crypt.go 31.0 KB
Newer Older
1
// Copyright 2016 - 2024 The excelize Authors. All rights reserved. Use of
2 3 4
// this source code is governed by a BSD-style license that can be found in
// the LICENSE file.
//
5 6 7 8 9
// Package excelize providing a set of functions that allow you to write to and
// read from XLAM / XLSM / XLSX / XLTM / XLTX files. Supports reading and
// writing spreadsheet documents generated by Microsoft Excel™ 2007 and later.
// Supports complex components by high compatibility, and provided streaming
// API for generating or reading data from a worksheet with huge amounts of
xurime's avatar
xurime 已提交
10
// data. This library needs Go version 1.16 or later.
11 12 13 14 15 16 17 18

package excelize

import (
	"bytes"
	"crypto/aes"
	"crypto/cipher"
	"crypto/md5"
xurime's avatar
xurime 已提交
19
	"crypto/rand"
20 21 22 23 24 25 26
	"crypto/sha1"
	"crypto/sha256"
	"crypto/sha512"
	"encoding/base64"
	"encoding/binary"
	"encoding/xml"
	"hash"
27
	"math"
28
	"path/filepath"
xurime's avatar
xurime 已提交
29
	"reflect"
30
	"sort"
31 32 33 34 35 36 37 38 39
	"strings"

	"github.com/richardlehane/mscfb"
	"golang.org/x/crypto/md4"
	"golang.org/x/crypto/ripemd160"
	"golang.org/x/text/encoding/unicode"
)

var (
G
Gin 已提交
40 41 42 43 44 45 46 47 48 49 50
	blockKey                    = []byte{0x14, 0x6e, 0x0b, 0xe7, 0xab, 0xac, 0xd0, 0xd6} // Block keys used for encryption
	oleIdentifier               = []byte{0xd0, 0xcf, 0x11, 0xe0, 0xa1, 0xb1, 0x1a, 0xe1}
	headerCLSID                 = make([]byte, 16)
	difSect                     = -4
	endOfChain                  = -2
	fatSect                     = -3
	iterCount                   = 50000
	packageEncryptionChunkSize  = 4096
	packageOffset               = 8 // First 8 bytes are the size of the stream
	sheetProtectionSpinCount    = 1e5
	workbookProtectionSpinCount = 1e5
51 52 53 54 55
)

// Encryption specifies the encryption structure, streams, and storages are
// required when encrypting ECMA-376 documents.
type Encryption struct {
xurime's avatar
xurime 已提交
56
	XMLName       xml.Name      `xml:"encryption"`
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
	KeyData       KeyData       `xml:"keyData"`
	DataIntegrity DataIntegrity `xml:"dataIntegrity"`
	KeyEncryptors KeyEncryptors `xml:"keyEncryptors"`
}

// KeyData specifies the cryptographic attributes used to encrypt the data.
type KeyData struct {
	SaltSize        int    `xml:"saltSize,attr"`
	BlockSize       int    `xml:"blockSize,attr"`
	KeyBits         int    `xml:"keyBits,attr"`
	HashSize        int    `xml:"hashSize,attr"`
	CipherAlgorithm string `xml:"cipherAlgorithm,attr"`
	CipherChaining  string `xml:"cipherChaining,attr"`
	HashAlgorithm   string `xml:"hashAlgorithm,attr"`
	SaltValue       string `xml:"saltValue,attr"`
}

// DataIntegrity specifies the encrypted copies of the salt and hash values
// used to help ensure that the integrity of the encrypted data has not been
// compromised.
type DataIntegrity struct {
	EncryptedHmacKey   string `xml:"encryptedHmacKey,attr"`
	EncryptedHmacValue string `xml:"encryptedHmacValue,attr"`
}

// KeyEncryptors specifies the key encryptors used to encrypt the data.
type KeyEncryptors struct {
	KeyEncryptor []KeyEncryptor `xml:"keyEncryptor"`
}

// KeyEncryptor specifies that the schema used by this encryptor is the schema
// specified for password-based encryptors.
type KeyEncryptor struct {
	XMLName      xml.Name     `xml:"keyEncryptor"`
	URI          string       `xml:"uri,attr"`
	EncryptedKey EncryptedKey `xml:"encryptedKey"`
}

// EncryptedKey used to generate the encrypting key.
type EncryptedKey struct {
	XMLName                    xml.Name `xml:"http://schemas.microsoft.com/office/2006/keyEncryptor/password encryptedKey"`
	SpinCount                  int      `xml:"spinCount,attr"`
	EncryptedVerifierHashInput string   `xml:"encryptedVerifierHashInput,attr"`
	EncryptedVerifierHashValue string   `xml:"encryptedVerifierHashValue,attr"`
	EncryptedKeyValue          string   `xml:"encryptedKeyValue,attr"`
	KeyData
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
// StandardEncryptionHeader structure is used by ECMA-376 document encryption
// [ECMA-376] and Office binary document RC4 CryptoAPI encryption, to specify
// encryption properties for an encrypted stream.
type StandardEncryptionHeader struct {
	Flags        uint32
	SizeExtra    uint32
	AlgID        uint32
	AlgIDHash    uint32
	KeySize      uint32
	ProviderType uint32
	Reserved1    uint32
	Reserved2    uint32
	CspName      string
}

// StandardEncryptionVerifier structure is used by Office Binary Document RC4
// CryptoAPI Encryption and ECMA-376 Document Encryption. Every usage of this
// structure MUST specify the hashing algorithm and encryption algorithm used
// in the EncryptionVerifier structure.
type StandardEncryptionVerifier struct {
	SaltSize              uint32
	Salt                  []byte
	EncryptedVerifier     []byte
	VerifierHashSize      uint32
	EncryptedVerifierHash []byte
}

132 133 134 135 136 137 138 139
// encryptionInfo structure is used for standard encryption with SHA1
// cryptographic algorithm.
type encryption struct {
	BlockSize, SaltSize                                                                  int
	EncryptedKeyValue, EncryptedVerifierHashInput, EncryptedVerifierHashValue, SaltValue []byte
	KeyBits                                                                              uint32
}

140
// Decrypt API decrypts the CFB file format with ECMA-376 agile encryption and
141 142
// standard encryption. Support cryptographic algorithm: MD4, MD5, RIPEMD-160,
// SHA1, SHA256, SHA384 and SHA512 currently.
143
func Decrypt(raw []byte, opts *Options) (packageBuf []byte, err error) {
144 145 146 147 148
	doc, err := mscfb.New(bytes.NewReader(raw))
	if err != nil {
		return
	}
	encryptionInfoBuf, encryptedPackageBuf := extractPart(doc)
149 150
	mechanism, err := encryptionMechanism(encryptionInfoBuf)
	if err != nil || mechanism == "extensible" {
151 152
		return
	}
153
	if mechanism == "agile" {
154
		return agileDecrypt(encryptionInfoBuf, encryptedPackageBuf, opts)
155
	}
156
	return standardDecrypt(encryptionInfoBuf, encryptedPackageBuf, opts)
157 158
}

xurime's avatar
xurime 已提交
159
// Encrypt API encrypt data with the password.
160
func Encrypt(raw []byte, opts *Options) ([]byte, error) {
161 162 163 164 165 166 167
	encryptor := encryption{
		EncryptedVerifierHashInput: make([]byte, 16),
		EncryptedVerifierHashValue: make([]byte, 32),
		SaltValue:                  make([]byte, 16),
		BlockSize:                  16,
		KeyBits:                    128,
		SaltSize:                   16,
xurime's avatar
xurime 已提交
168 169
	}
	// Key Encryption
170
	encryptionInfoBuffer, err := encryptor.standardKeyEncryption(opts.Password)
xurime's avatar
xurime 已提交
171
	if err != nil {
172
		return nil, err
xurime's avatar
xurime 已提交
173
	}
174 175 176 177 178
	// Package Encryption
	encryptedPackage := make([]byte, 8)
	binary.LittleEndian.PutUint64(encryptedPackage, uint64(len(raw)))
	encryptedPackage = append(encryptedPackage, encryptor.encrypt(raw)...)
	// Create a new CFB
179 180 181 182 183 184 185
	compoundFile := &cfb{
		paths:   []string{"Root Entry/"},
		sectors: []sector{{name: "Root Entry", typeID: 5}},
	}
	compoundFile.put("EncryptionInfo", encryptionInfoBuffer)
	compoundFile.put("EncryptedPackage", encryptedPackage)
	return compoundFile.write(), nil
xurime's avatar
xurime 已提交
186 187
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
// extractPart extract data from storage by specified part name.
func extractPart(doc *mscfb.Reader) (encryptionInfoBuf, encryptedPackageBuf []byte) {
	for entry, err := doc.Next(); err == nil; entry, err = doc.Next() {
		switch entry.Name {
		case "EncryptionInfo":
			buf := make([]byte, entry.Size)
			i, _ := doc.Read(buf)
			if i > 0 {
				encryptionInfoBuf = buf
			}
		case "EncryptedPackage":
			buf := make([]byte, entry.Size)
			i, _ := doc.Read(buf)
			if i > 0 {
				encryptedPackageBuf = buf
			}
		}
	}
	return
}

209 210 211
// encryptionMechanism parse password-protected documents created mechanism.
func encryptionMechanism(buffer []byte) (mechanism string, err error) {
	if len(buffer) < 4 {
212
		err = ErrUnknownEncryptMechanism
213 214
		return
	}
xurime's avatar
xurime 已提交
215
	versionMajor, versionMinor := binary.LittleEndian.Uint16(buffer[:2]), binary.LittleEndian.Uint16(buffer[2:4])
216 217 218 219 220 221 222 223 224
	if versionMajor == 4 && versionMinor == 4 {
		mechanism = "agile"
		return
	} else if (2 <= versionMajor && versionMajor <= 4) && versionMinor == 2 {
		mechanism = "standard"
		return
	} else if (versionMajor == 3 || versionMajor == 4) && versionMinor == 3 {
		mechanism = "extensible"
	}
225
	err = ErrUnsupportedEncryptMechanism
226 227 228 229 230 231
	return
}

// ECMA-376 Standard Encryption

// standardDecrypt decrypt the CFB file format with ECMA-376 standard encryption.
232
func standardDecrypt(encryptionInfoBuf, encryptedPackageBuf []byte, opts *Options) ([]byte, error) {
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	encryptionHeaderSize := binary.LittleEndian.Uint32(encryptionInfoBuf[8:12])
	block := encryptionInfoBuf[12 : 12+encryptionHeaderSize]
	header := StandardEncryptionHeader{
		Flags:        binary.LittleEndian.Uint32(block[:4]),
		SizeExtra:    binary.LittleEndian.Uint32(block[4:8]),
		AlgID:        binary.LittleEndian.Uint32(block[8:12]),
		AlgIDHash:    binary.LittleEndian.Uint32(block[12:16]),
		KeySize:      binary.LittleEndian.Uint32(block[16:20]),
		ProviderType: binary.LittleEndian.Uint32(block[20:24]),
		Reserved1:    binary.LittleEndian.Uint32(block[24:28]),
		Reserved2:    binary.LittleEndian.Uint32(block[28:32]),
		CspName:      string(block[32:]),
	}
	block = encryptionInfoBuf[12+encryptionHeaderSize:]
	algIDMap := map[uint32]string{
		0x0000660E: "AES-128",
		0x0000660F: "AES-192",
		0x00006610: "AES-256",
	}
	algorithm := "AES"
	_, ok := algIDMap[header.AlgID]
	if !ok {
		algorithm = "RC4"
	}
	verifier := standardEncryptionVerifier(algorithm, block)
258
	secretKey, err := standardConvertPasswdToKey(header, verifier, opts)
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
	if err != nil {
		return nil, err
	}
	// decrypted data
	x := encryptedPackageBuf[8:]
	blob, err := aes.NewCipher(secretKey)
	if err != nil {
		return nil, err
	}
	decrypted := make([]byte, len(x))
	size := 16
	for bs, be := 0, size; bs < len(x); bs, be = bs+size, be+size {
		blob.Decrypt(decrypted[bs:be], x[bs:be])
	}
	return decrypted, err
}

// standardEncryptionVerifier extract ECMA-376 standard encryption verifier.
func standardEncryptionVerifier(algorithm string, blob []byte) StandardEncryptionVerifier {
	verifier := StandardEncryptionVerifier{
		SaltSize:          binary.LittleEndian.Uint32(blob[:4]),
		Salt:              blob[4:20],
		EncryptedVerifier: blob[20:36],
		VerifierHashSize:  binary.LittleEndian.Uint32(blob[36:40]),
	}
	if algorithm == "RC4" {
		verifier.EncryptedVerifierHash = blob[40:60]
	} else if algorithm == "AES" {
		verifier.EncryptedVerifierHash = blob[40:72]
	}
	return verifier
}

// standardConvertPasswdToKey generate intermediate key from given password.
293
func standardConvertPasswdToKey(header StandardEncryptionHeader, verifier StandardEncryptionVerifier, opts *Options) ([]byte, error) {
294
	encoder := unicode.UTF16(unicode.LittleEndian, unicode.IgnoreBOM).NewEncoder()
295
	passwordBuffer, err := encoder.Bytes([]byte(opts.Password))
296 297 298 299 300
	if err != nil {
		return nil, err
	}
	key := hashing("sha1", verifier.Salt, passwordBuffer)
	for i := 0; i < iterCount; i++ {
xurime's avatar
xurime 已提交
301
		iterator := createUInt32LEBuffer(i, 4)
302 303 304
		key = hashing("sha1", iterator, key)
	}
	var block int
305
	hFinal := hashing("sha1", key, createUInt32LEBuffer(block, 4))
306 307 308
	cbRequiredKeyLength := int(header.KeySize) / 8
	cbHash := sha1.Size
	buf1 := bytes.Repeat([]byte{0x36}, 64)
309
	buf1 = append(standardXORBytes(hFinal, buf1[:cbHash]), buf1[cbHash:]...)
310 311
	x1 := hashing("sha1", buf1)
	buf2 := bytes.Repeat([]byte{0x5c}, 64)
312
	buf2 = append(standardXORBytes(hFinal, buf2[:cbHash]), buf2[cbHash:]...)
313 314 315 316 317 318 319 320
	x2 := hashing("sha1", buf2)
	x3 := append(x1, x2...)
	keyDerived := x3[:cbRequiredKeyLength]
	return keyDerived, err
}

// standardXORBytes perform XOR operations for two bytes slice.
func standardXORBytes(a, b []byte) []byte {
321
	r := make([][2]byte, len(a))
322 323 324 325 326 327 328 329 330 331
	for i, e := range a {
		r[i] = [2]byte{e, b[i]}
	}
	buf := make([]byte, len(a))
	for p, q := range r {
		buf[p] = q[0] ^ q[1]
	}
	return buf
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
// encrypt provides a function to encrypt given value with AES cryptographic
// algorithm.
func (e *encryption) encrypt(input []byte) []byte {
	inputBytes := len(input)
	if pad := inputBytes % e.BlockSize; pad != 0 {
		inputBytes += e.BlockSize - pad
	}
	var output, chunk []byte
	encryptedChunk := make([]byte, e.BlockSize)
	for i := 0; i < inputBytes; i += e.BlockSize {
		if i+e.BlockSize <= len(input) {
			chunk = input[i : i+e.BlockSize]
		} else {
			chunk = input[i:]
		}
		chunk = append(chunk, make([]byte, e.BlockSize-len(chunk))...)
		c, _ := aes.NewCipher(e.EncryptedKeyValue)
		c.Encrypt(encryptedChunk, chunk)
		output = append(output, encryptedChunk...)
	}
	return output
}

// standardKeyEncryption encrypt convert the password to an encryption key.
func (e *encryption) standardKeyEncryption(password string) ([]byte, error) {
	if len(password) == 0 || len(password) > MaxFieldLength {
		return nil, ErrPasswordLengthInvalid
	}
	var storage cfb
	storage.writeUint16(0x0003)
	storage.writeUint16(0x0002)
	storage.writeUint32(0x24)
	storage.writeUint32(0xA4)
	storage.writeUint32(0x24)
	storage.writeUint32(0x00)
	storage.writeUint32(0x660E)
	storage.writeUint32(0x8004)
	storage.writeUint32(0x80)
	storage.writeUint32(0x18)
	storage.writeUint64(0x00)
	providerName := "Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)"
	storage.writeStrings(providerName)
	storage.writeUint16(0x00)
	storage.writeUint32(0x10)
	keyDataSaltValue, _ := randomBytes(16)
	verifierHashInput, _ := randomBytes(16)
	e.SaltValue = keyDataSaltValue
	e.EncryptedKeyValue, _ = standardConvertPasswdToKey(
		StandardEncryptionHeader{KeySize: e.KeyBits},
		StandardEncryptionVerifier{Salt: e.SaltValue},
		&Options{Password: password})
	verifierHashInputKey := hashing("sha1", verifierHashInput)
	e.EncryptedVerifierHashInput = e.encrypt(verifierHashInput)
	e.EncryptedVerifierHashValue = e.encrypt(verifierHashInputKey)
	storage.writeBytes(e.SaltValue)
	storage.writeBytes(e.EncryptedVerifierHashInput)
	storage.writeUint32(0x14)
	storage.writeBytes(e.EncryptedVerifierHashValue)
	storage.position = 0
	return storage.stream, nil
}

394 395 396
// ECMA-376 Agile Encryption

// agileDecrypt decrypt the CFB file format with ECMA-376 agile encryption.
397 398
// Support cryptographic algorithm: MD4, MD5, RIPEMD-160, SHA1, SHA256,
// SHA384 and SHA512.
399
func agileDecrypt(encryptionInfoBuf, encryptedPackageBuf []byte, opts *Options) (packageBuf []byte, err error) {
400 401 402 403 404
	var encryptionInfo Encryption
	if encryptionInfo, err = parseEncryptionInfo(encryptionInfoBuf[8:]); err != nil {
		return
	}
	// Convert the password into an encryption key.
405
	key, err := convertPasswdToKey(opts.Password, blockKey, encryptionInfo)
406 407 408 409 410 411 412 413 414 415 416 417 418
	if err != nil {
		return
	}
	// Use the key to decrypt the package key.
	encryptedKey := encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey
	saltValue, err := base64.StdEncoding.DecodeString(encryptedKey.SaltValue)
	if err != nil {
		return
	}
	encryptedKeyValue, err := base64.StdEncoding.DecodeString(encryptedKey.EncryptedKeyValue)
	if err != nil {
		return
	}
419
	packageKey, _ := decrypt(key, saltValue, encryptedKeyValue)
420
	// Use the package key to decrypt the package.
421
	return decryptPackage(packageKey, encryptedPackageBuf, encryptionInfo)
422 423
}

424
// convertPasswdToKey convert the password into an encryption key.
xurime's avatar
xurime 已提交
425
func convertPasswdToKey(passwd string, blockKey []byte, encryption Encryption) (key []byte, err error) {
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	var b bytes.Buffer
	saltValue, err := base64.StdEncoding.DecodeString(encryption.KeyEncryptors.KeyEncryptor[0].EncryptedKey.SaltValue)
	if err != nil {
		return
	}
	b.Write(saltValue)
	encoder := unicode.UTF16(unicode.LittleEndian, unicode.IgnoreBOM).NewEncoder()
	passwordBuffer, err := encoder.Bytes([]byte(passwd))
	if err != nil {
		return
	}
	b.Write(passwordBuffer)
	// Generate the initial hash.
	key = hashing(encryption.KeyData.HashAlgorithm, b.Bytes())
	// Now regenerate until spin count.
	for i := 0; i < encryption.KeyEncryptors.KeyEncryptor[0].EncryptedKey.SpinCount; i++ {
xurime's avatar
xurime 已提交
442
		iterator := createUInt32LEBuffer(i, 4)
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
		key = hashing(encryption.KeyData.HashAlgorithm, iterator, key)
	}
	// Now generate the final hash.
	key = hashing(encryption.KeyData.HashAlgorithm, key, blockKey)
	// Truncate or pad as needed to get to length of keyBits.
	keyBytes := encryption.KeyEncryptors.KeyEncryptor[0].EncryptedKey.KeyBits / 8
	if len(key) < keyBytes {
		tmp := make([]byte, 0x36)
		key = append(key, tmp...)
	} else if len(key) > keyBytes {
		key = key[:keyBytes]
	}
	return
}

// hashing data by specified hash algorithm.
func hashing(hashAlgorithm string, buffer ...[]byte) (key []byte) {
460
	hashMap := map[string]hash.Hash{
461 462 463 464 465 466 467 468 469 470 471 472 473
		"md4":        md4.New(),
		"md5":        md5.New(),
		"ripemd-160": ripemd160.New(),
		"sha1":       sha1.New(),
		"sha256":     sha256.New(),
		"sha384":     sha512.New384(),
		"sha512":     sha512.New(),
	}
	handler, ok := hashMap[strings.ToLower(hashAlgorithm)]
	if !ok {
		return key
	}
	for _, buf := range buffer {
474
		_, _ = handler.Write(buf)
475 476 477 478 479 480 481
	}
	key = handler.Sum(nil)
	return key
}

// createUInt32LEBuffer create buffer with little endian 32-bit unsigned
// integer.
xurime's avatar
xurime 已提交
482 483
func createUInt32LEBuffer(value int, bufferSize int) []byte {
	buf := make([]byte, bufferSize)
484 485 486 487 488 489 490 491 492 493
	binary.LittleEndian.PutUint32(buf, uint32(value))
	return buf
}

// parseEncryptionInfo parse the encryption info XML into an object.
func parseEncryptionInfo(encryptionInfo []byte) (encryption Encryption, err error) {
	err = xml.Unmarshal(encryptionInfo, &encryption)
	return
}

494 495 496
// decrypt provides a function to decrypt input by given cipher algorithm,
// cipher chaining, key and initialization vector.
func decrypt(key, iv, input []byte) (packageKey []byte, err error) {
497 498 499 500
	block, err := aes.NewCipher(key)
	if err != nil {
		return input, err
	}
501
	cipher.NewCBCDecrypter(block, iv).CryptBlocks(input, input)
502 503 504
	return input, nil
}

505
// decryptPackage decrypt package by given packageKey and encryption
506
// info.
507
func decryptPackage(packageKey, input []byte, encryption Encryption) (outputChunks []byte, err error) {
508
	encryptedKey, offset := encryption.KeyData, packageOffset
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	var i, start, end int
	var iv, outputChunk []byte
	for end < len(input) {
		start = end
		end = start + packageEncryptionChunkSize

		if end > len(input) {
			end = len(input)
		}
		// Grab the next chunk
		var inputChunk []byte
		if (end + offset) < len(input) {
			inputChunk = input[start+offset : end+offset]
		} else {
			inputChunk = input[start+offset : end]
		}

		// Pad the chunk if it is not an integer multiple of the block size
		remainder := len(inputChunk) % encryptedKey.BlockSize
		if remainder != 0 {
			inputChunk = append(inputChunk, make([]byte, encryptedKey.BlockSize-remainder)...)
		}
		// Create the initialization vector
xurime's avatar
xurime 已提交
532
		iv, err = createIV(i, encryption)
533 534 535
		if err != nil {
			return
		}
536 537
		// Decrypt the chunk and add it to the array
		outputChunk, err = decrypt(packageKey, iv, inputChunk)
538 539 540 541 542 543 544 545 546 547
		if err != nil {
			return
		}
		outputChunks = append(outputChunks, outputChunk...)
		i++
	}
	return
}

// createIV create an initialization vector (IV).
xurime's avatar
xurime 已提交
548
func createIV(blockKey interface{}, encryption Encryption) ([]byte, error) {
549 550
	encryptedKey := encryption.KeyData
	// Create the block key from the current index
xurime's avatar
xurime 已提交
551 552 553 554 555 556
	var blockKeyBuf []byte
	if reflect.TypeOf(blockKey).Kind() == reflect.Int {
		blockKeyBuf = createUInt32LEBuffer(blockKey.(int), 4)
	} else {
		blockKeyBuf = blockKey.([]byte)
	}
557 558 559 560 561 562
	saltValue, err := base64.StdEncoding.DecodeString(encryptedKey.SaltValue)
	if err != nil {
		return nil, err
	}
	// Create the initialization vector by hashing the salt with the block key.
	// Truncate or pad as needed to meet the block size.
xurime's avatar
xurime 已提交
563
	iv := hashing(encryptedKey.HashAlgorithm, append(saltValue, blockKeyBuf...))
564 565 566 567
	if len(iv) < encryptedKey.BlockSize {
		tmp := make([]byte, 0x36)
		iv = append(iv, tmp...)
	} else if len(iv) > encryptedKey.BlockSize {
xurime's avatar
xurime 已提交
568
		iv = iv[:encryptedKey.BlockSize]
569 570 571
	}
	return iv, nil
}
xurime's avatar
xurime 已提交
572

573 574 575
// randomBytes returns securely generated random bytes. It will return an
// error if the system's secure random number generator fails to function
// correctly, in which case the caller should not continue.
xurime's avatar
xurime 已提交
576 577 578 579 580
func randomBytes(n int) ([]byte, error) {
	b := make([]byte, n)
	_, err := rand.Read(b)
	return b, err
}
581 582 583 584 585 586 587 588 589 590 591

// ISO Write Protection Method

// genISOPasswdHash implements the ISO password hashing algorithm by given
// plaintext password, name of the cryptographic hash algorithm, salt value
// and spin count.
func genISOPasswdHash(passwd, hashAlgorithm, salt string, spinCount int) (hashValue, saltValue string, err error) {
	if len(passwd) < 1 || len(passwd) > MaxFieldLength {
		err = ErrPasswordLengthInvalid
		return
	}
592
	algorithmName, ok := map[string]string{
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
		"MD4":     "md4",
		"MD5":     "md5",
		"SHA-1":   "sha1",
		"SHA-256": "sha256",
		"SHA-384": "sha384",
		"SHA-512": "sha512",
	}[hashAlgorithm]
	if !ok {
		err = ErrUnsupportedHashAlgorithm
		return
	}
	var b bytes.Buffer
	s, _ := randomBytes(16)
	if salt != "" {
		if s, err = base64.StdEncoding.DecodeString(salt); err != nil {
			return
		}
	}
	b.Write(s)
	encoder := unicode.UTF16(unicode.LittleEndian, unicode.IgnoreBOM).NewEncoder()
	passwordBuffer, _ := encoder.Bytes([]byte(passwd))
	b.Write(passwordBuffer)
	// Generate the initial hash.
616
	key := hashing(algorithmName, b.Bytes())
617 618 619
	// Now regenerate until spin count.
	for i := 0; i < spinCount; i++ {
		iterator := createUInt32LEBuffer(i, 4)
620
		key = hashing(algorithmName, key, iterator)
621 622 623 624
	}
	hashValue, saltValue = base64.StdEncoding.EncodeToString(key), base64.StdEncoding.EncodeToString(s)
	return
}
625 626 627 628 629 630 631

// Compound File Binary Implements

// cfb structure is used for the compound file binary (CFB) file format writer.
type cfb struct {
	stream   []byte
	position int
632 633 634 635 636 637 638 639 640
	paths    []string
	sectors  []sector
}

// sector structure used for FAT, directory, miniFAT, and miniStream sectors.
type sector struct {
	clsID, content                             []byte
	name                                       string
	C, L, R, color, size, start, state, typeID int
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
}

// writeBytes write bytes in the stream by a given value with an offset.
func (c *cfb) writeBytes(value []byte) {
	pos := c.position
	for i := 0; i < len(value); i++ {
		for j := len(c.stream); j <= i+pos; j++ {
			c.stream = append(c.stream, 0)
		}
		c.stream[i+pos] = value[i]
	}
	c.position = pos + len(value)
}

// writeUint16 write an uint16 data type bytes in the stream by a given value
// with an offset.
func (c *cfb) writeUint16(value int) {
	buf := make([]byte, 2)
	binary.LittleEndian.PutUint16(buf, uint16(value))
	c.writeBytes(buf)
}

// writeUint32 write an uint32 data type bytes in the stream by a given value
// with an offset.
func (c *cfb) writeUint32(value int) {
	buf := make([]byte, 4)
	binary.LittleEndian.PutUint32(buf, uint32(value))
	c.writeBytes(buf)
}

// writeUint64 write an uint64 data type bytes in the stream by a given value
// with an offset.
func (c *cfb) writeUint64(value int) {
	buf := make([]byte, 8)
	binary.LittleEndian.PutUint64(buf, uint64(value))
	c.writeBytes(buf)
}

679
// writeStrings write strings in the stream by a given value with an offset.
680 681 682 683 684 685 686 687 688
func (c *cfb) writeStrings(value string) {
	encoder := unicode.UTF16(unicode.LittleEndian, unicode.IgnoreBOM).NewEncoder()
	buffer, err := encoder.Bytes([]byte(value))
	if err != nil {
		return
	}
	c.writeBytes(buffer)
}

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
// put provides a function to add an entry to compound file by given entry name
// and raw bytes.
func (c *cfb) put(name string, content []byte) {
	path := c.paths[0]
	if len(path) <= len(name) && name[:len(path)] == path {
		path = name
	} else {
		if len(path) > 0 && string(path[len(path)-1]) != "/" {
			path += "/"
		}
		path = strings.ReplaceAll(path+name, "//", "/")
	}
	file := sector{name: path, typeID: 2, content: content, size: len(content)}
	c.sectors = append(c.sectors, file)
	c.paths = append(c.paths, path)
}

// compare provides a function to compare object path, each set of sibling
// objects in one level of the containment hierarchy (all child objects under
// a storage object) is represented as a red-black tree. The parent object of
// this set of siblings will have a pointer to the top of this tree.
func (c *cfb) compare(left, right string) int {
	L, R, i, j := strings.Split(left, "/"), strings.Split(right, "/"), 0, 0
	for Z := int(math.Min(float64(len(L)), float64(len(R)))); i < Z; i++ {
		if j = len(L[i]) - len(R[i]); j != 0 {
			return j
		}
		if L[i] != R[i] {
			if L[i] < R[i] {
				return -1
			}
			return 1
721 722
		}
	}
723
	return len(L) - len(R)
724 725
}

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
// prepare provides a function to prepare object before write stream.
func (c *cfb) prepare() {
	type object struct {
		path   string
		sector sector
	}
	var objects []object
	for i := 0; i < len(c.paths); i++ {
		if c.sectors[i].typeID == 0 {
			continue
		}
		objects = append(objects, object{path: c.paths[i], sector: c.sectors[i]})
	}
	sort.Slice(objects, func(i, j int) bool {
		return c.compare(objects[i].path, objects[j].path) == 0
	})
	c.paths, c.sectors = []string{}, []sector{}
	for i := 0; i < len(objects); i++ {
		c.paths = append(c.paths, objects[i].path)
		c.sectors = append(c.sectors, objects[i].sector)
	}
	for i := 0; i < len(objects); i++ {
		sector, path := &c.sectors[i], c.paths[i]
		sector.name, sector.color = filepath.Base(path), 1
		sector.L, sector.R, sector.C = -1, -1, -1
		sector.size, sector.start = len(sector.content), 0
		if len(sector.clsID) == 0 {
			sector.clsID = headerCLSID
		}
		if i == 0 {
			sector.C = -1
			if len(objects) > 1 {
				sector.C = 1
			}
			sector.size, sector.typeID = 0, 5
		} else {
			if len(c.paths) > i+1 && filepath.Dir(c.paths[i+1]) == filepath.Dir(path) {
				sector.R = i + 1
			}
			sector.typeID = 2
		}
	}
768 769
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
// locate provides a function to locate sectors location and size of the
// compound file.
func (c *cfb) locate() []int {
	var miniStreamSectorSize, FATSectorSize int
	for i := 0; i < len(c.sectors); i++ {
		sector := c.sectors[i]
		if len(sector.content) == 0 {
			continue
		}
		size := len(sector.content)
		if size > 0 {
			if size < 0x1000 {
				miniStreamSectorSize += (size + 0x3F) >> 6
			} else {
				FATSectorSize += (size + 0x01FF) >> 9
			}
		}
	}
	directorySectors := (len(c.paths) + 3) >> 2
	miniStreamSectors := (miniStreamSectorSize + 7) >> 3
	miniFATSectors := (miniStreamSectorSize + 0x7F) >> 7
	sectors := miniStreamSectors + FATSectorSize + directorySectors + miniFATSectors
	FATSectors := (sectors + 0x7F) >> 7
	DIFATSectors := 0
	if FATSectors > 109 {
		DIFATSectors = int(math.Ceil((float64(FATSectors) - 109) / 0x7F))
	}
	for ((sectors + FATSectors + DIFATSectors + 0x7F) >> 7) > FATSectors {
		FATSectors++
		if FATSectors <= 109 {
			DIFATSectors = 0
		} else {
			DIFATSectors = int(math.Ceil((float64(FATSectors) - 109) / 0x7F))
		}
	}
	location := []int{1, DIFATSectors, FATSectors, miniFATSectors, directorySectors, FATSectorSize, miniStreamSectorSize, 0}
	c.sectors[0].size = miniStreamSectorSize << 6
	c.sectors[0].start = location[0] + location[1] + location[2] + location[3] + location[4] + location[5]
	location[7] = c.sectors[0].start + ((location[6] + 7) >> 3)
	return location
810 811
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
// writeMSAT provides a function to write compound file master sector allocation
// table.
func (c *cfb) writeMSAT(location []int) {
	var i, offset int
	for i = 0; i < 109; i++ {
		if i < location[2] {
			c.writeUint32(location[1] + i)
		} else {
			c.writeUint32(-1)
		}
	}
	if location[1] != 0 {
		for offset = 0; offset < location[1]; offset++ {
			for ; i < 236+offset*127; i++ {
				if i < location[2] {
					c.writeUint32(location[1] + i)
				} else {
					c.writeUint32(-1)
				}
			}
			if offset == location[1]-1 {
				c.writeUint32(endOfChain)
			} else {
				c.writeUint32(offset + 1)
			}
		}
	}
839 840 841 842 843 844 845 846
}

// writeDirectoryEntry provides a function to write compound file directory
// entries. The directory entry array is an array of directory entries that
// are grouped into a directory sector. Each storage object or stream object
// within a compound file is represented by a single directory entry. The
// space for the directory sectors that are holding the array is allocated
// from the FAT.
847 848 849 850 851 852 853
func (c *cfb) writeDirectoryEntry(location []int) {
	var sector sector
	var j, sectorSize int
	for i := 0; i < location[4]<<2; i++ {
		var path string
		if i < len(c.paths) {
			path = c.paths[i]
854
		}
855 856 857 858 859 860 861 862 863 864
		if i >= len(c.paths) || len(path) == 0 {
			for j = 0; j < 17; j++ {
				c.writeUint32(0)
			}
			for j = 0; j < 3; j++ {
				c.writeUint32(-1)
			}
			for j = 0; j < 12; j++ {
				c.writeUint32(0)
			}
865
			continue
866
		}
867 868 869 870 871 872 873
		sector = c.sectors[i]
		if i == 0 {
			if sector.size > 0 {
				sector.start = sector.start - 1
			} else {
				sector.start = endOfChain
			}
874
		}
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
		name := sector.name
		sectorSize = 2 * (len(name) + 1)
		c.writeStrings(name)
		c.position += 64 - 2*(len(name))
		c.writeUint16(sectorSize)
		c.writeBytes([]byte(string(rune(sector.typeID))))
		c.writeBytes([]byte(string(rune(sector.color))))
		c.writeUint32(sector.L)
		c.writeUint32(sector.R)
		c.writeUint32(sector.C)
		if len(sector.clsID) == 0 {
			for j = 0; j < 4; j++ {
				c.writeUint32(0)
			}
		} else {
			c.writeBytes(sector.clsID)
891
		}
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
		c.writeUint32(sector.state)
		c.writeUint32(0)
		c.writeUint32(0)
		c.writeUint32(0)
		c.writeUint32(0)
		c.writeUint32(sector.start)
		c.writeUint32(sector.size)
		c.writeUint32(0)
	}
}

// writeSectorChains provides a function to write compound file sector chains.
func (c *cfb) writeSectorChains(location []int) sector {
	var i, j, offset, sectorSize int
	writeSectorChain := func(head, offset int) int {
		for offset += head; i < offset-1; i++ {
			c.writeUint32(i + 1)
909
		}
910 911 912
		if head != 0 {
			i++
			c.writeUint32(endOfChain)
913
		}
914 915 916 917 918 919 920 921 922 923 924 925 926 927
		return offset
	}
	for offset += location[1]; i < offset; i++ {
		c.writeUint32(difSect)
	}
	for offset += location[2]; i < offset; i++ {
		c.writeUint32(fatSect)
	}
	offset = writeSectorChain(location[3], offset)
	offset = writeSectorChain(location[4], offset)
	sector := c.sectors[0]
	for ; j < len(c.sectors); j++ {
		if sector = c.sectors[j]; len(sector.content) == 0 {
			continue
928
		}
929 930
		if sectorSize = len(sector.content); sectorSize < 0x1000 {
			continue
931
		}
932 933
		c.sectors[j].start = offset
		offset = writeSectorChain((sectorSize+0x01FF)>>9, offset)
934
	}
935 936 937 938 939 940 941 942
	writeSectorChain((location[6]+7)>>3, offset)
	for c.position&0x1FF != 0 {
		c.writeUint32(endOfChain)
	}
	i, offset = 0, 0
	for j = 0; j < len(c.sectors); j++ {
		if sector = c.sectors[j]; len(sector.content) == 0 {
			continue
943
		}
944
		if sectorSize = len(sector.content); sectorSize == 0 || sectorSize >= 0x1000 {
945 946
			continue
		}
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
		sector.start = offset
		offset = writeSectorChain((sectorSize+0x3F)>>6, offset)
	}
	for c.position&0x1FF != 0 {
		c.writeUint32(endOfChain)
	}
	return sector
}

// write provides a function to create compound file package stream.
func (c *cfb) write() []byte {
	c.prepare()
	location := c.locate()
	c.stream = make([]byte, location[7]<<9)
	var i, j int
	for i = 0; i < 8; i++ {
		c.writeBytes([]byte{oleIdentifier[i]})
	}
	c.writeBytes(make([]byte, 16))
	c.writeUint16(0x003E)
	c.writeUint16(0x0003)
	c.writeUint16(0xFFFE)
	c.writeUint16(0x0009)
	c.writeUint16(0x0006)
	c.writeBytes(make([]byte, 10))
	c.writeUint32(location[2])
	c.writeUint32(location[0] + location[1] + location[2] + location[3] - 1)
	c.writeUint32(0)
	c.writeUint32(1 << 12)
	if location[3] != 0 {
		c.writeUint32(location[0] + location[1] + location[2] - 1)
	} else {
		c.writeUint32(endOfChain)
	}
	c.writeUint32(location[3])
	if location[1] != 0 {
		c.writeUint32(location[0] - 1)
	} else {
		c.writeUint32(endOfChain)
	}
	c.writeUint32(location[1])
	c.writeMSAT(location)
	sector := c.writeSectorChains(location)
	c.writeDirectoryEntry(location)
	for i = 1; i < len(c.sectors); i++ {
		sector = c.sectors[i]
		if sector.size >= 0x1000 {
			c.position = (sector.start + 1) << 9
			for j = 0; j < sector.size; j++ {
				c.writeBytes([]byte{sector.content[j]})
997
			}
998 999
			for ; j&0x1FF != 0; j++ {
				c.writeBytes([]byte{0})
1000 1001 1002
			}
		}
	}
1003 1004 1005 1006 1007 1008 1009 1010 1011
	for i = 1; i < len(c.sectors); i++ {
		sector = c.sectors[i]
		if sector.size > 0 && sector.size < 0x1000 {
			for j = 0; j < sector.size; j++ {
				c.writeBytes([]byte{sector.content[j]})
			}
			for ; j&0x3F != 0; j++ {
				c.writeBytes([]byte{0})
			}
1012 1013
		}
	}
1014 1015
	for c.position < len(c.stream) {
		c.writeBytes([]byte{0})
1016
	}
1017
	return c.stream
1018
}