1. 07 1月, 2011 2 次提交
    • N
      fs: provide simple rcu-walk generic_check_acl implementation · 1e1743eb
      Nick Piggin 提交于
      This simple implementation just checks for no ACLs on the inode, and
      if so, then the rcu-walk may proceed, otherwise fail it.
      
      This could easily be extended to put acls under RCU and check them
      under seqlock, if need be. But this implementation is enough to show
      the rcu-walk aware permissions code for path lookups is working, and
      will handle cases where there are no ACLs or ACLs in just the final
      element.
      
      This patch implicity converts tmpfs to rcu-aware permission check.
      Subsequent patches onvert ext*, xfs, and, btrfs. Each of these uses
      acl/permission code in a different way, so convert them all to provide
      templates and proof of concept.
      Signed-off-by: NNick Piggin <npiggin@kernel.dk>
      1e1743eb
    • N
      fs: provide rcu-walk aware permission i_ops · b74c79e9
      Nick Piggin 提交于
      Signed-off-by: NNick Piggin <npiggin@kernel.dk>
      b74c79e9
  2. 18 8月, 2010 1 次提交
  3. 22 5月, 2010 1 次提交
  4. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6
  5. 17 12月, 2009 1 次提交
  6. 01 4月, 2009 1 次提交
  7. 18 7月, 2007 1 次提交
    • S
      Introduce is_owner_or_cap() to wrap CAP_FOWNER use with fsuid check · 3bd858ab
      Satyam Sharma 提交于
      Introduce is_owner_or_cap() macro in fs.h, and convert over relevant
      users to it. This is done because we want to avoid bugs in the future
      where we check for only effective fsuid of the current task against a
      file's owning uid, without simultaneously checking for CAP_FOWNER as
      well, thus violating its semantics.
      [ XFS uses special macros and structures, and in general looked ...
      untouchable, so we leave it alone -- but it has been looked over. ]
      
      The (current->fsuid != inode->i_uid) check in generic_permission() and
      exec_permission_lite() is left alone, because those operations are
      covered by CAP_DAC_OVERRIDE and CAP_DAC_READ_SEARCH. Similarly operations
      falling under the purview of CAP_CHOWN and CAP_LEASE are also left alone.
      Signed-off-by: NSatyam Sharma <ssatyam@cse.iitk.ac.in>
      Cc: Al Viro <viro@ftp.linux.org.uk>
      Acked-by: NSerge E. Hallyn <serge@hallyn.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3bd858ab
  8. 30 9月, 2006 1 次提交
    • A
      [PATCH] Generic infrastructure for acls · f0c8bd16
      Andreas Gruenbacher 提交于
      The patches solve the following problem: We want to grant access to devices
      based on who is logged in from where, etc.  This includes switching back and
      forth between multiple user sessions, etc.
      
      Using ACLs to define device access for logged-in users gives us all the
      flexibility we need in order to fully solve the problem.
      
      Device special files nowadays usually live on tmpfs, hence tmpfs ACLs.
      
      Different distros have come up with solutions that solve the problem to
      different degrees: SUSE uses a resource manager which tracks login sessions
      and sets ACLs on device inodes as appropriate.  RedHat uses pam_console, which
      changes the primary file ownership to the logged-in user.  Others use a set of
      groups that users must be in in order to be granted the appropriate accesses.
      
      The freedesktop.org project plans to implement a combination of a
      console-tracker and a HAL-device-list based solution to grant access to
      devices to users, and more distros will likely follow this approach.
      
      These patches have first been posted here on 2 February 2005, and again
      on 8 January 2006. We have been shipping them in SLES9 and SLES10 with
      no problems reported.  The previous submission is archived here:
      
         http://lkml.org/lkml/2006/1/8/229
         http://lkml.org/lkml/2006/1/8/230
         http://lkml.org/lkml/2006/1/8/231
      
      This patch:
      
      Add some infrastructure for access control lists on in-memory
      filesystems such as tmpfs.
      Signed-off-by: NAndreas Gruenbacher <agruen@suse.de>
      Cc: Hugh Dickins <hugh@veritas.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      f0c8bd16