1. 11 12月, 2008 1 次提交
  2. 02 12月, 2008 1 次提交
    • N
      mm: vmalloc fix lazy unmapping cache aliasing · b29acbdc
      Nick Piggin 提交于
      Jim Radford has reported that the vmap subsystem rewrite was sometimes
      causing his VIVT ARM system to behave strangely (seemed like going into
      infinite loops trying to fault in pages to userspace).
      
      We determined that the problem was most likely due to a cache aliasing
      issue.  flush_cache_vunmap was only being called at the moment the page
      tables were to be taken down, however with lazy unmapping, this can happen
      after the page has subsequently been freed and allocated for something
      else.  The dangling alias may still have dirty data attached to it.
      
      The fix for this problem is to do the cache flushing when the caller has
      called vunmap -- it would be a bug for them to write anything else to the
      mapping at that point.
      
      That appeared to solve Jim's problems.
      Reported-by: NJim Radford <radford@blackbean.org>
      Signed-off-by: NNick Piggin <npiggin@suse.de>
      Cc: Russell King <rmk@arm.linux.org.uk>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b29acbdc
  3. 20 11月, 2008 3 次提交
  4. 07 11月, 2008 2 次提交
  5. 31 10月, 2008 1 次提交
  6. 23 10月, 2008 1 次提交
  7. 21 10月, 2008 1 次提交
  8. 20 10月, 2008 1 次提交
    • N
      mm: rewrite vmap layer · db64fe02
      Nick Piggin 提交于
      Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and
      provide a fast, scalable percpu frontend for small vmaps (requires a
      slightly different API, though).
      
      The biggest problem with vmap is actually vunmap.  Presently this requires
      a global kernel TLB flush, which on most architectures is a broadcast IPI
      to all CPUs to flush the cache.  This is all done under a global lock.  As
      the number of CPUs increases, so will the number of vunmaps a scaled
      workload will want to perform, and so will the cost of a global TLB flush.
       This gives terrible quadratic scalability characteristics.
      
      Another problem is that the entire vmap subsystem works under a single
      lock.  It is a rwlock, but it is actually taken for write in all the fast
      paths, and the read locking would likely never be run concurrently anyway,
      so it's just pointless.
      
      This is a rewrite of vmap subsystem to solve those problems.  The existing
      vmalloc API is implemented on top of the rewritten subsystem.
      
      The TLB flushing problem is solved by using lazy TLB unmapping.  vmap
      addresses do not have to be flushed immediately when they are vunmapped,
      because the kernel will not reuse them again (would be a use-after-free)
      until they are reallocated.  So the addresses aren't allocated again until
      a subsequent TLB flush.  A single TLB flush then can flush multiple
      vunmaps from each CPU.
      
      XEN and PAT and such do not like deferred TLB flushing because they can't
      always handle multiple aliasing virtual addresses to a physical address.
      They now call vm_unmap_aliases() in order to flush any deferred mappings.
      That call is very expensive (well, actually not a lot more expensive than
      a single vunmap under the old scheme), however it should be OK if not
      called too often.
      
      The virtual memory extent information is stored in an rbtree rather than a
      linked list to improve the algorithmic scalability.
      
      There is a per-CPU allocator for small vmaps, which amortizes or avoids
      global locking.
      
      To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces
      must be used in place of vmap and vunmap.  Vmalloc does not use these
      interfaces at the moment, so it will not be quite so scalable (although it
      will use lazy TLB flushing).
      
      As a quick test of performance, I ran a test that loops in the kernel,
      linearly mapping then touching then unmapping 4 pages.  Different numbers
      of tests were run in parallel on an 4 core, 2 socket opteron.  Results are
      in nanoseconds per map+touch+unmap.
      
      threads           vanilla         vmap rewrite
      1                 14700           2900
      2                 33600           3000
      4                 49500           2800
      8                 70631           2900
      
      So with a 8 cores, the rewritten version is already 25x faster.
      
      In a slightly more realistic test (although with an older and less
      scalable version of the patch), I ripped the not-very-good vunmap batching
      code out of XFS, and implemented the large buffer mapping with vm_map_ram
      and vm_unmap_ram...  along with a couple of other tricks, I was able to
      speed up a large directory workload by 20x on a 64 CPU system.  I believe
      vmap/vunmap is actually sped up a lot more than 20x on such a system, but
      I'm running into other locks now.  vmap is pretty well blown off the
      profiles.
      
      Before:
      1352059 total                                      0.1401
      798784 _write_lock                              8320.6667 <- vmlist_lock
      529313 default_idle                             1181.5022
       15242 smp_call_function                         15.8771  <- vmap tlb flushing
        2472 __get_vm_area_node                         1.9312  <- vmap
        1762 remove_vm_area                             4.5885  <- vunmap
         316 map_vm_area                                0.2297  <- vmap
         312 kfree                                      0.1950
         300 _spin_lock                                 3.1250
         252 sn_send_IPI_phys                           0.4375  <- tlb flushing
         238 vmap                                       0.8264  <- vmap
         216 find_lock_page                             0.5192
         196 find_next_bit                              0.3603
         136 sn2_send_IPI                               0.2024
         130 pio_phys_write_mmr                         2.0312
         118 unmap_kernel_range                         0.1229
      
      After:
       78406 total                                      0.0081
       40053 default_idle                              89.4040
       33576 ia64_spinlock_contention                 349.7500
        1650 _spin_lock                                17.1875
         319 __reg_op                                   0.5538
         281 _atomic_dec_and_lock                       1.0977
         153 mutex_unlock                               1.5938
         123 iget_locked                                0.1671
         117 xfs_dir_lookup                             0.1662
         117 dput                                       0.1406
         114 xfs_iget_core                              0.0268
          92 xfs_da_hashname                            0.1917
          75 d_alloc                                    0.0670
          68 vmap_page_range                            0.0462 <- vmap
          58 kmem_cache_alloc                           0.0604
          57 memset                                     0.0540
          52 rb_next                                    0.1625
          50 __copy_user                                0.0208
          49 bitmap_find_free_region                    0.2188 <- vmap
          46 ia64_sn_udelay                             0.1106
          45 find_inode_fast                            0.1406
          42 memcmp                                     0.2188
          42 finish_task_switch                         0.1094
          42 __d_lookup                                 0.0410
          40 radix_tree_lookup_slot                     0.1250
          37 _spin_unlock_irqrestore                    0.3854
          36 xfs_bmapi                                  0.0050
          36 kmem_cache_free                            0.0256
          35 xfs_vn_getattr                             0.0322
          34 radix_tree_lookup                          0.1062
          33 __link_path_walk                           0.0035
          31 xfs_da_do_buf                              0.0091
          30 _xfs_buf_find                              0.0204
          28 find_get_page                              0.0875
          27 xfs_iread                                  0.0241
          27 __strncpy_from_user                        0.2812
          26 _xfs_buf_initialize                        0.0406
          24 _xfs_buf_lookup_pages                      0.0179
          24 vunmap_page_range                          0.0250 <- vunmap
          23 find_lock_page                             0.0799
          22 vm_map_ram                                 0.0087 <- vmap
          20 kfree                                      0.0125
          19 put_page                                   0.0330
          18 __kmalloc                                  0.0176
          17 xfs_da_node_lookup_int                     0.0086
          17 _read_lock                                 0.0885
          17 page_waitqueue                             0.0664
      
      vmap has gone from being the top 5 on the profiles and flushing the crap
      out of all TLBs, to using less than 1% of kernel time.
      
      [akpm@linux-foundation.org: cleanups, section fix]
      [akpm@linux-foundation.org: fix build on alpha]
      Signed-off-by: NNick Piggin <npiggin@suse.de>
      Cc: Jeremy Fitzhardinge <jeremy@goop.org>
      Cc: Krzysztof Helt <krzysztof.h1@poczta.fm>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      db64fe02
  9. 16 10月, 2008 1 次提交
    • L
      Introduce is_vmalloc_or_module_addr() and use with DEBUG_VIRTUAL · 73bdf0a6
      Linus Torvalds 提交于
      Impact: crash on module insertion with CONFIG_DEBUG_VIRTUAL
      
      We would incorrectly BUG due to:
      
         VIRTUAL_BUG_ON(!is_vmalloc_addr(vmalloc_addr) &&
         	          !is_module_address(addr));
      
      ... because, at least on x86-64, is_module_address() doesn't do what
      it should.  This patch introduces is_vmalloc_or_module_addr(), which
      is what we really want anyway, and uses it instead.
      Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
      73bdf0a6
  10. 27 7月, 2008 1 次提交
  11. 25 7月, 2008 1 次提交
    • E
      vmallocinfo: add NUMA information · a47a126a
      Eric Dumazet 提交于
      Christoph recently added /proc/vmallocinfo file to get information about
      vmalloc allocations.
      
      This patch adds NUMA specific information, giving number of pages
      allocated on each memory node.
      
      This should help to check that vmalloc() is able to respect NUMA policies.
      
      Example of output on a four nodes machine (one cpu per node)
      
      1) network hash tables are evenly spreaded on four nodes (OK) (Same
         point for inodes and dentries hash tables)
      
      2) iptables tables (x_tables) are correctly allocated on each cpu node
         (OK).
      
      3) sys_swapon() allocates its memory from one node only.
      
      4) each loaded module is using memory on one node.
      
      Sysadmins could tune their setup to change points 3) and 4) if necessary.
      
      grep "pages="  /proc/vmallocinfo
      0xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204/0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128
      0xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204/0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64
      0xffffc2000031a000-0xffffc2000031d000   12288 alloc_large_system_hash+0x204/0x2c0 pages=2 vmalloc N1=1 N2=1
      0xffffc2000031f000-0xffffc2000032b000   49152 cramfs_uncompress_init+0x2e/0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3
      0xffffc2000033e000-0xffffc20000341000   12288 sys_swapon+0x640/0xac0 pages=2 vmalloc N0=2
      0xffffc20000341000-0xffffc20000344000   12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N0=2
      0xffffc20000344000-0xffffc20000347000   12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N1=2
      0xffffc20000347000-0xffffc2000034a000   12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N2=2
      0xffffc2000034a000-0xffffc2000034d000   12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N3=2
      0xffffc20004381000-0xffffc20004402000  528384 alloc_large_system_hash+0x204/0x2c0 pages=128 vmalloc N0=32 N1=32 N2=32 N3=32
      0xffffc20004402000-0xffffc20004803000 4198400 alloc_large_system_hash+0x204/0x2c0 pages=1024 vmalloc vpages N0=256 N1=256 N2=256 N3=256
      0xffffc20004803000-0xffffc20004904000 1052672 alloc_large_system_hash+0x204/0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64
      0xffffc20004904000-0xffffc20004bec000 3047424 sys_swapon+0x640/0xac0 pages=743 vmalloc vpages N0=743
      0xffffffffa0000000-0xffffffffa000f000   61440 sys_init_module+0xc27/0x1d00 pages=14 vmalloc N1=14
      0xffffffffa000f000-0xffffffffa0014000   20480 sys_init_module+0xc27/0x1d00 pages=4 vmalloc N0=4
      0xffffffffa0014000-0xffffffffa0017000   12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N0=2
      0xffffffffa0017000-0xffffffffa0022000   45056 sys_init_module+0xc27/0x1d00 pages=10 vmalloc N1=10
      0xffffffffa0022000-0xffffffffa0028000   24576 sys_init_module+0xc27/0x1d00 pages=5 vmalloc N3=5
      0xffffffffa0028000-0xffffffffa0050000  163840 sys_init_module+0xc27/0x1d00 pages=39 vmalloc N1=39
      0xffffffffa0050000-0xffffffffa0052000    8192 sys_init_module+0xc27/0x1d00 pages=1 vmalloc N1=1
      0xffffffffa0052000-0xffffffffa0056000   16384 sys_init_module+0xc27/0x1d00 pages=3 vmalloc N1=3
      0xffffffffa0056000-0xffffffffa0081000  176128 sys_init_module+0xc27/0x1d00 pages=42 vmalloc N3=42
      0xffffffffa0081000-0xffffffffa00ae000  184320 sys_init_module+0xc27/0x1d00 pages=44 vmalloc N3=44
      0xffffffffa00ae000-0xffffffffa00b1000   12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2
      0xffffffffa00b1000-0xffffffffa00b9000   32768 sys_init_module+0xc27/0x1d00 pages=7 vmalloc N0=7
      0xffffffffa00b9000-0xffffffffa00c4000   45056 sys_init_module+0xc27/0x1d00 pages=10 vmalloc N3=10
      0xffffffffa00c6000-0xffffffffa00e0000  106496 sys_init_module+0xc27/0x1d00 pages=25 vmalloc N2=25
      0xffffffffa00e0000-0xffffffffa00f1000   69632 sys_init_module+0xc27/0x1d00 pages=16 vmalloc N2=16
      0xffffffffa00f1000-0xffffffffa00f4000   12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2
      0xffffffffa00f4000-0xffffffffa00f7000   12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2
      
      [akpm@linux-foundation.org: fix comment]
      Signed-off-by: NEric Dumazet <dada1@cosmosbay.com>
      Cc: Christoph Lameter <cl@linux-foundation.org>
      Cc: Randy Dunlap <randy.dunlap@oracle.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a47a126a
  12. 19 6月, 2008 2 次提交
    • I
      x86, MM: virtual address debug, cleanups · 7aa413de
      Ingo Molnar 提交于
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      7aa413de
    • J
      MM: virtual address debug · 59ea7463
      Jiri Slaby 提交于
      Add some (configurable) expensive sanity checking to catch wrong address
      translations on x86.
      
      - create linux/mmdebug.h file to be able include this file in
        asm headers to not get unsolvable loops in header files
      - __phys_addr on x86_32 became a function in ioremap.c since
        PAGE_OFFSET, is_vmalloc_addr and VMALLOC_* non-constasts are undefined
        if declared in page_32.h
      - add __phys_addr_const for initializing doublefault_tss.__cr3
      
      Tested on 386, 386pae, x86_64 and x86_64 numa=fake=2.
      
      Contains Andi's enable numa virtual address debug patch.
      Signed-off-by: NJiri Slaby <jirislaby@gmail.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      59ea7463
  13. 01 5月, 2008 1 次提交
  14. 30 4月, 2008 1 次提交
    • T
      infrastructure to debug (dynamic) objects · 3ac7fe5a
      Thomas Gleixner 提交于
      We can see an ever repeating problem pattern with objects of any kind in the
      kernel:
      
      1) freeing of active objects
      2) reinitialization of active objects
      
      Both problems can be hard to debug because the crash happens at a point where
      we have no chance to decode the root cause anymore.  One problem spot are
      kernel timers, where the detection of the problem often happens in interrupt
      context and usually causes the machine to panic.
      
      While working on a timer related bug report I had to hack specialized code
      into the timer subsystem to get a reasonable hint for the root cause.  This
      debug hack was fine for temporary use, but far from a mergeable solution due
      to the intrusiveness into the timer code.
      
      The code further lacked the ability to detect and report the root cause
      instantly and keep the system operational.
      
      Keeping the system operational is important to get hold of the debug
      information without special debugging aids like serial consoles and special
      knowledge of the bug reporter.
      
      The problems described above are not restricted to timers, but timers tend to
      expose it usually in a full system crash.  Other objects are less explosive,
      but the symptoms caused by such mistakes can be even harder to debug.
      
      Instead of creating specialized debugging code for the timer subsystem a
      generic infrastructure is created which allows developers to verify their code
      and provides an easy to enable debug facility for users in case of trouble.
      
      The debugobjects core code keeps track of operations on static and dynamic
      objects by inserting them into a hashed list and sanity checking them on
      object operations and provides additional checks whenever kernel memory is
      freed.
      
      The tracked object operations are:
      - initializing an object
      - adding an object to a subsystem list
      - deleting an object from a subsystem list
      
      Each operation is sanity checked before the operation is executed and the
      subsystem specific code can provide a fixup function which allows to prevent
      the damage of the operation.  When the sanity check triggers a warning message
      and a stack trace is printed.
      
      The list of operations can be extended if the need arises.  For now it's
      limited to the requirements of the first user (timers).
      
      The core code enqueues the objects into hash buckets.  The hash index is
      generated from the address of the object to simplify the lookup for the check
      on kfree/vfree.  Each bucket has it's own spinlock to avoid contention on a
      global lock.
      
      The debug code can be compiled in without being active.  The runtime overhead
      is minimal and could be optimized by asm alternatives.  A kernel command line
      option enables the debugging code.
      
      Thanks to Ingo Molnar for review, suggestions and cleanup patches.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      Cc: Greg KH <greg@kroah.com>
      Cc: Randy Dunlap <randy.dunlap@oracle.com>
      Cc: Kay Sievers <kay.sievers@vrfy.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3ac7fe5a
  15. 28 4月, 2008 2 次提交
    • C
      vmallocinfo: add caller information · 23016969
      Christoph Lameter 提交于
      Add caller information so that /proc/vmallocinfo shows where the allocation
      request for a slice of vmalloc memory originated.
      
      Results in output like this:
      
      0xffffc20000000000-0xffffc20000801000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages
      0xffffc20000801000-0xffffc20000806000   20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc
      0xffffc20000806000-0xffffc20000c07000 4198400 alloc_large_system_hash+0x127/0x246 pages=1024 vmalloc vpages
      0xffffc20000c07000-0xffffc20000c0a000   12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc
      0xffffc20000c0a000-0xffffc20000c0c000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
      0xffffc20000c0c000-0xffffc20000c0f000   12288 acpi_os_map_memory+0x13/0x1c phys=cff64000 ioremap
      0xffffc20000c10000-0xffffc20000c15000   20480 acpi_os_map_memory+0x13/0x1c phys=cff65000 ioremap
      0xffffc20000c16000-0xffffc20000c18000    8192 acpi_os_map_memory+0x13/0x1c phys=cff69000 ioremap
      0xffffc20000c18000-0xffffc20000c1a000    8192 acpi_os_map_memory+0x13/0x1c phys=fed1f000 ioremap
      0xffffc20000c1a000-0xffffc20000c1c000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
      0xffffc20000c1c000-0xffffc20000c1e000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
      0xffffc20000c1e000-0xffffc20000c20000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
      0xffffc20000c20000-0xffffc20000c22000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
      0xffffc20000c22000-0xffffc20000c24000    8192 acpi_os_map_memory+0x13/0x1c phys=cff68000 ioremap
      0xffffc20000c24000-0xffffc20000c26000    8192 acpi_os_map_memory+0x13/0x1c phys=e0081000 ioremap
      0xffffc20000c26000-0xffffc20000c28000    8192 acpi_os_map_memory+0x13/0x1c phys=e0080000 ioremap
      0xffffc20000c28000-0xffffc20000c2d000   20480 alloc_large_system_hash+0x127/0x246 pages=4 vmalloc
      0xffffc20000c2d000-0xffffc20000c31000   16384 tcp_init+0xd5/0x31c pages=3 vmalloc
      0xffffc20000c31000-0xffffc20000c34000   12288 alloc_large_system_hash+0x127/0x246 pages=2 vmalloc
      0xffffc20000c34000-0xffffc20000c36000    8192 init_vdso_vars+0xde/0x1f1
      0xffffc20000c36000-0xffffc20000c38000    8192 pci_iomap+0x8a/0xb4 phys=d8e00000 ioremap
      0xffffc20000c38000-0xffffc20000c3a000    8192 usb_hcd_pci_probe+0x139/0x295 [usbcore] phys=d8e00000 ioremap
      0xffffc20000c3a000-0xffffc20000c3e000   16384 sys_swapon+0x509/0xa15 pages=3 vmalloc
      0xffffc20000c40000-0xffffc20000c61000  135168 e1000_probe+0x1c4/0xa32 phys=d8a20000 ioremap
      0xffffc20000c61000-0xffffc20000c6a000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
      0xffffc20000c6a000-0xffffc20000c73000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
      0xffffc20000c73000-0xffffc20000c7c000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
      0xffffc20000c7c000-0xffffc20000c7f000   12288 e1000e_setup_tx_resources+0x29/0xbe pages=2 vmalloc
      0xffffc20000c80000-0xffffc20001481000 8392704 pci_mmcfg_arch_init+0x90/0x118 phys=e0000000 ioremap
      0xffffc20001481000-0xffffc20001682000 2101248 alloc_large_system_hash+0x127/0x246 pages=512 vmalloc
      0xffffc20001682000-0xffffc20001e83000 8392704 alloc_large_system_hash+0x127/0x246 pages=2048 vmalloc vpages
      0xffffc20001e83000-0xffffc20002204000 3674112 alloc_large_system_hash+0x127/0x246 pages=896 vmalloc vpages
      0xffffc20002204000-0xffffc2000220d000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
      0xffffc2000220d000-0xffffc20002216000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
      0xffffc20002216000-0xffffc2000221f000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
      0xffffc2000221f000-0xffffc20002228000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
      0xffffc20002228000-0xffffc20002231000   36864 _xfs_buf_map_pages+0x8e/0xc0 vmap
      0xffffc20002231000-0xffffc20002234000   12288 e1000e_setup_rx_resources+0x35/0x122 pages=2 vmalloc
      0xffffc20002240000-0xffffc20002261000  135168 e1000_probe+0x1c4/0xa32 phys=d8a60000 ioremap
      0xffffc20002261000-0xffffc2000270c000 4894720 sys_swapon+0x509/0xa15 pages=1194 vmalloc vpages
      0xffffffffa0000000-0xffffffffa0022000  139264 module_alloc+0x4f/0x55 pages=33 vmalloc
      0xffffffffa0022000-0xffffffffa0029000   28672 module_alloc+0x4f/0x55 pages=6 vmalloc
      0xffffffffa002b000-0xffffffffa0034000   36864 module_alloc+0x4f/0x55 pages=8 vmalloc
      0xffffffffa0034000-0xffffffffa003d000   36864 module_alloc+0x4f/0x55 pages=8 vmalloc
      0xffffffffa003d000-0xffffffffa0049000   49152 module_alloc+0x4f/0x55 pages=11 vmalloc
      0xffffffffa0049000-0xffffffffa0050000   28672 module_alloc+0x4f/0x55 pages=6 vmalloc
      
      [akpm@linux-foundation.org: coding-style fixes]
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: Hugh Dickins <hugh@veritas.com>
      Cc: Nick Piggin <nickpiggin@yahoo.com.au>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      23016969
    • C
      vmalloc: show vmalloced areas via /proc/vmallocinfo · a10aa579
      Christoph Lameter 提交于
      Implement a new proc file that allows the display of the currently allocated
      vmalloc memory.
      
      It allows to see the users of vmalloc.  That is important if vmalloc space is
      scarce (i386 for example).
      
      And it's going to be important for the compound page fallback to vmalloc.
      Many of the current users can be switched to use compound pages with fallback.
       This means that the number of users of vmalloc is reduced and page tables no
      longer necessary to access the memory.  /proc/vmallocinfo allows to review how
      that reduction occurs.
      
      If memory becomes fragmented and larger order allocations are no longer
      possible then /proc/vmallocinfo allows to see which compound page allocations
      fell back to virtual compound pages.  That is important for new users of
      virtual compound pages.  Such as order 1 stack allocation etc that may
      fallback to virtual compound pages in the future.
      
      /proc/vmallocinfo permissions are made readable-only-by-root to avoid possible
      information leakage.
      
      [akpm@linux-foundation.org: coding-style fixes]
      [akpm@linux-foundation.org: CONFIG_MMU=n build fix]
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: Hugh Dickins <hugh@veritas.com>
      Cc: Nick Piggin <nickpiggin@yahoo.com.au>
      Cc: Arjan van de Ven <arjan@infradead.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a10aa579
  16. 20 3月, 2008 1 次提交
  17. 09 2月, 2008 1 次提交
    • M
      CONFIG_HIGHPTE vs. sub-page page tables. · 2f569afd
      Martin Schwidefsky 提交于
      Background: I've implemented 1K/2K page tables for s390.  These sub-page
      page tables are required to properly support the s390 virtualization
      instruction with KVM.  The SIE instruction requires that the page tables
      have 256 page table entries (pte) followed by 256 page status table entries
      (pgste).  The pgstes are only required if the process is using the SIE
      instruction.  The pgstes are updated by the hardware and by the hypervisor
      for a number of reasons, one of them is dirty and reference bit tracking.
      To avoid wasting memory the standard pte table allocation should return
      1K/2K (31/64 bit) and 2K/4K if the process is using SIE.
      
      Problem: Page size on s390 is 4K, page table size is 1K or 2K.  That means
      the s390 version for pte_alloc_one cannot return a pointer to a struct
      page.  Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one
      cannot return a pointer to a pte either, since that would require more than
      32 bit for the return value of pte_alloc_one (and the pte * would not be
      accessible since its not kmapped).
      
      Solution: The only solution I found to this dilemma is a new typedef: a
      pgtable_t.  For s390 pgtable_t will be a (pte *) - to be introduced with a
      later patch.  For everybody else it will be a (struct page *).  The
      additional problem with the initialization of the ptl lock and the
      NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and
      a destructor pgtable_page_dtor.  The page table allocation and free
      functions need to call these two whenever a page table page is allocated or
      freed.  pmd_populate will get a pgtable_t instead of a struct page pointer.
       To get the pgtable_t back from a pmd entry that has been installed with
      pmd_populate a new function pmd_pgtable is added.  It replaces the pmd_page
      call in free_pte_range and apply_to_pte_range.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: <linux-arch@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2f569afd
  18. 06 2月, 2008 5 次提交
  19. 20 10月, 2007 1 次提交
  20. 17 10月, 2007 1 次提交
    • C
      Categorize GFP flags · 6cb06229
      Christoph Lameter 提交于
      The function of GFP_LEVEL_MASK seems to be unclear.  In order to clear up
      the mystery we get rid of it and replace GFP_LEVEL_MASK with 3 sets of GFP
      flags:
      
      GFP_RECLAIM_MASK	Flags used to control page allocator reclaim behavior.
      
      GFP_CONSTRAINT_MASK	Flags used to limit where allocations can occur.
      
      GFP_SLAB_BUG_MASK	Flags that the slab allocator BUG()s on.
      
      These replace the uses of GFP_LEVEL mask in the slab allocators and in
      vmalloc.c.
      
      The use of the flags not included in these sets may occur as a result of a
      slab allocation standing in for a page allocation when constructing scatter
      gather lists.  Extraneous flags are cleared and not passed through to the
      page allocator.  __GFP_MOVABLE/RECLAIMABLE, __GFP_COLD and __GFP_COMP will
      now be ignored if passed to a slab allocator.
      
      Change the allocation of allocator meta data in SLAB and vmalloc to not
      pass through flags listed in GFP_CONSTRAINT_MASK.  SLAB already removes the
      __GFP_THISNODE flag for such allocations.  Generalize that to also cover
      vmalloc.  The use of GFP_CONSTRAINT_MASK also includes __GFP_HARDWALL.
      
      The impact of allocator metadata placement on access latency to the
      cachelines of the object itself is minimal since metadata is only
      referenced on alloc and free.  The attempt is still made to place the meta
      data optimally but we consistently allow fallback both in SLAB and vmalloc
      (SLUB does not need to allocate metadata like that).
      
      Allocator metadata may serve multiple in kernel users and thus should not
      be subject to the limitations arising from a single allocation context.
      
      [akpm@linux-foundation.org: fix fallback_alloc()]
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6cb06229
  21. 20 7月, 2007 2 次提交
  22. 18 7月, 2007 2 次提交
  23. 14 6月, 2007 1 次提交
  24. 17 5月, 2007 1 次提交
  25. 09 5月, 2007 1 次提交
    • C
      move die notifier handling to common code · 1eeb66a1
      Christoph Hellwig 提交于
      This patch moves the die notifier handling to common code.  Previous
      various architectures had exactly the same code for it.  Note that the new
      code is compiled unconditionally, this should be understood as an appel to
      the other architecture maintainer to implement support for it aswell (aka
      sprinkling a notify_die or two in the proper place)
      
      arm had a notifiy_die that did something totally different, I renamed it to
      arm_notify_die as part of the patch and made it static to the file it's
      declared and used at.  avr32 used to pass slightly less information through
      this interface and I brought it into line with the other architectures.
      
      [akpm@linux-foundation.org: build fix]
      [akpm@linux-foundation.org: fix vmalloc_sync_all bustage]
      [bryan.wu@analog.com: fix vmalloc_sync_all in nommu]
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Cc: <linux-arch@vger.kernel.org>
      Cc: Russell King <rmk@arm.linux.org.uk>
      Signed-off-by: NBryan Wu <bryan.wu@analog.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1eeb66a1
  26. 03 5月, 2007 1 次提交
  27. 12 2月, 2007 1 次提交
  28. 17 11月, 2006 1 次提交
  29. 13 11月, 2006 1 次提交