提交 a0164a57 编写于 作者: R Russell King

Revert "RTC: sa1100: support sa1100, pxa and mmp soc families"

This reverts commit 7cea0065.

The sa1100 cleanups fatally broke the SA1100 RTC driver - the first
hint that something is wrong are these compiler warnings:

drivers/rtc/rtc-sa1100.c:42:1: warning: "RCNR" redefined
In file included from arch/arm/mach-sa1100/include/mach/hardware.h:73,
                 from drivers/rtc/rtc-sa1100.c:35:
arch/arm/mach-sa1100/include/mach/SA-1100.h:877:1: warning: this is the location of the previous definition
drivers/rtc/rtc-sa1100.c:43:1: warning: "RTAR" redefined
arch/arm/mach-sa1100/include/mach/SA-1100.h:876:1: warning: this is the location of the previous definition
drivers/rtc/rtc-sa1100.c:44:1: warning: "RTSR" redefined
arch/arm/mach-sa1100/include/mach/SA-1100.h:879:1: warning: this is the location of the previous definition
drivers/rtc/rtc-sa1100.c:45:1: warning: "RTTR" redefined
arch/arm/mach-sa1100/include/mach/SA-1100.h:878:1: warning: this is the location of the previous definition
drivers/rtc/rtc-sa1100.c:47:1: warning: "RTSR_HZE" redefined
arch/arm/mach-sa1100/include/mach/SA-1100.h:891:1: warning: this is the location of the previous definition
drivers/rtc/rtc-sa1100.c:48:1: warning: "RTSR_ALE" redefined
arch/arm/mach-sa1100/include/mach/SA-1100.h:890:1: warning: this is the location of the previous definition
drivers/rtc/rtc-sa1100.c:49:1: warning: "RTSR_HZ" redefined
arch/arm/mach-sa1100/include/mach/SA-1100.h:889:1: warning: this is the location of the previous definition
drivers/rtc/rtc-sa1100.c:50:1: warning: "RTSR_AL" redefined
arch/arm/mach-sa1100/include/mach/SA-1100.h:888:1: warning: this is the location of the previous definition

and the second problem, which is far more severe, are the different
register layouts, resulting in the wrong registers being read on
SA11x0 platforms.  This patch adds:

	#define RCNR           0x00    /* RTC Count Register */
	#define RTAR           0x04    /* RTC Alarm Register */
	#define RTSR           0x08    /* RTC Status Register */
	#define RTTR           0x0c    /* RTC Timer Trim Register */

but the SA11x0 registers are:

	#define RTAR            __REG(0x90010000)  /* RTC Alarm Reg. */
	#define RCNR            __REG(0x90010004)  /* RTC CouNt Reg. */
	#define RTTR            __REG(0x90010008)  /* RTC Trim Reg. */
	#define RTSR            __REG(0x90010010)  /* RTC Status Reg. */
上级 a55b5ada
...@@ -415,29 +415,9 @@ static struct resource pxa_rtc_resources[] = { ...@@ -415,29 +415,9 @@ static struct resource pxa_rtc_resources[] = {
}, },
}; };
static struct resource sa1100_rtc_resources[] = {
[0] = {
.start = 0x40900000,
.end = 0x409000ff,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_RTC1Hz,
.end = IRQ_RTC1Hz,
.flags = IORESOURCE_IRQ,
},
[2] = {
.start = IRQ_RTCAlrm,
.end = IRQ_RTCAlrm,
.flags = IORESOURCE_IRQ,
},
};
struct platform_device sa1100_device_rtc = { struct platform_device sa1100_device_rtc = {
.name = "sa1100-rtc", .name = "sa1100-rtc",
.id = -1, .id = -1,
.num_resources = ARRAY_SIZE(sa1100_rtc_resources),
.resource = sa1100_rtc_resources,
}; };
struct platform_device pxa_device_rtc = { struct platform_device pxa_device_rtc = {
......
...@@ -350,29 +350,9 @@ void sa11x0_register_irda(struct irda_platform_data *irda) ...@@ -350,29 +350,9 @@ void sa11x0_register_irda(struct irda_platform_data *irda)
sa11x0_register_device(&sa11x0ir_device, irda); sa11x0_register_device(&sa11x0ir_device, irda);
} }
static struct resource sa11x0rtc_resources[] = {
[0] = {
.start = 0x90010000,
.end = 0x900100ff,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_RTC1Hz,
.end = IRQ_RTC1Hz,
.flags = IORESOURCE_IRQ,
},
[2] = {
.start = IRQ_RTCAlrm,
.end = IRQ_RTCAlrm,
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device sa11x0rtc_device = { static struct platform_device sa11x0rtc_device = {
.name = "sa1100-rtc", .name = "sa1100-rtc",
.id = -1, .id = -1,
.resource = sa11x0rtc_resources,
.num_resources = ARRAY_SIZE(sa11x0rtc_resources),
}; };
static struct platform_device *sa11x0_devices[] __initdata = { static struct platform_device *sa11x0_devices[] __initdata = {
......
...@@ -774,7 +774,7 @@ config RTC_DRV_EP93XX ...@@ -774,7 +774,7 @@ config RTC_DRV_EP93XX
config RTC_DRV_SA1100 config RTC_DRV_SA1100
tristate "SA11x0/PXA2xx" tristate "SA11x0/PXA2xx"
depends on ARCH_SA1100 || ARCH_PXA || ARCH_MMP depends on ARCH_SA1100 || ARCH_PXA
help help
If you say Y here you will get access to the real time clock If you say Y here you will get access to the real time clock
built into your SA11x0 or PXA2xx CPU. built into your SA11x0 or PXA2xx CPU.
......
...@@ -27,42 +27,24 @@ ...@@ -27,42 +27,24 @@
#include <linux/init.h> #include <linux/init.h>
#include <linux/fs.h> #include <linux/fs.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/pm.h> #include <linux/pm.h>
#include <linux/slab.h> #include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <mach/hardware.h> #include <mach/hardware.h>
#include <asm/irq.h> #include <asm/irq.h>
#ifdef CONFIG_ARCH_PXA
#include <mach/regs-rtc.h>
#endif
#define RTC_DEF_DIVIDER (32768 - 1) #define RTC_DEF_DIVIDER (32768 - 1)
#define RTC_DEF_TRIM 0 #define RTC_DEF_TRIM 0
#define RTC_FREQ 1024
static const unsigned long RTC_FREQ = 1024;
#define RCNR 0x00 /* RTC Count Register */ static struct rtc_time rtc_alarm;
#define RTAR 0x04 /* RTC Alarm Register */ static DEFINE_SPINLOCK(sa1100_rtc_lock);
#define RTSR 0x08 /* RTC Status Register */
#define RTTR 0x0c /* RTC Timer Trim Register */
#define RTSR_HZE (1 << 3) /* HZ interrupt enable */
#define RTSR_ALE (1 << 2) /* RTC alarm interrupt enable */
#define RTSR_HZ (1 << 1) /* HZ rising-edge detected */
#define RTSR_AL (1 << 0) /* RTC alarm detected */
#define rtc_readl(sa1100_rtc, reg) \
readl_relaxed((sa1100_rtc)->base + (reg))
#define rtc_writel(sa1100_rtc, reg, value) \
writel_relaxed((value), (sa1100_rtc)->base + (reg))
struct sa1100_rtc {
struct resource *ress;
void __iomem *base;
struct clk *clk;
int irq_1Hz;
int irq_Alrm;
struct rtc_device *rtc;
spinlock_t lock; /* Protects this structure */
};
/* /*
* Calculate the next alarm time given the requested alarm time mask * Calculate the next alarm time given the requested alarm time mask
* and the current time. * and the current time.
...@@ -93,23 +75,22 @@ static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now, ...@@ -93,23 +75,22 @@ static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now,
static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id) static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
{ {
struct platform_device *pdev = to_platform_device(dev_id); struct platform_device *pdev = to_platform_device(dev_id);
struct sa1100_rtc *sa1100_rtc = platform_get_drvdata(pdev); struct rtc_device *rtc = platform_get_drvdata(pdev);
unsigned int rtsr; unsigned int rtsr;
unsigned long events = 0; unsigned long events = 0;
spin_lock(&sa1100_rtc->lock); spin_lock(&sa1100_rtc_lock);
rtsr = RTSR;
/* clear interrupt sources */ /* clear interrupt sources */
rtsr = rtc_readl(sa1100_rtc, RTSR); RTSR = 0;
rtc_writel(sa1100_rtc, RTSR, 0);
/* Fix for a nasty initialization problem the in SA11xx RTSR register. /* Fix for a nasty initialization problem the in SA11xx RTSR register.
* See also the comments in sa1100_rtc_probe(). */ * See also the comments in sa1100_rtc_probe(). */
if (rtsr & (RTSR_ALE | RTSR_HZE)) { if (rtsr & (RTSR_ALE | RTSR_HZE)) {
/* This is the original code, before there was the if test /* This is the original code, before there was the if test
* above. This code does not clear interrupts that were not * above. This code does not clear interrupts that were not
* enabled. */ * enabled. */
rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ) & (rtsr >> 2)); RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
} else { } else {
/* For some reason, it is possible to enter this routine /* For some reason, it is possible to enter this routine
* without interruptions enabled, it has been tested with * without interruptions enabled, it has been tested with
...@@ -118,13 +99,13 @@ static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id) ...@@ -118,13 +99,13 @@ static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
* This situation leads to an infinite "loop" of interrupt * This situation leads to an infinite "loop" of interrupt
* routine calling and as a result the processor seems to * routine calling and as a result the processor seems to
* lock on its first call to open(). */ * lock on its first call to open(). */
rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ)); RTSR = RTSR_AL | RTSR_HZ;
} }
/* clear alarm interrupt if it has occurred */ /* clear alarm interrupt if it has occurred */
if (rtsr & RTSR_AL) if (rtsr & RTSR_AL)
rtsr &= ~RTSR_ALE; rtsr &= ~RTSR_ALE;
rtc_writel(sa1100_rtc, RTSR, rtsr & (RTSR_ALE | RTSR_HZE)); RTSR = rtsr & (RTSR_ALE | RTSR_HZE);
/* update irq data & counter */ /* update irq data & counter */
if (rtsr & RTSR_AL) if (rtsr & RTSR_AL)
...@@ -132,100 +113,86 @@ static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id) ...@@ -132,100 +113,86 @@ static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
if (rtsr & RTSR_HZ) if (rtsr & RTSR_HZ)
events |= RTC_UF | RTC_IRQF; events |= RTC_UF | RTC_IRQF;
rtc_update_irq(sa1100_rtc->rtc, 1, events); rtc_update_irq(rtc, 1, events);
spin_unlock(&sa1100_rtc->lock); spin_unlock(&sa1100_rtc_lock);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static int sa1100_rtc_open(struct device *dev) static int sa1100_rtc_open(struct device *dev)
{ {
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
int ret; int ret;
struct platform_device *plat_dev = to_platform_device(dev);
struct rtc_device *rtc = platform_get_drvdata(plat_dev);
ret = request_irq(sa1100_rtc->irq_1Hz, sa1100_rtc_interrupt, ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED,
IRQF_DISABLED, "rtc 1Hz", dev); "rtc 1Hz", dev);
if (ret) { if (ret) {
dev_err(dev, "IRQ %d already in use.\n", sa1100_rtc->irq_1Hz); dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
goto fail_ui; goto fail_ui;
} }
ret = request_irq(sa1100_rtc->irq_Alrm, sa1100_rtc_interrupt, ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED,
IRQF_DISABLED, "rtc Alrm", dev); "rtc Alrm", dev);
if (ret) { if (ret) {
dev_err(dev, "IRQ %d already in use.\n", sa1100_rtc->irq_Alrm); dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
goto fail_ai; goto fail_ai;
} }
sa1100_rtc->rtc->max_user_freq = RTC_FREQ; rtc->max_user_freq = RTC_FREQ;
rtc_irq_set_freq(sa1100_rtc->rtc, NULL, RTC_FREQ); rtc_irq_set_freq(rtc, NULL, RTC_FREQ);
return 0; return 0;
fail_ai: fail_ai:
free_irq(sa1100_rtc->irq_1Hz, dev); free_irq(IRQ_RTC1Hz, dev);
fail_ui: fail_ui:
return ret; return ret;
} }
static void sa1100_rtc_release(struct device *dev) static void sa1100_rtc_release(struct device *dev)
{ {
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev); spin_lock_irq(&sa1100_rtc_lock);
RTSR = 0;
spin_unlock_irq(&sa1100_rtc_lock);
spin_lock_irq(&sa1100_rtc->lock); free_irq(IRQ_RTCAlrm, dev);
rtc_writel(sa1100_rtc, RTSR, 0); free_irq(IRQ_RTC1Hz, dev);
spin_unlock_irq(&sa1100_rtc->lock);
free_irq(sa1100_rtc->irq_Alrm, dev);
free_irq(sa1100_rtc->irq_1Hz, dev);
} }
static int sa1100_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) static int sa1100_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{ {
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev); spin_lock_irq(&sa1100_rtc_lock);
unsigned int rtsr;
spin_lock_irq(&sa1100_rtc->lock);
rtsr = rtc_readl(sa1100_rtc, RTSR);
if (enabled) if (enabled)
rtsr |= RTSR_ALE; RTSR |= RTSR_ALE;
else else
rtsr &= ~RTSR_ALE; RTSR &= ~RTSR_ALE;
rtc_writel(sa1100_rtc, RTSR, rtsr); spin_unlock_irq(&sa1100_rtc_lock);
spin_unlock_irq(&sa1100_rtc->lock);
return 0; return 0;
} }
static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm) static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
{ {
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev); rtc_time_to_tm(RCNR, tm);
rtc_time_to_tm(rtc_readl(sa1100_rtc, RCNR), tm);
return 0; return 0;
} }
static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm) static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
{ {
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
unsigned long time; unsigned long time;
int ret; int ret;
ret = rtc_tm_to_time(tm, &time); ret = rtc_tm_to_time(tm, &time);
if (ret == 0) if (ret == 0)
rtc_writel(sa1100_rtc, RCNR, time); RCNR = time;
return ret; return ret;
} }
static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{ {
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev); u32 rtsr;
unsigned long time;
unsigned int rtsr;
time = rtc_readl(sa1100_rtc, RCNR); memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
rtc_time_to_tm(time, &alrm->time); rtsr = RTSR;
rtsr = rtc_readl(sa1100_rtc, RTSR);
alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0; alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
alrm->pending = (rtsr & RTSR_AL) ? 1 : 0; alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
return 0; return 0;
...@@ -233,39 +200,31 @@ static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) ...@@ -233,39 +200,31 @@ static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{ {
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
struct rtc_time now_tm, alarm_tm; struct rtc_time now_tm, alarm_tm;
unsigned long time, alarm; int ret;
unsigned int rtsr;
spin_lock_irq(&sa1100_rtc->lock);
time = rtc_readl(sa1100_rtc, RCNR); spin_lock_irq(&sa1100_rtc_lock);
rtc_time_to_tm(time, &now_tm);
rtc_next_alarm_time(&alarm_tm, &now_tm, &alrm->time);
rtc_tm_to_time(&alarm_tm, &alarm);
rtc_writel(sa1100_rtc, RTAR, alarm);
rtsr = rtc_readl(sa1100_rtc, RTSR); now = RCNR;
rtc_time_to_tm(now, &now_tm);
rtc_next_alarm_time(&alarm_tm, &now_tm, alrm->time);
rtc_tm_to_time(&alarm_tm, &time);
RTAR = time;
if (alrm->enabled) if (alrm->enabled)
rtsr |= RTSR_ALE; RTSR |= RTSR_ALE;
else else
rtsr &= ~RTSR_ALE; RTSR &= ~RTSR_ALE;
rtc_writel(sa1100_rtc, RTSR, rtsr);
spin_unlock_irq(&sa1100_rtc->lock); spin_unlock_irq(&sa1100_rtc_lock);
return 0; return ret;
} }
static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq) static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
{ {
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev); seq_printf(seq, "trim/divider\t\t: 0x%08x\n", (u32) RTTR);
seq_printf(seq, "RTSR\t\t\t: 0x%08x\n", (u32)RTSR);
seq_printf(seq, "trim/divider\t\t: 0x%08x\n",
rtc_readl(sa1100_rtc, RTTR));
seq_printf(seq, "RTSR\t\t\t: 0x%08x\n",
rtc_readl(sa1100_rtc, RTSR));
return 0; return 0;
} }
...@@ -282,51 +241,7 @@ static const struct rtc_class_ops sa1100_rtc_ops = { ...@@ -282,51 +241,7 @@ static const struct rtc_class_ops sa1100_rtc_ops = {
static int sa1100_rtc_probe(struct platform_device *pdev) static int sa1100_rtc_probe(struct platform_device *pdev)
{ {
struct sa1100_rtc *sa1100_rtc; struct rtc_device *rtc;
unsigned int rttr;
int ret;
sa1100_rtc = kzalloc(sizeof(struct sa1100_rtc), GFP_KERNEL);
if (!sa1100_rtc)
return -ENOMEM;
spin_lock_init(&sa1100_rtc->lock);
platform_set_drvdata(pdev, sa1100_rtc);
ret = -ENXIO;
sa1100_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!sa1100_rtc->ress) {
dev_err(&pdev->dev, "No I/O memory resource defined\n");
goto err_ress;
}
sa1100_rtc->irq_1Hz = platform_get_irq(pdev, 0);
if (sa1100_rtc->irq_1Hz < 0) {
dev_err(&pdev->dev, "No 1Hz IRQ resource defined\n");
goto err_ress;
}
sa1100_rtc->irq_Alrm = platform_get_irq(pdev, 1);
if (sa1100_rtc->irq_Alrm < 0) {
dev_err(&pdev->dev, "No alarm IRQ resource defined\n");
goto err_ress;
}
ret = -ENOMEM;
sa1100_rtc->base = ioremap(sa1100_rtc->ress->start,
resource_size(sa1100_rtc->ress));
if (!sa1100_rtc->base) {
dev_err(&pdev->dev, "Unable to map pxa RTC I/O memory\n");
goto err_map;
}
sa1100_rtc->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(sa1100_rtc->clk)) {
dev_err(&pdev->dev, "failed to find rtc clock source\n");
ret = PTR_ERR(sa1100_rtc->clk);
goto err_clk;
}
clk_prepare(sa1100_rtc->clk);
clk_enable(sa1100_rtc->clk);
/* /*
* According to the manual we should be able to let RTTR be zero * According to the manual we should be able to let RTTR be zero
...@@ -335,24 +250,24 @@ static int sa1100_rtc_probe(struct platform_device *pdev) ...@@ -335,24 +250,24 @@ static int sa1100_rtc_probe(struct platform_device *pdev)
* If the clock divider is uninitialized then reset it to the * If the clock divider is uninitialized then reset it to the
* default value to get the 1Hz clock. * default value to get the 1Hz clock.
*/ */
if (rtc_readl(sa1100_rtc, RTTR) == 0) { if (RTTR == 0) {
rttr = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16); RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
rtc_writel(sa1100_rtc, RTTR, rttr); dev_warn(&pdev->dev, "warning: "
dev_warn(&pdev->dev, "warning: initializing default clock" "initializing default clock divider/trim value\n");
" divider/trim value\n");
/* The current RTC value probably doesn't make sense either */ /* The current RTC value probably doesn't make sense either */
rtc_writel(sa1100_rtc, RCNR, 0); RCNR = 0;
} }
device_init_wakeup(&pdev->dev, 1); device_init_wakeup(&pdev->dev, 1);
sa1100_rtc->rtc = rtc_device_register(pdev->name, &pdev->dev, rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
&sa1100_rtc_ops, THIS_MODULE); THIS_MODULE);
if (IS_ERR(sa1100_rtc->rtc)) {
dev_err(&pdev->dev, "Failed to register RTC device -> %d\n", if (IS_ERR(rtc))
ret); return PTR_ERR(rtc);
goto err_rtc_reg;
} platform_set_drvdata(pdev, rtc);
/* Fix for a nasty initialization problem the in SA11xx RTSR register. /* Fix for a nasty initialization problem the in SA11xx RTSR register.
* See also the comments in sa1100_rtc_interrupt(). * See also the comments in sa1100_rtc_interrupt().
* *
...@@ -375,46 +290,33 @@ static int sa1100_rtc_probe(struct platform_device *pdev) ...@@ -375,46 +290,33 @@ static int sa1100_rtc_probe(struct platform_device *pdev)
* *
* Notice that clearing bit 1 and 0 is accomplished by writting ONES to * Notice that clearing bit 1 and 0 is accomplished by writting ONES to
* the corresponding bits in RTSR. */ * the corresponding bits in RTSR. */
rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ)); RTSR = RTSR_AL | RTSR_HZ;
return 0; return 0;
err_rtc_reg:
err_clk:
iounmap(sa1100_rtc->base);
err_ress:
err_map:
kfree(sa1100_rtc);
return ret;
} }
static int sa1100_rtc_remove(struct platform_device *pdev) static int sa1100_rtc_remove(struct platform_device *pdev)
{ {
struct sa1100_rtc *sa1100_rtc = platform_get_drvdata(pdev); struct rtc_device *rtc = platform_get_drvdata(pdev);
if (rtc)
rtc_device_unregister(rtc);
rtc_device_unregister(sa1100_rtc->rtc);
clk_disable(sa1100_rtc->clk);
clk_unprepare(sa1100_rtc->clk);
iounmap(sa1100_rtc->base);
return 0; return 0;
} }
#ifdef CONFIG_PM #ifdef CONFIG_PM
static int sa1100_rtc_suspend(struct device *dev) static int sa1100_rtc_suspend(struct device *dev)
{ {
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev)) if (device_may_wakeup(dev))
enable_irq_wake(sa1100_rtc->irq_Alrm); enable_irq_wake(IRQ_RTCAlrm);
return 0; return 0;
} }
static int sa1100_rtc_resume(struct device *dev) static int sa1100_rtc_resume(struct device *dev)
{ {
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev)) if (device_may_wakeup(dev))
disable_irq_wake(sa1100_rtc->irq_Alrm); disable_irq_wake(IRQ_RTCAlrm);
return 0; return 0;
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册