test_trt_convert_gelu.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set


class TrtConvertGeluTest(TrtLayerAutoScanTest):
    def is_program_valid(self, program_config: ProgramConfig) -> bool:
        return True

    def sample_program_configs(self):
        def generate_input1(dims, attrs: List[Dict[str, Any]]):
            if dims == 1:
                return np.ones([64]).astype(np.float32)
            elif dims == 2:
                return np.ones([3, 64]).astype(np.float32)
            elif dims == 3:
                return np.ones([3, 64, 64]).astype(np.float32)
            else:
                return np.ones([1, 3, 64, 64]).astype(np.float32)

        for dims in [1, 2, 3, 4]:
            for approximate in [True, False]:
                self.dims = dims
                dics = [{"approximate": approximate}]

                ops_config = [{
                    "op_type": "gelu",
                    "op_inputs": {
                        "X": ["input_data"]
                    },
                    "op_outputs": {
                        "Out": ["output_data"]
                    },
                    "op_attrs": dics[0]
                }]
                ops = self.generate_op_config(ops_config)

                program_config = ProgramConfig(
                    ops=ops,
                    weights={},
                    inputs={
                        "input_data": TensorConfig(data_gen=partial(
                            generate_input1, dims, dics))
                    },
                    outputs=["output_data"])

                yield program_config

    def sample_predictor_configs(
            self, program_config) -> (paddle_infer.Config, List[int], float):
        def generate_dynamic_shape(attrs):
            if self.dims == 1:
                self.dynamic_shape.min_input_shape = {"input_data": [1]}
                self.dynamic_shape.max_input_shape = {"input_data": [128]}
                self.dynamic_shape.opt_input_shape = {"input_data": [64]}
            elif self.dims == 2:
                self.dynamic_shape.min_input_shape = {"input_data": [1, 32]}
                self.dynamic_shape.max_input_shape = {"input_data": [4, 64]}
                self.dynamic_shape.opt_input_shape = {"input_data": [3, 64]}
            elif self.dims == 3:
                self.dynamic_shape.min_input_shape = {"input_data": [1, 32, 32]}
                self.dynamic_shape.max_input_shape = {
                    "input_data": [10, 64, 64]
                }
                self.dynamic_shape.opt_input_shape = {"input_data": [3, 64, 64]}
            else:
                self.dynamic_shape.min_input_shape = {
                    "input_data": [1, 3, 32, 32]
                }
                self.dynamic_shape.max_input_shape = {
                    "input_data": [4, 3, 64, 64]
                }
                self.dynamic_shape.opt_input_shape = {
                    "input_data": [1, 3, 64, 64]
                }

        def clear_dynamic_shape():
            self.dynamic_shape.min_input_shape = {}
            self.dynamic_shape.max_input_shape = {}
            self.dynamic_shape.opt_input_shape = {}

        def generate_trt_nodes_num(attrs, dynamic_shape):
            if attrs[0]['approximate'] == True or self.dims == 1:
                return 0, 3
            else:
                return 1, 2

        attrs = [
            program_config.ops[i].attrs
            for i in range(len(program_config.ops))
        ]

        # for static_shape
        clear_dynamic_shape()
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(
            attrs, False), 1e-5
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(
            attrs, False), 1e-5

        # for dynamic_shape
        generate_dynamic_shape(attrs)
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(attrs,
                                                                     True), 1e-5
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(attrs,
                                                                     True), 1e-5

    def add_skip_trt_case(self):
        def teller1(program_config, predictor_config):
            if self.dims == 2:
                return True
            return False

        self.add_skip_case(
            teller1, SkipReasons.TRT_NOT_IMPLEMENTED,
            "When input dims is 2, pulgin will product a 4 dims output.")

    def test(self):
        self.add_skip_trt_case()
        self.run_test()


if __name__ == "__main__":
    unittest.main()