependency is as simple
B
Brian Clozel 已提交
6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871
as having one bean method call another:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class AppConfig {

		@Bean
		public Foo foo() {
			return new Foo(bar());
		}

		@Bean
		public Bar bar() {
			return new Bar();
		}
	}
----

In the example above, the `foo` bean receives a reference to `bar` via constructor
injection.

[NOTE]
6872
====
B
Brian Clozel 已提交
6873 6874 6875
This method of declaring inter-bean dependencies only works when the `@Bean` method is
declared within a `@Configuration` class. You cannot declare inter-bean dependencies
using plain `@Component` classes.
6876
====
B
Brian Clozel 已提交
6877 6878 6879 6880


[[beans-java-method-injection]]
==== Lookup method injection
S
Sam Brannen 已提交
6881

B
Brian Clozel 已提交
6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895
As noted earlier, <<beans-factory-method-injection,lookup method injection>> is an
advanced feature that you should use rarely. It is useful in cases where a
singleton-scoped bean has a dependency on a prototype-scoped bean. Using Java for this
type of configuration provides a natural means for implementing this pattern.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public abstract class CommandManager {
		public Object process(Object commandState) {
			// grab a new instance of the appropriate Command interface
			Command command = createCommand();
			// set the state on the (hopefully brand new) Command instance
			command.setState(commandState);
J
Juergen Hoeller 已提交
6896
			return command.execute();
B
Brian Clozel 已提交
6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
		}

		// okay... but where is the implementation of this method?
		protected abstract Command createCommand();
	}
----

Using Java-configuration support , you can create a subclass of `CommandManager` where
the abstract `createCommand()` method is overridden in such a way that it looks up a new
(prototype) command object:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Bean
	@Scope("prototype")
	public AsyncCommand asyncCommand() {
		AsyncCommand command = new AsyncCommand();
		// inject dependencies here as required
		return command;
	}

	@Bean
	public CommandManager commandManager() {
		// return new anonymous implementation of CommandManager with command() overridden
		// to return a new prototype Command object
		return new CommandManager() {
			protected Command createCommand() {
				return asyncCommand();
			}
		}
	}
----


[[beans-java-further-information-java-config]]
==== Further information about how Java-based configuration works internally
S
Sam Brannen 已提交
6934

B
Brian Clozel 已提交
6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971
The following example shows a `@Bean` annotated method being called twice:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class AppConfig {

		@Bean
		public ClientService clientService1() {
			ClientServiceImpl clientService = new ClientServiceImpl();
			clientService.setClientDao(clientDao());
			return clientService;
		}

		@Bean
		public ClientService clientService2() {
			ClientServiceImpl clientService = new ClientServiceImpl();
			clientService.setClientDao(clientDao());
			return clientService;
		}

		@Bean
		public ClientDao clientDao() {
			return new ClientDaoImpl();
		}
	}
----

`clientDao()` has been called once in `clientService1()` and once in `clientService2()`.
Since this method creates a new instance of `ClientDaoImpl` and returns it, you would
normally expect having 2 instances (one for each service). That definitely would be
problematic: in Spring, instantiated beans have a `singleton` scope by default. This is
where the magic comes in: All `@Configuration` classes are subclassed at startup-time
with `CGLIB`. In the subclass, the child method checks the container first for any
cached (scoped) beans before it calls the parent method and creates a new instance. Note
that as of Spring 3.2, it is no longer necessary to add CGLIB to your classpath because
N
nkjackzhang 已提交
6972
CGLIB classes have been repackaged under `org.springframework.cglib` and included directly
B
Brian Clozel 已提交
6973 6974 6975
within the spring-core JAR.

[NOTE]
6976
====
B
Brian Clozel 已提交
6977 6978
The behavior could be different according to the scope of your bean. We are talking
about singletons here.
6979
====
B
Brian Clozel 已提交
6980

6981
[TIP]
6982
====
B
Brian Clozel 已提交
6983
There are a few restrictions due to the fact that CGLIB dynamically adds features at
6984 6985 6986 6987 6988 6989 6990 6991
startup-time, in particular that configuration classes must not be final. However, as
of 4.3, any constructors are allowed on configuration classes, including the use of
`@Autowired` or a single non-default constructor declaration for default injection.

If you prefer to avoid any CGLIB-imposed limitations, consider declaring your `@Bean`
methods on non-`@Configuration` classes, e.g. on plain `@Component` classes instead.
Cross-method calls between `@Bean` methods won't get intercepted then, so you'll have
to exclusively rely on dependency injection at the constructor or method level there.
6992
====
B
Brian Clozel 已提交
6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012



[[beans-java-composing-configuration-classes]]
=== Composing Java-based configurations


[[beans-java-using-import]]
==== Using the @Import annotation

Much as the `<import/>` element is used within Spring XML files to aid in modularizing
configurations, the `@Import` annotation allows for loading `@Bean` definitions from
another configuration class:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class ConfigA {

7013
		@Bean
B
Brian Clozel 已提交
7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048
		public A a() {
			return new A();
		}
	}

	@Configuration
	@Import(ConfigA.class)
	public class ConfigB {

		@Bean
		public B b() {
			return new B();
		}
	}
----

Now, rather than needing to specify both `ConfigA.class` and `ConfigB.class` when
instantiating the context, only `ConfigB` needs to be supplied explicitly:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public static void main(String[] args) {
		ApplicationContext ctx = new AnnotationConfigApplicationContext(ConfigB.class);

		// now both beans A and B will be available...
		A a = ctx.getBean(A.class);
		B b = ctx.getBean(B.class);
	}
----

This approach simplifies container instantiation, as only one class needs to be dealt
with, rather than requiring the developer to remember a potentially large number of
`@Configuration` classes during construction.

7049 7050 7051 7052 7053 7054 7055 7056
[TIP]
====
As of Spring Framework 4.2, `@Import` also supports references to regular component
classes, analogous to the `AnnotationConfigApplicationContext.register` method.
This is particularly useful if you'd like to avoid component scanning, using a few
configuration classes as entry points for explicitly defining all your components.
====

B
Brian Clozel 已提交
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066
[[beans-java-injecting-imported-beans]]
===== Injecting dependencies on imported @Bean definitions

The example above works, but is simplistic. In most practical scenarios, beans will have
dependencies on one another across configuration classes. When using XML, this is not an
issue, per se, because there is no compiler involved, and one can simply declare
`ref="someBean"` and trust that Spring will work it out during container initialization.
Of course, when using `@Configuration` classes, the Java compiler places constraints on
the configuration model, in that references to other beans must be valid Java syntax.

7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111
Fortunately, solving this problem is simple. As <<beans-java-dependencies,we already discussed>>,
`@Bean` method can have an arbitrary number of parameters describing the bean
dependencies. Let's consider a more real-world scenario with several `@Configuration`
classes, each depending on beans declared in the others:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class ServiceConfig {

		@Bean
		public TransferService transferService(AccountRepository accountRepository) {
			return new TransferServiceImpl(accountRepository);
		}
	}

	@Configuration
	public class RepositoryConfig {

		@Bean
		public AccountRepository accountRepository(DataSource dataSource) {
			return new JdbcAccountRepository(dataSource);
		}
	}

	@Configuration
	@Import({ServiceConfig.class, RepositoryConfig.class})
	public class SystemTestConfig {

		@Bean
		public DataSource dataSource() {
			// return new DataSource
		}
	}

	public static void main(String[] args) {
		ApplicationContext ctx = new AnnotationConfigApplicationContext(SystemTestConfig.class);
		// everything wires up across configuration classes...
		TransferService transferService = ctx.getBean(TransferService.class);
		transferService.transfer(100.00, "A123", "C456");
	}
----

There is another way to achieve the same result. Remember that `@Configuration` classes are
7112 7113
ultimately just another bean in the container: This means that they can take advantage of
`@Autowired` and `@Value` injection etc just like any other bean!
B
Brian Clozel 已提交
7114

7115 7116 7117
[WARNING]
====
Make sure that the dependencies you inject that way are of the simplest kind only. `@Configuration`
7118 7119 7120 7121 7122 7123 7124 7125
classes are processed quite early during the initialization of the context and forcing a dependency
to be injected this way may lead to unexpected early initialization. Whenever possible, resort to
parameter-based injection as in the example above.

Also, be particularly careful with `BeanPostProcessor` and `BeanFactoryPostProcessor` definitions
via `@Bean`. Those should usually be declared as `static @Bean` methods, not triggering the
instantiation of their containing configuration class. Otherwise, `@Autowired` and `@Value` won't
work on the configuration class itself since it is being created as a bean instance too early.
7126
====
B
Brian Clozel 已提交
7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class ServiceConfig {

		@Autowired
		private AccountRepository accountRepository;

		@Bean
		public TransferService transferService() {
			return new TransferServiceImpl(accountRepository);
		}
	}

	@Configuration
	public class RepositoryConfig {

S
Stephane Nicoll 已提交
7146 7147
		private final DataSource dataSource;

B
Brian Clozel 已提交
7148
		@Autowired
S
Stephane Nicoll 已提交
7149 7150 7151
		public RepositoryConfig(DataSource dataSource) {
			this.dataSource = dataSource;
		}
B
Brian Clozel 已提交
7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176

		@Bean
		public AccountRepository accountRepository() {
			return new JdbcAccountRepository(dataSource);
		}
	}

	@Configuration
	@Import({ServiceConfig.class, RepositoryConfig.class})
	public class SystemTestConfig {

		@Bean
		public DataSource dataSource() {
			// return new DataSource
		}
	}

	public static void main(String[] args) {
		ApplicationContext ctx = new AnnotationConfigApplicationContext(SystemTestConfig.class);
		// everything wires up across configuration classes...
		TransferService transferService = ctx.getBean(TransferService.class);
		transferService.transfer(100.00, "A123", "C456");
	}
----

S
Stephane Nicoll 已提交
7177 7178 7179 7180 7181 7182 7183 7184
[TIP]
====
Constructor injection in `@Configuration` classes is only supported as of Spring
Framework 4.3. Note also that there is no need to specify `@Autowired` if the target
bean defines only one constructor; in the example above, `@Autowired` is not necessary
on the `RepositoryConfig` constructor.
====

B
Brian Clozel 已提交
7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254
.[[beans-java-injecting-imported-beans-fq]]Fully-qualifying imported beans for ease of navigation
--
In the scenario above, using `@Autowired` works well and provides the desired
modularity, but determining exactly where the autowired bean definitions are declared is
still somewhat ambiguous. For example, as a developer looking at `ServiceConfig`, how do
you know exactly where the `@Autowired AccountRepository` bean is declared? It's not
explicit in the code, and this may be just fine. Remember that the
https://spring.io/tools/sts[Spring Tool Suite] provides tooling that
can render graphs showing how everything is wired up - that may be all you need. Also,
your Java IDE can easily find all declarations and uses of the `AccountRepository` type,
and will quickly show you the location of `@Bean` methods that return that type.

In cases where this ambiguity is not acceptable and you wish to have direct navigation
from within your IDE from one `@Configuration` class to another, consider autowiring the
configuration classes themselves:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class ServiceConfig {

		@Autowired
		private RepositoryConfig repositoryConfig;

		@Bean
		public TransferService transferService() {
			// navigate 'through' the config class to the @Bean method!
			return new TransferServiceImpl(repositoryConfig.accountRepository());
		}
	}
----

In the situation above, it is completely explicit where `AccountRepository` is defined.
However, `ServiceConfig` is now tightly coupled to `RepositoryConfig`; that's the
tradeoff. This tight coupling can be somewhat mitigated by using interface-based or
abstract class-based `@Configuration` classes. Consider the following:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class ServiceConfig {

		@Autowired
		private RepositoryConfig repositoryConfig;

		@Bean
		public TransferService transferService() {
			return new TransferServiceImpl(repositoryConfig.accountRepository());
		}
	}

	@Configuration
	public interface RepositoryConfig {

		@Bean
		AccountRepository accountRepository();
	}

	@Configuration
	public class DefaultRepositoryConfig implements RepositoryConfig {

		@Bean
		public AccountRepository accountRepository() {
			return new JdbcAccountRepository(...);
		}
	}

	@Configuration
7255
	@Import({ServiceConfig.class, DefaultRepositoryConfig.class})  // import the concrete config!
B
Brian Clozel 已提交
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
	public class SystemTestConfig {

		@Bean
		public DataSource dataSource() {
			// return DataSource
		}

	}

	public static void main(String[] args) {
		ApplicationContext ctx = new AnnotationConfigApplicationContext(SystemTestConfig.class);
		TransferService transferService = ctx.getBean(TransferService.class);
		transferService.transfer(100.00, "A123", "C456");
	}
----

Now `ServiceConfig` is loosely coupled with respect to the concrete
`DefaultRepositoryConfig`, and built-in IDE tooling is still useful: it will be easy for
the developer to get a type hierarchy of `RepositoryConfig` implementations. In this
way, navigating `@Configuration` classes and their dependencies becomes no different
than the usual process of navigating interface-based code.
--

7279 7280 7281 7282 7283 7284 7285 7286
[TIP]
====
If you would like to influence the startup creation order of certain beans, consider
declaring some of them as `@Lazy` (for creation on first access instead of on startup)
or as `@DependsOn` on certain other beans (making sure that specific other beans will
be created before the current bean, beyond what the latter's direct dependencies imply).
====

B
Brian Clozel 已提交
7287 7288

[[beans-java-conditional]]
S
Sam Brannen 已提交
7289 7290 7291
==== Conditionally include @Configuration classes or @Bean methods

It is often useful to conditionally enable or disable a complete `@Configuration` class,
B
Brian Clozel 已提交
7292
or even individual `@Bean` methods, based on some arbitrary system state. One common
S
Sam Brannen 已提交
7293
example of this is to use the `@Profile` annotation to activate beans only when a specific
B
Brian Clozel 已提交
7294 7295 7296 7297
profile has been enabled in the Spring `Environment` (see <<beans-definition-profiles>>
for details).

The `@Profile` annotation is actually implemented using a much more flexible annotation
7298
called {api-spring-framework}/context/annotation/Conditional.html[`@Conditional`].
B
Brian Clozel 已提交
7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327
The `@Conditional` annotation indicates specific
`org.springframework.context.annotation.Condition` implementations that should be
consulted before a `@Bean` is registered.

Implementations of the `Condition` interface simply provide a `matches(...)`
method that returns `true` or `false`. For example, here is the actual
`Condition` implementation used for `@Profile`:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Override
	public boolean matches(ConditionContext context, AnnotatedTypeMetadata metadata) {
		if (context.getEnvironment() != null) {
			// Read the @Profile annotation attributes
			MultiValueMap<String, Object> attrs = metadata.getAllAnnotationAttributes(Profile.class.getName());
			if (attrs != null) {
				for (Object value : attrs.get("value")) {
					if (context.getEnvironment().acceptsProfiles(((String[]) value))) {
						return true;
					}
				}
				return false;
			}
		}
		return true;
	}
----

7328
See the {api-spring-framework}/context/annotation/Conditional.html[
B
Brian Clozel 已提交
7329 7330
`@Conditional` javadocs] for more detail.

7331

B
Brian Clozel 已提交
7332 7333
[[beans-java-combining]]
==== Combining Java and XML configuration
S
Sam Brannen 已提交
7334

B
Brian Clozel 已提交
7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357
Spring's `@Configuration` class support does not aim to be a 100% complete replacement
for Spring XML. Some facilities such as Spring XML namespaces remain an ideal way to
configure the container. In cases where XML is convenient or necessary, you have a
choice: either instantiate the container in an "XML-centric" way using, for example,
`ClassPathXmlApplicationContext`, or in a "Java-centric" fashion using
`AnnotationConfigApplicationContext` and the `@ImportResource` annotation to import XML
as needed.

[[beans-java-combining-xml-centric]]
===== XML-centric use of @Configuration classes

It may be preferable to bootstrap the Spring container from XML and include
`@Configuration` classes in an ad-hoc fashion. For example, in a large existing codebase
that uses Spring XML, it will be easier to create `@Configuration` classes on an
as-needed basis and include them from the existing XML files. Below you'll find the
options for using `@Configuration` classes in this kind of "XML-centric" situation.

.[[beans-java-combining-xml-centric-declare-as-bean]]Declaring @Configuration classes as plain Spring `<bean/>` elements
--
Remember that `@Configuration` classes are ultimately just bean definitions in the
container. In this example, we create a `@Configuration` class named `AppConfig` and
include it within `system-test-config.xml` as a `<bean/>` definition. Because
`<context:annotation-config/>` is switched on, the container will recognize the
S
Sam Brannen 已提交
7358
`@Configuration` annotation and process the `@Bean` methods declared in `AppConfig`
B
Brian Clozel 已提交
7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381
properly.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class AppConfig {

		@Autowired
		private DataSource dataSource;

		@Bean
		public AccountRepository accountRepository() {
			return new JdbcAccountRepository(dataSource);
		}

		@Bean
		public TransferService transferService() {
			return new TransferService(accountRepository());
		}
	}
----

S
Sam Brannen 已提交
7382 7383
*system-test-config.xml*:

B
Brian Clozel 已提交
7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401
[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>
		<!-- enable processing of annotations such as @Autowired and @Configuration -->
		<context:annotation-config/>
		<context:property-placeholder location="classpath:/com/acme/jdbc.properties"/>

		<bean class="com.acme.AppConfig"/>

		<bean class="org.springframework.jdbc.datasource.DriverManagerDataSource">
			<property name="url" value="${jdbc.url}"/>
			<property name="username" value="${jdbc.username}"/>
			<property name="password" value="${jdbc.password}"/>
		</bean>
	</beans>
----

S
Sam Brannen 已提交
7402 7403
*jdbc.properties*:

B
Brian Clozel 已提交
7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422
[literal]
[subs="verbatim,quotes"]
----
jdbc.url=jdbc:hsqldb:hsql://localhost/xdb
jdbc.username=sa
jdbc.password=
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public static void main(String[] args) {
		ApplicationContext ctx = new ClassPathXmlApplicationContext("classpath:/com/acme/system-test-config.xml");
		TransferService transferService = ctx.getBean(TransferService.class);
		// ...
	}
----

[NOTE]
7423
====
S
Sam Brannen 已提交
7424
In `system-test-config.xml` above, the `AppConfig` `<bean/>` does not declare an `id`
B
Brian Clozel 已提交
7425 7426 7427
element. While it would be acceptable to do so, it is unnecessary given that no other
bean will ever refer to it, and it is unlikely that it will be explicitly fetched from
the container by name. Likewise with the `DataSource` bean - it is only ever autowired
S
Sam Brannen 已提交
7428
by type, so an explicit bean `id` is not strictly required.
7429
====
B
Brian Clozel 已提交
7430 7431 7432 7433 7434 7435 7436 7437
--

.[[beans-java-combining-xml-centric-component-scan]] Using <context:component-scan/> to pick up `@Configuration` classes
--
Because `@Configuration` is meta-annotated with `@Component`, `@Configuration`-annotated
classes are automatically candidates for component scanning. Using the same scenario as
above, we can redefine `system-test-config.xml` to take advantage of component-scanning.
Note that in this case, we don't need to explicitly declare
S
Sam Brannen 已提交
7438
`<context:annotation-config/>`, because `<context:component-scan/>` enables the same
B
Brian Clozel 已提交
7439 7440
functionality.

S
Sam Brannen 已提交
7441 7442
*system-test-config.xml*:

B
Brian Clozel 已提交
7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519
[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>
		<!-- picks up and registers AppConfig as a bean definition -->
		<context:component-scan base-package="com.acme"/>
		<context:property-placeholder location="classpath:/com/acme/jdbc.properties"/>

		<bean class="org.springframework.jdbc.datasource.DriverManagerDataSource">
			<property name="url" value="${jdbc.url}"/>
			<property name="username" value="${jdbc.username}"/>
			<property name="password" value="${jdbc.password}"/>
		</bean>
	</beans>
----
--

[[beans-java-combining-java-centric]]
===== @Configuration class-centric use of XML with @ImportResource

In applications where `@Configuration` classes are the primary mechanism for configuring
the container, it will still likely be necessary to use at least some XML. In these
scenarios, simply use `@ImportResource` and define only as much XML as is needed. Doing
so achieves a "Java-centric" approach to configuring the container and keeps XML to a
bare minimum.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	@ImportResource("classpath:/com/acme/properties-config.xml")
	public class AppConfig {

		@Value("${jdbc.url}")
		private String url;

		@Value("${jdbc.username}")
		private String username;

		@Value("${jdbc.password}")
		private String password;

		@Bean
		public DataSource dataSource() {
			return new DriverManagerDataSource(url, username, password);
		}
	}
----

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	properties-config.xml
	<beans>
		<context:property-placeholder location="classpath:/com/acme/jdbc.properties"/>
	</beans>
----

[literal]
[subs="verbatim,quotes"]
----
jdbc.properties
jdbc.url=jdbc:hsqldb:hsql://localhost/xdb
jdbc.username=sa
jdbc.password=
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public static void main(String[] args) {
		ApplicationContext ctx = new AnnotationConfigApplicationContext(AppConfig.class);
		TransferService transferService = ctx.getBean(TransferService.class);
		// ...
	}
----

7520 7521 7522



B
Brian Clozel 已提交
7523 7524 7525
[[beans-environment]]
== Environment abstraction

7526
The {api-spring-framework}/core/env/Environment.html[`Environment`]
B
Brian Clozel 已提交
7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543
is an abstraction integrated in the container that models two key
aspects of the application environment: <<beans-definition-profiles,_profiles_>>
and <<beans-property-source-abstraction,_properties_>>.

A _profile_ is a named, logical group of bean definitions to be registered with the
container only if the given profile is active. Beans may be assigned to a profile
whether defined in XML or via annotations. The role of the `Environment` object with
relation to profiles is in determining which profiles (if any) are currently active,
and which profiles (if any) should be active by default.

Properties play an important role in almost all applications, and may originate from
a variety of sources: properties files, JVM system properties, system environment
variables, JNDI, servlet context parameters, ad-hoc Properties objects, Maps, and so
on. The role of the `Environment` object with relation to properties is to provide the
user with a convenient service interface for configuring property sources and resolving
properties from them.

7544 7545


B
Brian Clozel 已提交
7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606
[[beans-definition-profiles]]
=== Bean definition profiles

Bean definition profiles is a mechanism in the core container that allows for
registration of different beans in different environments. The word _environment_
can mean different things to different users and this feature can help with many
use cases, including:

* working against an in-memory datasource in development vs looking up that same
datasource from JNDI when in QA or production
* registering monitoring infrastructure only when deploying an application into a
performance environment
* registering customized implementations of beans for customer A vs. customer
B deployments

Let's consider the first use case in a practical application that requires a
`DataSource`. In a test environment, the configuration may look like this:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Bean
	public DataSource dataSource() {
		return new EmbeddedDatabaseBuilder()
			.setType(EmbeddedDatabaseType.HSQL)
			.addScript("my-schema.sql")
			.addScript("my-test-data.sql")
			.build();
	}
----

Let's now consider how this application will be deployed into a QA or production
environment, assuming that the datasource for the application will be registered
with the production application server's JNDI directory. Our `dataSource` bean
now looks like this:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Bean(destroyMethod="")
	public DataSource dataSource() throws Exception {
		Context ctx = new InitialContext();
		return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");
	}
----

The problem is how to switch between using these two variations based on the
current environment. Over time, Spring users have devised a number of ways to
get this done, usually relying on a combination of system environment variables
and XML `<import/>` statements containing `${placeholder}` tokens that resolve
to the correct configuration file path depending on the value of an environment
variable. Bean definition profiles is a core container feature that provides a
solution to this problem.

If we generalize the example use case above of environment-specific bean
definitions, we end up with the need to register certain bean definitions in
certain contexts, while not in others. You could say that you want to register a
certain profile of bean definitions in situation A, and a different profile in
situation B. Let's first see how we can update our configuration to reflect
this need.

7607

B
Brian Clozel 已提交
7608 7609 7610
[[beans-definition-profiles-java]]
==== @Profile

7611
The {api-spring-framework}/context/annotation/Profile.html[`@Profile`]
S
Sam Brannen 已提交
7612
annotation allows you to indicate that a component is eligible for registration
B
Brian Clozel 已提交
7613
when one or more specified profiles are active. Using our example above, we
S
Sam Brannen 已提交
7614
can rewrite the `dataSource` configuration as follows:
B
Brian Clozel 已提交
7615 7616 7617 7618 7619

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
7620
	**@Profile("development")**
B
Brian Clozel 已提交
7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648
	public class StandaloneDataConfig {

		@Bean
		public DataSource dataSource() {
			return new EmbeddedDatabaseBuilder()
				.setType(EmbeddedDatabaseType.HSQL)
				.addScript("classpath:com/bank/config/sql/schema.sql")
				.addScript("classpath:com/bank/config/sql/test-data.sql")
				.build();
		}
	}
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	**@Profile("production")**
	public class JndiDataConfig {

		@Bean(destroyMethod="")
		public DataSource dataSource() throws Exception {
			Context ctx = new InitialContext();
			return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");
		}
	}
----

7649 7650 7651 7652 7653 7654 7655
[NOTE]
====
As mentioned before, with `@Bean` methods, you will typically choose to use programmatic
JNDI lookups: either using Spring's `JndiTemplate`/`JndiLocatorDelegate` helpers or the
straight JNDI `InitialContext` usage shown above, but not the `JndiObjectFactoryBean`
variant which would force you to declare the return type as the `FactoryBean` type.
====
B
Brian Clozel 已提交
7656

S
Sam Brannen 已提交
7657 7658 7659
`@Profile` can be used as a <<beans-meta-annotations,meta-annotation>> for the purpose
of creating a custom _composed annotation_. The following example defines a custom
`@Production` annotation that can be used as a drop-in replacement for
B
Brian Clozel 已提交
7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671
`@Profile("production")`:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Target(ElementType.TYPE)
	@Retention(RetentionPolicy.RUNTIME)
	**@Profile("production")**
	public @interface Production {
	}
----

7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683
[TIP]
====
If a `@Configuration` class is marked with `@Profile`, all of the `@Bean` methods and
`@Import` annotations associated with that class will be bypassed unless one or more of
the specified profiles are active. If a `@Component` or `@Configuration` class is marked
with `@Profile({"p1", "p2"})`, that class will not be registered/processed unless
profiles 'p1' and/or 'p2' have been activated. If a given profile is prefixed with the
NOT operator (`!`), the annotated element will be registered if the profile is **not**
active. For example, given `@Profile({"p1", "!p2"})`, registration will occur if profile
'p1' is active or if profile 'p2' is not active.
====

S
Sam Brannen 已提交
7684
`@Profile` can also be declared at the method level to include only one particular bean
7685
of a configuration class, e.g. for alternative variants of a particular bean:
B
Brian Clozel 已提交
7686 7687 7688 7689 7690 7691 7692

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	public class AppConfig {

7693 7694 7695
		@Bean("dataSource")
		**@Profile("development")**
		public DataSource standaloneDataSource() {
B
Brian Clozel 已提交
7696 7697 7698 7699 7700 7701 7702
			return new EmbeddedDatabaseBuilder()
				.setType(EmbeddedDatabaseType.HSQL)
				.addScript("classpath:com/bank/config/sql/schema.sql")
				.addScript("classpath:com/bank/config/sql/test-data.sql")
				.build();
		}

7703
		@Bean("dataSource")
B
Brian Clozel 已提交
7704
		**@Profile("production")**
7705
		public DataSource jndiDataSource() throws Exception {
B
Brian Clozel 已提交
7706 7707 7708 7709 7710 7711
			Context ctx = new InitialContext();
			return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");
		}
	}
----

7712
[NOTE]
S
Stephane Nicoll 已提交
7713
====
7714
With `@Profile` on `@Bean` methods, a special scenario may apply: In the case of
7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728
overloaded `@Bean` methods of the same Java method name (analogous to constructor
overloading), an `@Profile` condition needs to be consistently declared on all
overloaded methods. If the conditions are inconsistent, only the condition on the
first declaration among the overloaded methods will matter. `@Profile` can therefore
not be used to select an overloaded method with a particular argument signature over
another; resolution between all factory methods for the same bean follows Spring's
constructor resolution algorithm at creation time.

If you would like to define alternative beans with different profile conditions,
use distinct Java method names pointing to the same bean name via the `@Bean` name
attribute, as indicated in the example above. If the argument signatures are all
the same (e.g. all of the variants have no-arg factory methods), this is the only
way to represent such an arrangement in a valid Java class in the first place
(since there can only be one method of a particular name and argument signature).
S
Stephane Nicoll 已提交
7729
====
B
Brian Clozel 已提交
7730

7731

B
Brian Clozel 已提交
7732
[[beans-definition-profiles-xml]]
7733
==== XML bean definition profiles
B
Brian Clozel 已提交
7734

S
Sam Brannen 已提交
7735 7736
The XML counterpart is the `profile` attribute of the `<beans>` element. Our sample
configuration above can be rewritten in two XML files as follows:
B
Brian Clozel 已提交
7737 7738 7739 7740

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
7741
	<beans profile="development"
B
Brian Clozel 已提交
7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779
		xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xmlns:jdbc="http://www.springframework.org/schema/jdbc"
		xsi:schemaLocation="...">

		<jdbc:embedded-database id="dataSource">
			<jdbc:script location="classpath:com/bank/config/sql/schema.sql"/>
			<jdbc:script location="classpath:com/bank/config/sql/test-data.sql"/>
		</jdbc:embedded-database>
	</beans>
----

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans profile="production"
		xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xmlns:jee="http://www.springframework.org/schema/jee"
		xsi:schemaLocation="...">

		<jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/datasource"/>
	</beans>
----

It is also possible to avoid that split and nest `<beans/>` elements within the same file:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans xmlns="http://www.springframework.org/schema/beans"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xmlns:jdbc="http://www.springframework.org/schema/jdbc"
		xmlns:jee="http://www.springframework.org/schema/jee"
		xsi:schemaLocation="...">

		<!-- other bean definitions -->

7780
		<beans profile="development">
B
Brian Clozel 已提交
7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796
			<jdbc:embedded-database id="dataSource">
				<jdbc:script location="classpath:com/bank/config/sql/schema.sql"/>
				<jdbc:script location="classpath:com/bank/config/sql/test-data.sql"/>
			</jdbc:embedded-database>
		</beans>

		<beans profile="production">
			<jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/datasource"/>
		</beans>
	</beans>
----

The `spring-bean.xsd` has been constrained to allow such elements only as the
last ones in the file. This should help provide flexibility without incurring
clutter in the XML files.

7797

B
Brian Clozel 已提交
7798
[[beans-definition-profiles-enable]]
S
Sam Brannen 已提交
7799
==== Activating a profile
B
Brian Clozel 已提交
7800

S
Sam Brannen 已提交
7801
Now that we have updated our configuration, we still need to instruct Spring which
B
Brian Clozel 已提交
7802 7803 7804 7805
profile is active. If we started our sample application right now, we would see
a `NoSuchBeanDefinitionException` thrown, because the container could not find
the Spring bean named `dataSource`.

S
Sam Brannen 已提交
7806 7807 7808
Activating a profile can be done in several ways, but the most straightforward is to do
it programmatically against the `Environment` API which is available via an
`ApplicationContext`:
B
Brian Clozel 已提交
7809 7810 7811 7812 7813

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext();
7814
	ctx.getEnvironment().setActiveProfiles("development");
B
Brian Clozel 已提交
7815 7816 7817 7818
	ctx.register(SomeConfig.class, StandaloneDataConfig.class, JndiDataConfig.class);
	ctx.refresh();
----

S
Sam Brannen 已提交
7819 7820 7821 7822 7823
In addition, profiles may also be activated declaratively through the
`spring.profiles.active` property which may be specified through system environment
variables, JVM system properties, servlet context parameters in `web.xml`, or even as an
entry in JNDI (see <<beans-property-source-abstraction>>). In integration tests, active
profiles can be declared via the `@ActiveProfiles` annotation in the `spring-test` module
7824 7825
(see <<testing.adoc#testcontext-ctx-management-env-profiles,
Context configuration with environment profiles>>).
B
Brian Clozel 已提交
7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844

Note that profiles are not an "either-or" proposition; it is possible to activate multiple
profiles at once. Programmatically, simply provide multiple profile names to the
`setActiveProfiles()` method, which accepts `String...` varargs:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	ctx.getEnvironment().setActiveProfiles("profile1", "profile2");
----

Declaratively, `spring.profiles.active` may accept a comma-separated list of profile names:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	-Dspring.profiles.active="profile1,profile2"
----

7845

B
Brian Clozel 已提交
7846 7847 7848
[[beans-definition-profiles-default]]
==== Default profile

S
Sam Brannen 已提交
7849
The _default_ profile represents the profile that is enabled by default. Consider the
B
Brian Clozel 已提交
7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872
following:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	**@Profile("default")**
	public class DefaultDataConfig {

		@Bean
		public DataSource dataSource() {
			return new EmbeddedDatabaseBuilder()
				.setType(EmbeddedDatabaseType.HSQL)
				.addScript("classpath:com/bank/config/sql/schema.sql")
				.build();
		}
	}
----

If no profile is active, the `dataSource` above will be created; this can be
seen as a way to provide a _default_ definition for one or more beans. If any
profile is enabled, the _default_ profile will not apply.

S
Sam Brannen 已提交
7873
The name of the default profile can be changed using `setDefaultProfiles()` on
B
Brian Clozel 已提交
7874 7875
the `Environment` or declaratively using the `spring.profiles.default` property.

7876 7877


B
Brian Clozel 已提交
7878
[[beans-property-source-abstraction]]
S
Sam Brannen 已提交
7879
=== PropertySource abstraction
B
Brian Clozel 已提交
7880

S
Sam Brannen 已提交
7881
Spring's `Environment` abstraction provides search operations over a configurable
B
Brian Clozel 已提交
7882 7883 7884 7885 7886 7887 7888 7889
hierarchy of property sources. To explain fully, consider the following:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
ApplicationContext ctx = new GenericApplicationContext();
Environment env = ctx.getEnvironment();
boolean containsFoo = env.containsProperty("foo");
7890
System.out.println("Does my environment contain the 'foo' property? " + containsFoo);
B
Brian Clozel 已提交
7891 7892 7893 7894
----

In the snippet above, we see a high-level way of asking Spring whether the `foo` property is
defined for the current environment. To answer this question, the `Environment` object performs
7895
a search over a set of {api-spring-framework}/core/env/PropertySource.html[`PropertySource`]
B
Brian Clozel 已提交
7896
objects. A `PropertySource` is a simple abstraction over any source of key-value pairs, and
7897
Spring's {api-spring-framework}/core/env/StandardEnvironment.html[`StandardEnvironment`]
B
Brian Clozel 已提交
7898 7899 7900 7901 7902
is configured with two PropertySource objects -- one representing the set of JVM system properties
(_a la_ `System.getProperties()`) and one representing the set of system environment variables
(_a la_ `System.getenv()`).

[NOTE]
7903
====
B
Brian Clozel 已提交
7904
These default property sources are present for `StandardEnvironment`, for use in standalone
7905
applications. {api-spring-framework}/web/context/support/StandardServletEnvironment.html[`StandardServletEnvironment`]
B
Brian Clozel 已提交
7906
is populated with additional default property sources including servlet config and servlet
J
Juergen Hoeller 已提交
7907
context parameters. It can optionally enable a {api-spring-framework}/jndi/JndiPropertySource.html[`JndiPropertySource`].
7908
See the javadocs for details.
7909
====
B
Brian Clozel 已提交
7910 7911 7912 7913 7914 7915

Concretely, when using the `StandardEnvironment`, the call to `env.containsProperty("foo")`
will return true if a `foo` system property or `foo` environment variable is present at
runtime.

[TIP]
S
Stephane Nicoll 已提交
7916
====
B
Brian Clozel 已提交
7917 7918 7919
The search performed is hierarchical. By default, system properties have precedence over
environment variables, so if the `foo` property happens to be set in both places during
a call to `env.getProperty("foo")`, the system property value will 'win' and be returned
7920 7921 7922 7923 7924
preferentially over the environment variable. Note that property values will not get merged
but rather completely overridden by a preceding entry.

For a common `StandardServletEnvironment`, the full hierarchy looks as follows, with the
highest-precedence entries at the top:
K
kosmaty 已提交
7925

7926 7927 7928 7929 7930
* ServletConfig parameters (if applicable, e.g. in case of a `DispatcherServlet` context)
* ServletContext parameters (web.xml context-param entries)
* JNDI environment variables ("java:comp/env/" entries)
* JVM system properties ("-D" command-line arguments)
* JVM system environment (operating system environment variables)
S
Stephane Nicoll 已提交
7931
====
B
Brian Clozel 已提交
7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948

Most importantly, the entire mechanism is configurable. Perhaps you have a custom source
of properties that you'd like to integrate into this search. No problem -- simply implement
and instantiate your own `PropertySource` and add it to the set of `PropertySources` for the
current `Environment`:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
ConfigurableApplicationContext ctx = new GenericApplicationContext();
MutablePropertySources sources = ctx.getEnvironment().getPropertySources();
sources.addFirst(new MyPropertySource());
----

In the code above, `MyPropertySource` has been added with highest precedence in the
search. If it contains a  `foo` property, it will be detected and returned ahead of
any `foo` property in any other `PropertySource`. The
7949
{api-spring-framework}/core/env/MutablePropertySources.html[`MutablePropertySources`]
B
Brian Clozel 已提交
7950 7951 7952
API exposes a number of methods that allow for precise manipulation of the set of
property sources.

7953 7954


B
Brian Clozel 已提交
7955 7956
=== @PropertySource

7957
The {api-spring-framework}/context/annotation/PropertySource.html[`@PropertySource`]
B
Brian Clozel 已提交
7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970
annotation provides a convenient and declarative mechanism for adding a `PropertySource`
to Spring's `Environment`.

Given a file "app.properties" containing the key/value pair `testbean.name=myTestBean`,
the following `@Configuration` class uses `@PropertySource` in such a way that
a call to `testBean.getName()` will return "myTestBean".

[source,java,indent=0]
[subs="verbatim,quotes"]
----
   @Configuration
   **@PropertySource("classpath:/com/myco/app.properties")**
   public class AppConfig {
7971

B
Brian Clozel 已提交
7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993
	   @Autowired
	   Environment env;

	   @Bean
	   public TestBean testBean() {
		   TestBean testBean = new TestBean();
		   testBean.setName(env.getProperty("testbean.name"));
		   return testBean;
	   }
   }
----

Any `${...}` placeholders present in a `@PropertySource` resource location will
be resolved against the set of property sources already registered against the
environment. For example:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
   @Configuration
   @PropertySource("classpath:/com/${my.placeholder:default/path}/app.properties")
   public class AppConfig {
7994

B
Brian Clozel 已提交
7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013
	   @Autowired
	   Environment env;

	   @Bean
	   public TestBean testBean() {
		   TestBean testBean = new TestBean();
		   testBean.setName(env.getProperty("testbean.name"));
		   return testBean;
	   }
   }
----

Assuming that "my.placeholder" is present in one of the property sources already
registered, e.g. system properties or environment variables, the placeholder will
be resolved to the corresponding value. If not, then "default/path" will be used
as a default. If no default is specified and a property cannot be resolved, an
`IllegalArgumentException` will be thrown.


8014

B
Brian Clozel 已提交
8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036
=== Placeholder resolution in statements

Historically, the value of placeholders in elements could be resolved only against
JVM system properties or environment variables. No longer is this the case. Because
the Environment abstraction is integrated throughout the container, it's easy to
route resolution of placeholders through it. This means that you may configure the
resolution process in any way you like: change the precedence of searching through
system properties and environment variables, or remove them entirely; add your
own property sources to the mix as appropriate.

Concretely, the following statement works regardless of where the `customer`
property is defined, as long as it is available in the `Environment`:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>
		<import resource="com/bank/service/${customer}-config.xml"/>
	</beans>
----


8037 8038


B
Brian Clozel 已提交
8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068
[[context-load-time-weaver]]
== Registering a LoadTimeWeaver

The `LoadTimeWeaver` is used by Spring to dynamically transform classes as they are
loaded into the Java virtual machine (JVM).

To enable load-time weaving add the `@EnableLoadTimeWeaving` to one of your
`@Configuration` classes:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@Configuration
	@EnableLoadTimeWeaving
	public class AppConfig {
	}
----

Alternatively for XML configuration use the `context:load-time-weaver` element:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>
		<context:load-time-weaver/>
	</beans>
----

Once configured for the `ApplicationContext`. Any bean within that `ApplicationContext`
may implement `LoadTimeWeaverAware`, thereby receiving a reference to the load-time
8069
weaver instance. This is particularly useful in combination with
J
Juergen Hoeller 已提交
8070
<<data-access.adoc#orm-jpa,Spring's JPA support>> where load-time weaving may be necessary
8071 8072
for JPA class transformation.
Consult the `LocalContainerEntityManagerFactoryBean` javadocs for more detail. For more on
B
Brian Clozel 已提交
8073 8074 8075 8076 8077 8078
AspectJ load-time weaving, see <<aop-aj-ltw>>.




[[context-introduction]]
8079
== Additional capabilities of the ApplicationContext
B
Brian Clozel 已提交
8080 8081 8082 8083

As was discussed in the chapter introduction, the `org.springframework.beans.factory`
package provides basic functionality for managing and manipulating beans, including in a
programmatic way. The `org.springframework.context` package adds the
8084
{api-spring-framework}/context/ApplicationContext.html[`ApplicationContext`]
B
Brian Clozel 已提交
8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096
interface, which extends the `BeanFactory` interface, in addition to extending other
interfaces to provide additional functionality in a more __application
framework-oriented style__. Many people use the `ApplicationContext` in a completely
declarative fashion, not even creating it programmatically, but instead relying on
support classes such as `ContextLoader` to automatically instantiate an
`ApplicationContext` as part of the normal startup process of a Java EE web application.

To enhance `BeanFactory` functionality in a more framework-oriented style the context
package also provides the following functionality:

* __Access to messages in i18n-style__, through the `MessageSource` interface.
* __Access to resources__, such as URLs and files, through the `ResourceLoader` interface.
8097
* __Event publication__ to namely beans implementing the `ApplicationListener` interface,
B
Brian Clozel 已提交
8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174
  through the use of the `ApplicationEventPublisher` interface.
* __Loading of multiple (hierarchical) contexts__, allowing each to be focused on one
  particular layer, such as the web layer of an application, through the
  `HierarchicalBeanFactory` interface.



[[context-functionality-messagesource]]
=== Internationalization using MessageSource

The `ApplicationContext` interface extends an interface called `MessageSource`, and
therefore provides internationalization (i18n) functionality. Spring also provides the
interface `HierarchicalMessageSource`, which can resolve messages hierarchically.
Together these interfaces provide the foundation upon which Spring effects message
resolution. The methods defined on these interfaces include:

* `String getMessage(String code, Object[] args, String default, Locale loc)`: The basic
  method used to retrieve a message from the `MessageSource`. When no message is found
  for the specified locale, the default message is used. Any arguments passed in become
  replacement values, using the `MessageFormat` functionality provided by the standard
  library.
* `String getMessage(String code, Object[] args, Locale loc)`: Essentially the same as
  the previous method, but with one difference: no default message can be specified; if
  the message cannot be found, a `NoSuchMessageException` is thrown.
* `String getMessage(MessageSourceResolvable resolvable, Locale locale)`: All properties
  used in the preceding methods are also wrapped in a class named
  `MessageSourceResolvable`, which you can use with this method.

When an `ApplicationContext` is loaded, it automatically searches for a `MessageSource`
bean defined in the context. The bean must have the name `messageSource`. If such a bean
is found, all calls to the preceding methods are delegated to the message source. If no
message source is found, the `ApplicationContext` attempts to find a parent containing a
bean with the same name. If it does, it uses that bean as the `MessageSource`. If the
`ApplicationContext` cannot find any source for messages, an empty
`DelegatingMessageSource` is instantiated in order to be able to accept calls to the
methods defined above.

Spring provides two `MessageSource` implementations, `ResourceBundleMessageSource` and
`StaticMessageSource`. Both implement `HierarchicalMessageSource` in order to do nested
messaging. The `StaticMessageSource` is rarely used but provides programmatic ways to
add messages to the source. The `ResourceBundleMessageSource` is shown in the following
example:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>
		<bean id="messageSource"
				class="org.springframework.context.support.ResourceBundleMessageSource">
			<property name="basenames">
				<list>
					<value>format</value>
					<value>exceptions</value>
					<value>windows</value>
				</list>
			</property>
		</bean>
	</beans>
----

In the example it is assumed you have three resource bundles defined in your classpath
called `format`, `exceptions` and `windows`. Any request to resolve a message will be
handled in the JDK standard way of resolving messages through ResourceBundles. For the
purposes of the example, assume the contents of two of the above resource bundle files
are...

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	# in format.properties
	message=Alligators rock!
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	# in exceptions.properties
8175
	argument.required=The {0} argument is required.
B
Brian Clozel 已提交
8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254
----

A program to execute the `MessageSource` functionality is shown in the next example.
Remember that all `ApplicationContext` implementations are also `MessageSource`
implementations and so can be cast to the `MessageSource` interface.

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public static void main(String[] args) {
		MessageSource resources = new ClassPathXmlApplicationContext("beans.xml");
		String message = resources.getMessage("message", null, "Default", null);
		System.out.println(message);
	}
----

The resulting output from the above program will be...

[literal]
[subs="verbatim,quotes"]
----
Alligators rock!
----

So to summarize, the `MessageSource` is defined in a file called `beans.xml`, which
exists at the root of your classpath. The `messageSource` bean definition refers to a
number of resource bundles through its `basenames` property. The three files that are
passed in the list to the `basenames` property exist as files at the root of your
classpath and are called `format.properties`, `exceptions.properties`, and
`windows.properties` respectively.

The next example shows arguments passed to the message lookup; these arguments will be
converted into Strings and inserted into placeholders in the lookup message.

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<beans>

		<!-- this MessageSource is being used in a web application -->
		<bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource">
			<property name="basename" value="exceptions"/>
		</bean>

		<!-- lets inject the above MessageSource into this POJO -->
		<bean id="example" class="com.foo.Example">
			<property name="messages" ref="messageSource"/>
		</bean>

	</beans>
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class Example {

		private MessageSource messages;

		public void setMessages(MessageSource messages) {
			this.messages = messages;
		}

		public void execute() {
			String message = this.messages.getMessage("argument.required",
				new Object [] {"userDao"}, "Required", null);
			System.out.println(message);
		}
	}
----

The resulting output from the invocation of the `execute()` method will be...

[literal]
[subs="verbatim,quotes"]
----
The userDao argument is required.
----

8255
With regard to internationalization (i18n), Spring's various `MessageSource`
B
Brian Clozel 已提交
8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269
implementations follow the same locale resolution and fallback rules as the standard JDK
`ResourceBundle`. In short, and continuing with the example `messageSource` defined
previously, if you want to resolve messages against the British (`en-GB`) locale, you
would create files called `format_en_GB.properties`, `exceptions_en_GB.properties`, and
`windows_en_GB.properties` respectively.

Typically, locale resolution is managed by the surrounding environment of the
application. In this example, the locale against which (British) messages will be
resolved is specified manually.

[literal]
[subs="verbatim,quotes"]
----
# in exceptions_en_GB.properties
8270
argument.required=Ebagum lad, the {0} argument is required, I say, required.
B
Brian Clozel 已提交
8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297
----

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public static void main(final String[] args) {
		MessageSource resources = new ClassPathXmlApplicationContext("beans.xml");
		String message = resources.getMessage("argument.required",
			new Object [] {"userDao"}, "Required", Locale.UK);
		System.out.println(message);
	}
----

The resulting output from the running of the above program will be...

[literal]
[subs="verbatim,quotes"]
----
Ebagum lad, the 'userDao' argument is required, I say, required.
----

You can also use the `MessageSourceAware` interface to acquire a reference to any
`MessageSource` that has been defined. Any bean that is defined in an
`ApplicationContext` that implements the `MessageSourceAware` interface is injected with
the application context's `MessageSource` when the bean is created and configured.

[NOTE]
8298
====
B
Brian Clozel 已提交
8299 8300 8301 8302 8303 8304 8305
__As an alternative to `ResourceBundleMessageSource`, Spring provides a
`ReloadableResourceBundleMessageSource` class. This variant supports the same bundle
file format but is more flexible than the standard JDK based
`ResourceBundleMessageSource` implementation.__ In particular, it allows for reading
files from any Spring resource location (not just from the classpath) and supports hot
reloading of bundle property files (while efficiently caching them in between). Check
out the `ReloadableResourceBundleMessageSource` javadocs for details.
8306
====
B
Brian Clozel 已提交
8307 8308 8309 8310



[[context-functionality-events]]
8311
=== Standard and custom events
S
Sam Brannen 已提交
8312

B
Brian Clozel 已提交
8313 8314 8315 8316
Event handling in the `ApplicationContext` is provided through the `ApplicationEvent`
class and `ApplicationListener` interface. If a bean that implements the
`ApplicationListener` interface is deployed into the context, every time an
`ApplicationEvent` gets published to the `ApplicationContext`, that bean is notified.
8317 8318 8319 8320 8321 8322 8323
Essentially, this is the standard __Observer__ design pattern.

[TIP]
====
As of Spring 4.2, the event infrastructure has been significantly improved and offer
an <<context-functionality-events-annotation,annotation-based model>> as well as the
ability to publish any arbitrary event, that is an object that does not necessarily
8324 8325
extend from `ApplicationEvent`. When such an object is published we wrap it in an
event for you.
8326 8327 8328
====

Spring provides the following standard events:
B
Brian Clozel 已提交
8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458

[[beans-ctx-events-tbl]]
.Built-in Events
|===
| Event| Explanation

| `ContextRefreshedEvent`
| Published when the `ApplicationContext` is initialized or refreshed, for example,
  using the `refresh()` method on the `ConfigurableApplicationContext` interface.
  "Initialized" here means that all beans are loaded, post-processor beans are detected
  and activated, singletons are pre-instantiated, and the `ApplicationContext` object is
  ready for use. As long as the context has not been closed, a refresh can be triggered
  multiple times, provided that the chosen `ApplicationContext` actually supports such
  "hot" refreshes. For example, `XmlWebApplicationContext` supports hot refreshes, but
  `GenericApplicationContext` does not.

| `ContextStartedEvent`
| Published when the `ApplicationContext` is started, using the `start()` method on the
  `ConfigurableApplicationContext` interface. "Started" here means that all `Lifecycle`
  beans receive an explicit start signal. Typically this signal is used to restart beans
  after an explicit stop, but it may also be used to start components that have not been
  configured for autostart , for example, components that have not already started on
  initialization.

| `ContextStoppedEvent`
| Published when the `ApplicationContext` is stopped, using the `stop()` method on the
  `ConfigurableApplicationContext` interface. "Stopped" here means that all `Lifecycle`
  beans receive an explicit stop signal. A stopped context may be restarted through a
  `start()` call.

| `ContextClosedEvent`
| Published when the `ApplicationContext` is closed, using the `close()` method on the
  `ConfigurableApplicationContext` interface. "Closed" here means that all singleton
  beans are destroyed. A closed context reaches its end of life; it cannot be refreshed
  or restarted.

| `RequestHandledEvent`
| A web-specific event telling all beans that an HTTP request has been serviced. This
  event is published __after__ the request is complete. This event is only applicable to
  web applications using Spring's `DispatcherServlet`.
|===

You can also create and publish your own custom events. This example demonstrates a
simple class that extends Spring's `ApplicationEvent` base class:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class BlackListEvent extends ApplicationEvent {

		private final String address;
		private final String test;

		public BlackListEvent(Object source, String address, String test) {
			super(source);
			this.address = address;
			this.test = test;
		}

		// accessor and other methods...
	}
----

To publish a custom `ApplicationEvent`, call the `publishEvent()` method on an
`ApplicationEventPublisher`. Typically this is done by creating a class that implements
`ApplicationEventPublisherAware` and registering it as a Spring bean. The following
example demonstrates such a class:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class EmailService implements ApplicationEventPublisherAware {

		private List<String> blackList;
		private ApplicationEventPublisher publisher;

		public void setBlackList(List<String> blackList) {
			this.blackList = blackList;
		}

		public void setApplicationEventPublisher(ApplicationEventPublisher publisher) {
			this.publisher = publisher;
		}

		public void sendEmail(String address, String text) {
			if (blackList.contains(address)) {
				BlackListEvent event = new BlackListEvent(this, address, text);
				publisher.publishEvent(event);
				return;
			}
			// send email...
		}
	}
----

At configuration time, the Spring container will detect that `EmailService` implements
`ApplicationEventPublisherAware` and will automatically call
`setApplicationEventPublisher()`. In reality, the parameter passed in will be the Spring
container itself; you're simply interacting with the application context via its
`ApplicationEventPublisher` interface.

To receive the custom `ApplicationEvent`, create a class that implements
`ApplicationListener` and register it as a Spring bean. The following example
demonstrates such a class:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class BlackListNotifier implements ApplicationListener<BlackListEvent> {

		private String notificationAddress;

		public void setNotificationAddress(String notificationAddress) {
			this.notificationAddress = notificationAddress;
		}

		public void onApplicationEvent(BlackListEvent event) {
			// notify appropriate parties via notificationAddress...
		}
	}
----

Notice that `ApplicationListener` is generically parameterized with the type of your
custom event, `BlackListEvent`. This means that the `onApplicationEvent()` method can
remain type-safe, avoiding any need for downcasting. You may register as many event
listeners as you wish, but note that by default event listeners receive events
synchronously. This means the `publishEvent()` method blocks until all listeners have
finished processing the event. One advantage of this synchronous and single-threaded
approach is that when a listener receives an event, it operates inside the transaction
context of the publisher if a transaction context is available. If another strategy for
8459
event publication becomes necessary, refer to the javadoc for Spring's
B
Brian Clozel 已提交
8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489
`ApplicationEventMulticaster` interface.

The following example shows the bean definitions used to register and configure each of
the classes above:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<bean id="emailService" class="example.EmailService">
		<property name="blackList">
			<list>
				<value>known.spammer@example.org</value>
				<value>known.hacker@example.org</value>
				<value>john.doe@example.org</value>
			</list>
		</property>
	</bean>

	<bean id="blackListNotifier" class="example.BlackListNotifier">
		<property name="notificationAddress" value="blacklist@example.org"/>
	</bean>
----

Putting it all together, when the `sendEmail()` method of the `emailService` bean is
called, if there are any emails that should be blacklisted, a custom event of type
`BlackListEvent` is published. The `blackListNotifier` bean is registered as an
`ApplicationListener` and thus receives the `BlackListEvent`, at which point it can
notify appropriate parties.

[NOTE]
8490
====
B
Brian Clozel 已提交
8491 8492 8493 8494 8495 8496 8497
Spring's eventing mechanism is designed for simple communication between Spring beans
within the same application context. However, for more sophisticated enterprise
integration needs, the separately-maintained
http://projects.spring.io/spring-integration/[Spring Integration] project provides
complete support for building lightweight,
http://www.enterpriseintegrationpatterns.com[pattern-oriented], event-driven
architectures that build upon the well-known Spring programming model.
8498
====
B
Brian Clozel 已提交
8499

8500

8501
[[context-functionality-events-annotation]]
8502
==== Annotation-based event listeners
8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525

As of Spring 4.2, an event listener can be registered on any public method of a managed
bean via the `EventListener` annotation. The `BlackListNotifier` can be rewritten as
follows:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class BlackListNotifier {

		private String notificationAddress;

		public void setNotificationAddress(String notificationAddress) {
			this.notificationAddress = notificationAddress;
		}

		@EventListener
		public void processBlackListEvent(BlackListEvent event) {
			// notify appropriate parties via notificationAddress...
		}
	}
----

8526 8527 8528 8529
As you can see above, the method signature once again declares the event type it listens to,
but this time with a flexible name and without implementing a specific listener interface.
The event type can also be narrowed through generics as long as the actual event type
resolves your generic parameter in its implementation hierarchy.
8530

8531 8532 8533 8534 8535 8536 8537 8538
If your method should listen to several events or if you want to define it with no
parameter at all, the event type(s) can also be specified on the annotation itself:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@EventListener({ContextStartedEvent.class, ContextRefreshedEvent.class})
	public void handleContextStart() {
8539
		...
8540 8541 8542 8543
	}
----


8544 8545 8546 8547 8548 8549 8550 8551 8552 8553
It is also possible to add additional runtime filtering via the `condition` attribute of the
annotation that defines a <<expressions,`SpEL` expression>> that should match to actually invoke
the method for a particular event.

For instance, our notifier can be rewritten to be only invoked if the `test` attribute of the
event is equal to `foo`:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
8554 8555
	@EventListener(condition = "#blEvent.test == 'foo'")
	public void processBlackListEvent(BlackListEvent blEvent) {
8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567
		// notify appropriate parties via notificationAddress...
	}
----

Each `SpEL` expression evaluates again a dedicated context. The next table lists the items made
available to the context so one can use them for conditional event processing:

[[context-functionality-events-annotation-tbl]]
.Event SpEL available metadata
|===
| Name| Location| Description| Example

8568
| Event
8569 8570 8571 8572
| root object
| The actual `ApplicationEvent`
| `#root.event`

8573
| Arguments array
8574 8575 8576 8577
| root object
| The arguments (as array) used for invoking the target
| `#root.args[0]`

8578
| __Argument name__
8579
| evaluation context
J
Juergen Hoeller 已提交
8580 8581
| Name of any of the method arguments. If for some reason the names are not available
  (e.g. no debug information), the argument names are also available under the `#a<#arg>`
8582
  where __#arg__ stands for the argument index (starting from 0).
8583
| `#blEvent` or `#a0` (one can also use `#p0` or `#p<#arg>` notation as an alias).
8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601
|===

Note that `#root.event` allows you to access to the underlying event, even if your method
signature actually refers to an arbitrary object that was published.

If you need to publish an event as the result of processing another, just change the
method signature to return the event that should be published, something like:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@EventListener
	public ListUpdateEvent handleBlackListEvent(BlackListEvent event) {
		// notify appropriate parties via notificationAddress and
		// then publish a ListUpdateEvent...
	}
----

8602 8603 8604
NOTE: This feature is not supported for <<context-functionality-events-async,asynchronous
listeners>>.

8605 8606 8607
This new method will publish a new `ListUpdateEvent` for every `BlackListEvent` handled
by the method above. If you need to publish several events, just return a `Collection` of
events instead.
B
Brian Clozel 已提交
8608

8609

8610 8611 8612 8613
[[context-functionality-events-async]]
==== Asynchronous Listeners

If you want a particular listener to process events asynchronously, simply reuse the
8614
<<integration.adoc#scheduling-annotation-support-async,regular `@Async` support>>:
8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@EventListener
	@Async
	public void processBlackListEvent(BlackListEvent event) {
		// BlackListEvent is processed in a separate thread
	}
----

Be aware of the following limitations when using asynchronous events:

. If the event listener throws an `Exception` it will not be propagated to the caller,
  check `AsyncUncaughtExceptionHandler` for more details.
. Such event listener cannot send replies. If you need to send another event as the
  result of the processing, inject `ApplicationEventPublisher` to send the event
  manually.


S
Polish  
Stephane Nicoll 已提交
8635
[[context-functionality-events-order]]
8636
==== Ordering listeners
8637 8638

If you need the listener to be invoked before another one, just add the `@Order`
8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650
annotation to the method declaration:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@EventListener
	@Order(42)
	public void processBlackListEvent(BlackListEvent event) {
		// notify appropriate parties via notificationAddress...
	}
----

8651

8652
[[context-functionality-events-generics]]
8653
==== Generic events
8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682

You may also use generics to further define the structure of your event. Consider an
`EntityCreatedEvent<T>` where `T` is the type of the actual entity that got created. You
can create the following listener definition to only receive `EntityCreatedEvent` for a
`Person`:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	@EventListener
	public void onPersonCreated(EntityCreatedEvent<Person> event) {
		...
	}
----


Due to type erasure, this will only work if the event that is fired resolves the generic
parameter(s) on which the event listener filters on (that is something like
`class PersonCreatedEvent extends EntityCreatedEvent<Person> { ... }`).

In certain circumstances, this may become quite tedious if all events follow the same
structure (as it should be the case for the event above). In such a case, you can
implement `ResolvableTypeProvider` to _guide_ the framework beyond what the runtime
environment provides:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
	public class EntityCreatedEvent<T>
8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694
			extends ApplicationEvent implements ResolvableTypeProvider {

		public EntityCreatedEvent(T entity) {
			super(entity);
		}

		@Override
		public ResolvableType getResolvableType() {
			return ResolvableType.forClassWithGenerics(getClass(),
					ResolvableType.forInstance(getSource()));
		}
	}
8695 8696 8697 8698 8699 8700 8701 8702 8703
----

[TIP]
====
This works not only for `ApplicationEvent` but any arbitrary object that you'd send as
an event.
====


B
Brian Clozel 已提交
8704 8705 8706

[[context-functionality-resources]]
=== Convenient access to low-level resources
S
Sam Brannen 已提交
8707

B
Brian Clozel 已提交
8708 8709 8710 8711
For optimal usage and understanding of application contexts, users should generally
familiarize themselves with Spring's `Resource` abstraction, as described in the chapter
<<resources>>.

S
Sam Brannen 已提交
8712
An application context is a `ResourceLoader`, which can be used to load ``Resource``s. A
B
Brian Clozel 已提交
8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773
`Resource` is essentially a more feature rich version of the JDK class `java.net.URL`,
in fact, the implementations of the `Resource` wrap an instance of `java.net.URL` where
appropriate. A `Resource` can obtain low-level resources from almost any location in a
transparent fashion, including from the classpath, a filesystem location, anywhere
describable with a standard URL, and some other variations. If the resource location
string is a simple path without any special prefixes, where those resources come from is
specific and appropriate to the actual application context type.

You can configure a bean deployed into the application context to implement the special
callback interface, `ResourceLoaderAware`, to be automatically called back at
initialization time with the application context itself passed in as the
`ResourceLoader`. You can also expose properties of type `Resource`, to be used to
access static resources; they will be injected into it like any other properties. You
can specify those `Resource` properties as simple String paths, and rely on a special
JavaBean `PropertyEditor` that is automatically registered by the context, to convert
those text strings to actual `Resource` objects when the bean is deployed.

The location path or paths supplied to an `ApplicationContext` constructor are actually
resource strings, and in simple form are treated appropriately to the specific context
implementation. `ClassPathXmlApplicationContext` treats a simple location path as a
classpath location. You can also use location paths (resource strings) with special
prefixes to force loading of definitions from the classpath or a URL, regardless of the
actual context type.



[[context-create]]
=== Convenient ApplicationContext instantiation for web applications

You can create `ApplicationContext` instances declaratively by using, for example, a
`ContextLoader`. Of course you can also create `ApplicationContext` instances
programmatically by using one of the `ApplicationContext` implementations.

You can register an `ApplicationContext` using the `ContextLoaderListener` as follows:

[source,xml,indent=0]
[subs="verbatim,quotes"]
----
	<context-param>
		<param-name>contextConfigLocation</param-name>
		<param-value>/WEB-INF/daoContext.xml /WEB-INF/applicationContext.xml</param-value>
	</context-param>

	<listener>
		<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
	</listener>
----

The listener inspects the `contextConfigLocation` parameter. If the parameter does not
exist, the listener uses `/WEB-INF/applicationContext.xml` as a default. When the
parameter __does__ exist, the listener separates the String by using predefined
delimiters (comma, semicolon and whitespace) and uses the values as locations where
application contexts will be searched. Ant-style path patterns are supported as well.
Examples are `/WEB-INF/{asterisk}Context.xml` for all files with names ending with "Context.xml",
residing in the "WEB-INF" directory, and `/WEB-INF/**/*Context.xml`, for all such files
in any subdirectory of "WEB-INF".



[[context-deploy-rar]]
=== Deploying a Spring ApplicationContext as a Java EE RAR file
S
Sam Brannen 已提交
8774

B
Brian Clozel 已提交
8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790
It is possible to deploy a Spring ApplicationContext as a RAR file, encapsulating the
context and all of its required bean classes and library JARs in a Java EE RAR deployment
unit. This is the equivalent of bootstrapping a standalone ApplicationContext, just hosted
in Java EE environment, being able to access the Java EE servers facilities. RAR deployment
is  more natural alternative to scenario of deploying a headless WAR file, in effect, a WAR
file without any HTTP entry points that is used only for bootstrapping a Spring
ApplicationContext in a Java EE environment.

RAR deployment is ideal for application contexts that do not need HTTP entry points but
rather consist only of message endpoints and scheduled jobs. Beans in such a context can
use application server resources such as the JTA transaction manager and JNDI-bound JDBC
DataSources and JMS ConnectionFactory instances, and may also register with the
platform's JMX server - all through Spring's standard transaction management and JNDI
and JMX support facilities. Application components can also interact with the
application server's JCA WorkManager through Spring's `TaskExecutor` abstraction.

8791
Check out the javadoc of the
8792
{api-spring-framework}/jca/context/SpringContextResourceAdapter.html[`SpringContextResourceAdapter`]
B
Brian Clozel 已提交
8793 8794 8795 8796 8797
class for the configuration details involved in RAR deployment.

__For a simple deployment of a Spring ApplicationContext as a Java EE RAR file:__ package
all application classes into a RAR file, which is a standard JAR file with a different
file extension. Add all required library JARs into the root of the RAR archive. Add a
S
Sam Brannen 已提交
8798
"META-INF/ra.xml" deployment descriptor (as shown in ``SpringContextResourceAdapter``s
8799
javadoc) and the corresponding Spring XML bean definition file(s) (typically
B
Brian Clozel 已提交
8800 8801 8802 8803
"META-INF/applicationContext.xml"), and drop the resulting RAR file into your
application server's deployment directory.

[NOTE]
8804
====
B
Brian Clozel 已提交
8805 8806 8807 8808 8809 8810 8811
Such RAR deployment units are usually self-contained; they do not expose components to
the outside world, not even to other modules of the same application. Interaction with a
RAR-based ApplicationContext usually occurs through JMS destinations that it shares with
other modules. A RAR-based ApplicationContext may also, for example, schedule some jobs,
reacting to new files in the file system (or the like). If it needs to allow synchronous
access from the outside, it could for example export RMI endpoints, which of course may
be used by other application modules on the same machine.
8812
====
B
Brian Clozel 已提交
8813 8814 8815 8816 8817 8818




[[beans-beanfactory]]
== The BeanFactory
8819

B
Brian Clozel 已提交
8820 8821 8822 8823 8824 8825
The `BeanFactory` provides the underlying basis for Spring's IoC functionality but it is
only used directly in integration with other third-party frameworks and is now largely
historical in nature for most users of Spring. The `BeanFactory` and related interfaces,
such as `BeanFactoryAware`, `InitializingBean`, `DisposableBean`, are still present in
Spring for the purposes of backward compatibility with the large number of third-party
frameworks that integrate with Spring. Often third-party components that can not use
8826 8827
more modern equivalents such as `@PostConstruct` or `@PreDestroy` in order to avoid a
dependency on JSR-250.
B
Brian Clozel 已提交
8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879

This section provides additional background into the differences between the
`BeanFactory` and `ApplicationContext` and how one might access the IoC container
directly through a classic singleton lookup.



[[context-introduction-ctx-vs-beanfactory]]
=== BeanFactory or ApplicationContext?

Use an `ApplicationContext` unless you have a good reason for not doing so.

Because the `ApplicationContext` includes all functionality of the `BeanFactory`, it is
generally recommended over the `BeanFactory`, except for a few situations such as in
embedded applications running on resource-constrained devices where memory consumption
might be critical and a few extra kilobytes might make a difference. However, for
most typical enterprise applications and systems, the `ApplicationContext` is what you
will want to use. Spring makes __heavy__ use of the <<beans-factory-extension-bpp,
`BeanPostProcessor` extension point>> (to effect proxying and so on). If you use only a
plain `BeanFactory`, a fair amount of support such as transactions and AOP will not take
effect, at least not without some extra steps on your part. This situation could be
confusing because nothing is actually wrong with the configuration.

The following table lists features provided by the `BeanFactory` and
`ApplicationContext` interfaces and implementations.

[[context-introduction-ctx-vs-beanfactory-feature-matrix]]
.Feature Matrix
|===
| Feature| `BeanFactory`| `ApplicationContext`

| Bean instantiation/wiring
| Yes
| Yes

| Automatic `BeanPostProcessor` registration
| No
| Yes

| Automatic `BeanFactoryPostProcessor` registration
| No
| Yes

| Convenient `MessageSource` access (for i18n)
| No
| Yes

| `ApplicationEvent` publication
| No
| Yes
|===

8880 8881
To explicitly register a bean post-processor with a `BeanFactory` implementation,
you need to write code like this:
B
Brian Clozel 已提交
8882 8883 8884 8885

[source,java,indent=0]
[subs="verbatim,quotes"]
----
8886 8887
	DefaultListableBeanFactory factory = new DefaultListableBeanFactory();
	// populate the factory with bean definitions
B
Brian Clozel 已提交
8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901

	// now register any needed BeanPostProcessor instances
	MyBeanPostProcessor postProcessor = new MyBeanPostProcessor();
	factory.addBeanPostProcessor(postProcessor);

	// now start using the factory
----

To explicitly register a `BeanFactoryPostProcessor` when using a `BeanFactory`
implementation, you must write code like this:

[source,java,indent=0]
[subs="verbatim,quotes"]
----
8902 8903 8904
	DefaultListableBeanFactory factory = new DefaultListableBeanFactory();
	XmlBeanDefinitionReader reader = new XmlBeanDefinitionReader(factory);
	reader.loadBeanDefinitions(new FileSystemResource("beans.xml"));
B
Brian Clozel 已提交
8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916

	// bring in some property values from a Properties file
	PropertyPlaceholderConfigurer cfg = new PropertyPlaceholderConfigurer();
	cfg.setLocation(new FileSystemResource("jdbc.properties"));

	// now actually do the replacement
	cfg.postProcessBeanFactory(factory);
----

In both cases, the explicit registration step is inconvenient, which is one reason why
the various `ApplicationContext` implementations are preferred above plain `BeanFactory`
implementations in the vast majority of Spring-backed applications, especially when
S
Sam Brannen 已提交
8917
using ``BeanFactoryPostProcessor``s and ``BeanPostProcessor``s. These mechanisms implement
B
Brian Clozel 已提交
8918
important functionality such as property placeholder replacement and AOP.