提交 37c14794 编写于 作者: R Rafael J. Wysocki

Merge back earlier 'pm-cpufreq' material.

......@@ -128,7 +128,7 @@ Description: Discover cpuidle policy and mechanism
What: /sys/devices/system/cpu/cpu#/cpufreq/*
Date: pre-git history
Contact: cpufreq@vger.kernel.org
Contact: linux-pm@vger.kernel.org
Description: Discover and change clock speed of CPUs
Clock scaling allows you to change the clock speed of the
......@@ -146,7 +146,7 @@ Description: Discover and change clock speed of CPUs
What: /sys/devices/system/cpu/cpu#/cpufreq/freqdomain_cpus
Date: June 2013
Contact: cpufreq@vger.kernel.org
Contact: linux-pm@vger.kernel.org
Description: Discover CPUs in the same CPU frequency coordination domain
freqdomain_cpus is the list of CPUs (online+offline) that share
......
......@@ -20,6 +20,7 @@ Contents:
---------
1. CPUFreq core and interfaces
2. CPUFreq notifiers
3. CPUFreq Table Generation with Operating Performance Point (OPP)
1. General Information
=======================
......@@ -92,3 +93,31 @@ values:
cpu - number of the affected CPU
old - old frequency
new - new frequency
3. CPUFreq Table Generation with Operating Performance Point (OPP)
==================================================================
For details about OPP, see Documentation/power/opp.txt
dev_pm_opp_init_cpufreq_table - cpufreq framework typically is initialized with
cpufreq_frequency_table_cpuinfo which is provided with the list of
frequencies that are available for operation. This function provides
a ready to use conversion routine to translate the OPP layer's internal
information about the available frequencies into a format readily
providable to cpufreq.
WARNING: Do not use this function in interrupt context.
Example:
soc_pm_init()
{
/* Do things */
r = dev_pm_opp_init_cpufreq_table(dev, &freq_table);
if (!r)
cpufreq_frequency_table_cpuinfo(policy, freq_table);
/* Do other things */
}
NOTE: This function is available only if CONFIG_CPU_FREQ is enabled in
addition to CONFIG_PM_OPP.
dev_pm_opp_free_cpufreq_table - Free up the table allocated by dev_pm_opp_init_cpufreq_table
......@@ -228,3 +228,22 @@ is the corresponding frequency table helper for the ->target
stage. Just pass the values to this function, and the unsigned int
index returns the number of the frequency table entry which contains
the frequency the CPU shall be set to.
The following macros can be used as iterators over cpufreq_frequency_table:
cpufreq_for_each_entry(pos, table) - iterates over all entries of frequency
table.
cpufreq-for_each_valid_entry(pos, table) - iterates over all entries,
excluding CPUFREQ_ENTRY_INVALID frequencies.
Use arguments "pos" - a cpufreq_frequency_table * as a loop cursor and
"table" - the cpufreq_frequency_table * you want to iterate over.
For example:
struct cpufreq_frequency_table *pos, *driver_freq_table;
cpufreq_for_each_entry(pos, driver_freq_table) {
/* Do something with pos */
pos->frequency = ...
}
......@@ -35,8 +35,8 @@ Mailing List
------------
There is a CPU frequency changing CVS commit and general list where
you can report bugs, problems or submit patches. To post a message,
send an email to cpufreq@vger.kernel.org, to subscribe go to
http://vger.kernel.org/vger-lists.html#cpufreq and follow the
send an email to linux-pm@vger.kernel.org, to subscribe go to
http://vger.kernel.org/vger-lists.html#linux-pm and follow the
instructions there.
Links
......
......@@ -10,8 +10,7 @@ Contents
3. OPP Search Functions
4. OPP Availability Control Functions
5. OPP Data Retrieval Functions
6. Cpufreq Table Generation
7. Data Structures
6. Data Structures
1. Introduction
===============
......@@ -72,7 +71,6 @@ operations until that OPP could be re-enabled if possible.
OPP library facilitates this concept in it's implementation. The following
operational functions operate only on available opps:
opp_find_freq_{ceil, floor}, dev_pm_opp_get_voltage, dev_pm_opp_get_freq, dev_pm_opp_get_opp_count
and dev_pm_opp_init_cpufreq_table
dev_pm_opp_find_freq_exact is meant to be used to find the opp pointer which can then
be used for dev_pm_opp_enable/disable functions to make an opp available as required.
......@@ -96,10 +94,9 @@ using RCU read locks. The opp_find_freq_{exact,ceil,floor},
opp_get_{voltage, freq, opp_count} fall into this category.
opp_{add,enable,disable} are updaters which use mutex and implement it's own
RCU locking mechanisms. dev_pm_opp_init_cpufreq_table acts as an updater and uses
mutex to implment RCU updater strategy. These functions should *NOT* be called
under RCU locks and other contexts that prevent blocking functions in RCU or
mutex operations from working.
RCU locking mechanisms. These functions should *NOT* be called under RCU locks
and other contexts that prevent blocking functions in RCU or mutex operations
from working.
2. Initial OPP List Registration
================================
......@@ -311,34 +308,7 @@ dev_pm_opp_get_opp_count - Retrieve the number of available opps for a device
/* Do other things */
}
6. Cpufreq Table Generation
===========================
dev_pm_opp_init_cpufreq_table - cpufreq framework typically is initialized with
cpufreq_frequency_table_cpuinfo which is provided with the list of
frequencies that are available for operation. This function provides
a ready to use conversion routine to translate the OPP layer's internal
information about the available frequencies into a format readily
providable to cpufreq.
WARNING: Do not use this function in interrupt context.
Example:
soc_pm_init()
{
/* Do things */
r = dev_pm_opp_init_cpufreq_table(dev, &freq_table);
if (!r)
cpufreq_frequency_table_cpuinfo(policy, freq_table);
/* Do other things */
}
NOTE: This function is available only if CONFIG_CPU_FREQ is enabled in
addition to CONFIG_PM as power management feature is required to
dynamically scale voltage and frequency in a system.
dev_pm_opp_free_cpufreq_table - Free up the table allocated by dev_pm_opp_init_cpufreq_table
7. Data Structures
6. Data Structures
==================
Typically an SoC contains multiple voltage domains which are variable. Each
domain is represented by a device pointer. The relationship to OPP can be
......
......@@ -2415,7 +2415,6 @@ F: drivers/net/ethernet/ti/cpmac.c
CPU FREQUENCY DRIVERS
M: Rafael J. Wysocki <rjw@rjwysocki.net>
M: Viresh Kumar <viresh.kumar@linaro.org>
L: cpufreq@vger.kernel.org
L: linux-pm@vger.kernel.org
S: Maintained
T: git git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm.git
......@@ -2426,7 +2425,6 @@ F: include/linux/cpufreq.h
CPU FREQUENCY DRIVERS - ARM BIG LITTLE
M: Viresh Kumar <viresh.kumar@linaro.org>
M: Sudeep Holla <sudeep.holla@arm.com>
L: cpufreq@vger.kernel.org
L: linux-pm@vger.kernel.org
W: http://www.arm.com/products/processors/technologies/biglittleprocessing.php
S: Maintained
......
......@@ -1092,20 +1092,21 @@ int da850_register_cpufreq(char *async_clk)
static int da850_round_armrate(struct clk *clk, unsigned long rate)
{
int i, ret = 0, diff;
int ret = 0, diff;
unsigned int best = (unsigned int) -1;
struct cpufreq_frequency_table *table = cpufreq_info.freq_table;
struct cpufreq_frequency_table *pos;
rate /= 1000; /* convert to kHz */
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
diff = table[i].frequency - rate;
cpufreq_for_each_entry(pos, table) {
diff = pos->frequency - rate;
if (diff < 0)
diff = -diff;
if (diff < best) {
best = diff;
ret = table[i].frequency;
ret = pos->frequency;
}
}
......
......@@ -91,9 +91,9 @@ EXPORT_SYMBOL(clk_put);
int clk_set_rate(struct clk *clk, unsigned long rate)
{
struct cpufreq_frequency_table *pos;
int ret = 0;
int regval;
int i;
if (likely(clk->ops && clk->ops->set_rate)) {
unsigned long flags;
......@@ -106,22 +106,16 @@ int clk_set_rate(struct clk *clk, unsigned long rate)
if (unlikely(clk->flags & CLK_RATE_PROPAGATES))
propagate_rate(clk);
for (i = 0; loongson2_clockmod_table[i].frequency != CPUFREQ_TABLE_END;
i++) {
if (loongson2_clockmod_table[i].frequency ==
CPUFREQ_ENTRY_INVALID)
continue;
if (rate == loongson2_clockmod_table[i].frequency)
cpufreq_for_each_valid_entry(pos, loongson2_clockmod_table)
if (rate == pos->frequency)
break;
}
if (rate != loongson2_clockmod_table[i].frequency)
if (rate != pos->frequency)
return -ENOTSUPP;
clk->rate = rate;
regval = LOONGSON_CHIPCFG0;
regval = (regval & ~0x7) |
(loongson2_clockmod_table[i].driver_data - 1);
regval = (regval & ~0x7) | (pos->driver_data - 1);
LOONGSON_CHIPCFG0 = regval;
return ret;
......
......@@ -15,7 +15,6 @@
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/rculist.h>
......@@ -596,96 +595,6 @@ int dev_pm_opp_disable(struct device *dev, unsigned long freq)
}
EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
#ifdef CONFIG_CPU_FREQ
/**
* dev_pm_opp_init_cpufreq_table() - create a cpufreq table for a device
* @dev: device for which we do this operation
* @table: Cpufreq table returned back to caller
*
* Generate a cpufreq table for a provided device- this assumes that the
* opp list is already initialized and ready for usage.
*
* This function allocates required memory for the cpufreq table. It is
* expected that the caller does the required maintenance such as freeing
* the table as required.
*
* Returns -EINVAL for bad pointers, -ENODEV if the device is not found, -ENOMEM
* if no memory available for the operation (table is not populated), returns 0
* if successful and table is populated.
*
* WARNING: It is important for the callers to ensure refreshing their copy of
* the table if any of the mentioned functions have been invoked in the interim.
*
* Locking: The internal device_opp and opp structures are RCU protected.
* To simplify the logic, we pretend we are updater and hold relevant mutex here
* Callers should ensure that this function is *NOT* called under RCU protection
* or in contexts where mutex locking cannot be used.
*/
int dev_pm_opp_init_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table)
{
struct device_opp *dev_opp;
struct dev_pm_opp *opp;
struct cpufreq_frequency_table *freq_table;
int i = 0;
/* Pretend as if I am an updater */
mutex_lock(&dev_opp_list_lock);
dev_opp = find_device_opp(dev);
if (IS_ERR(dev_opp)) {
int r = PTR_ERR(dev_opp);
mutex_unlock(&dev_opp_list_lock);
dev_err(dev, "%s: Device OPP not found (%d)\n", __func__, r);
return r;
}
freq_table = kzalloc(sizeof(struct cpufreq_frequency_table) *
(dev_pm_opp_get_opp_count(dev) + 1), GFP_KERNEL);
if (!freq_table) {
mutex_unlock(&dev_opp_list_lock);
dev_warn(dev, "%s: Unable to allocate frequency table\n",
__func__);
return -ENOMEM;
}
list_for_each_entry(opp, &dev_opp->opp_list, node) {
if (opp->available) {
freq_table[i].driver_data = i;
freq_table[i].frequency = opp->rate / 1000;
i++;
}
}
mutex_unlock(&dev_opp_list_lock);
freq_table[i].driver_data = i;
freq_table[i].frequency = CPUFREQ_TABLE_END;
*table = &freq_table[0];
return 0;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_init_cpufreq_table);
/**
* dev_pm_opp_free_cpufreq_table() - free the cpufreq table
* @dev: device for which we do this operation
* @table: table to free
*
* Free up the table allocated by dev_pm_opp_init_cpufreq_table
*/
void dev_pm_opp_free_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table)
{
if (!table)
return;
kfree(*table);
*table = NULL;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_free_cpufreq_table);
#endif /* CONFIG_CPU_FREQ */
/**
* dev_pm_opp_get_notifier() - find notifier_head of the device with opp
* @dev: device pointer used to lookup device OPPs.
......
......@@ -85,7 +85,7 @@ config ARM_EXYNOS_CPU_FREQ_BOOST_SW
It allows usage of special frequencies for Samsung Exynos
processors if thermal conditions are appropriate.
It reguires, for safe operation, thermal framework with properly
It requires, for safe operation, thermal framework with properly
defined trip points.
If in doubt, say N.
......@@ -186,7 +186,7 @@ config ARM_S3C2416_CPUFREQ
S3C2450 SoC. The S3C2416 supports changing the rate of the
armdiv clock source and also entering a so called dynamic
voltage scaling mode in which it is possible to reduce the
core voltage of the cpu.
core voltage of the CPU.
If in doubt, say N.
......
......@@ -10,7 +10,7 @@ config X86_INTEL_PSTATE
The driver implements an internal governor and will become
the scaling driver and governor for Sandy bridge processors.
When this driver is enabled it will become the perferred
When this driver is enabled it will become the preferred
scaling driver for Sandy bridge processors.
If in doubt, say N.
......@@ -52,7 +52,7 @@ config X86_ACPI_CPUFREQ_CPB
help
The powernow-k8 driver used to provide a sysfs knob called "cpb"
to disable the Core Performance Boosting feature of AMD CPUs. This
file has now been superseeded by the more generic "boost" entry.
file has now been superseded by the more generic "boost" entry.
By enabling this option the acpi_cpufreq driver provides the old
entry in addition to the new boost ones, for compatibility reasons.
......
# CPUfreq core
obj-$(CONFIG_CPU_FREQ) += cpufreq.o freq_table.o
obj-$(CONFIG_PM_OPP) += cpufreq_opp.o
# CPUfreq stats
obj-$(CONFIG_CPU_FREQ_STAT) += cpufreq_stats.o
......
......@@ -213,7 +213,7 @@ static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
{
int i;
struct cpufreq_frequency_table *pos;
struct acpi_processor_performance *perf;
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
......@@ -223,10 +223,9 @@ static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
perf = data->acpi_data;
for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
if (msr == perf->states[data->freq_table[i].driver_data].status)
return data->freq_table[i].frequency;
}
cpufreq_for_each_entry(pos, data->freq_table)
if (msr == perf->states[pos->driver_data].status)
return pos->frequency;
return data->freq_table[0].frequency;
}
......
......@@ -226,22 +226,22 @@ static inline u32 get_table_count(struct cpufreq_frequency_table *table)
/* get the minimum frequency in the cpufreq_frequency_table */
static inline u32 get_table_min(struct cpufreq_frequency_table *table)
{
int i;
struct cpufreq_frequency_table *pos;
uint32_t min_freq = ~0;
for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++)
if (table[i].frequency < min_freq)
min_freq = table[i].frequency;
cpufreq_for_each_entry(pos, table)
if (pos->frequency < min_freq)
min_freq = pos->frequency;
return min_freq;
}
/* get the maximum frequency in the cpufreq_frequency_table */
static inline u32 get_table_max(struct cpufreq_frequency_table *table)
{
int i;
struct cpufreq_frequency_table *pos;
uint32_t max_freq = 0;
for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++)
if (table[i].frequency > max_freq)
max_freq = table[i].frequency;
cpufreq_for_each_entry(pos, table)
if (pos->frequency > max_freq)
max_freq = pos->frequency;
return max_freq;
}
......
......@@ -237,6 +237,17 @@ void cpufreq_cpu_put(struct cpufreq_policy *policy)
}
EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
bool cpufreq_next_valid(struct cpufreq_frequency_table **pos)
{
while ((*pos)->frequency != CPUFREQ_TABLE_END)
if ((*pos)->frequency != CPUFREQ_ENTRY_INVALID)
return true;
else
(*pos)++;
return false;
}
EXPORT_SYMBOL_GPL(cpufreq_next_valid);
/*********************************************************************
* EXTERNALLY AFFECTING FREQUENCY CHANGES *
*********************************************************************/
......@@ -354,6 +365,18 @@ static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
struct cpufreq_freqs *freqs)
{
/*
* Catch double invocations of _begin() which lead to self-deadlock.
* ASYNC_NOTIFICATION drivers are left out because the cpufreq core
* doesn't invoke _begin() on their behalf, and hence the chances of
* double invocations are very low. Moreover, there are scenarios
* where these checks can emit false-positive warnings in these
* drivers; so we avoid that by skipping them altogether.
*/
WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
&& current == policy->transition_task);
wait:
wait_event(policy->transition_wait, !policy->transition_ongoing);
......@@ -365,6 +388,7 @@ void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
}
policy->transition_ongoing = true;
policy->transition_task = current;
spin_unlock(&policy->transition_lock);
......@@ -381,6 +405,7 @@ void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
cpufreq_notify_post_transition(policy, freqs, transition_failed);
policy->transition_ongoing = false;
policy->transition_task = NULL;
wake_up(&policy->transition_wait);
}
......
/*
* Generic OPP helper interface for CPUFreq drivers
*
* Copyright (C) 2009-2014 Texas Instruments Incorporated.
* Nishanth Menon
* Romit Dasgupta
* Kevin Hilman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/pm_opp.h>
#include <linux/rcupdate.h>
#include <linux/slab.h>
/**
* dev_pm_opp_init_cpufreq_table() - create a cpufreq table for a device
* @dev: device for which we do this operation
* @table: Cpufreq table returned back to caller
*
* Generate a cpufreq table for a provided device- this assumes that the
* opp list is already initialized and ready for usage.
*
* This function allocates required memory for the cpufreq table. It is
* expected that the caller does the required maintenance such as freeing
* the table as required.
*
* Returns -EINVAL for bad pointers, -ENODEV if the device is not found, -ENOMEM
* if no memory available for the operation (table is not populated), returns 0
* if successful and table is populated.
*
* WARNING: It is important for the callers to ensure refreshing their copy of
* the table if any of the mentioned functions have been invoked in the interim.
*
* Locking: The internal device_opp and opp structures are RCU protected.
* Since we just use the regular accessor functions to access the internal data
* structures, we use RCU read lock inside this function. As a result, users of
* this function DONOT need to use explicit locks for invoking.
*/
int dev_pm_opp_init_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table)
{
struct dev_pm_opp *opp;
struct cpufreq_frequency_table *freq_table = NULL;
int i, max_opps, ret = 0;
unsigned long rate;
rcu_read_lock();
max_opps = dev_pm_opp_get_opp_count(dev);
if (max_opps <= 0) {
ret = max_opps ? max_opps : -ENODATA;
goto out;
}
freq_table = kzalloc(sizeof(*freq_table) * (max_opps + 1), GFP_KERNEL);
if (!freq_table) {
ret = -ENOMEM;
goto out;
}
for (i = 0, rate = 0; i < max_opps; i++, rate++) {
/* find next rate */
opp = dev_pm_opp_find_freq_ceil(dev, &rate);
if (IS_ERR(opp)) {
ret = PTR_ERR(opp);
goto out;
}
freq_table[i].driver_data = i;
freq_table[i].frequency = rate / 1000;
}
freq_table[i].driver_data = i;
freq_table[i].frequency = CPUFREQ_TABLE_END;
*table = &freq_table[0];
out:
rcu_read_unlock();
if (ret)
kfree(freq_table);
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_init_cpufreq_table);
/**
* dev_pm_opp_free_cpufreq_table() - free the cpufreq table
* @dev: device for which we do this operation
* @table: table to free
*
* Free up the table allocated by dev_pm_opp_init_cpufreq_table
*/
void dev_pm_opp_free_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table)
{
if (!table)
return;
kfree(*table);
*table = NULL;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_free_cpufreq_table);
......@@ -182,11 +182,11 @@ static void cpufreq_stats_free_table(unsigned int cpu)
static int __cpufreq_stats_create_table(struct cpufreq_policy *policy)
{
unsigned int i, j, count = 0, ret = 0;
unsigned int i, count = 0, ret = 0;
struct cpufreq_stats *stat;
unsigned int alloc_size;
unsigned int cpu = policy->cpu;
struct cpufreq_frequency_table *table;
struct cpufreq_frequency_table *pos, *table;
table = cpufreq_frequency_get_table(cpu);
if (unlikely(!table))
......@@ -205,12 +205,8 @@ static int __cpufreq_stats_create_table(struct cpufreq_policy *policy)
stat->cpu = cpu;
per_cpu(cpufreq_stats_table, cpu) = stat;
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
unsigned int freq = table[i].frequency;
if (freq == CPUFREQ_ENTRY_INVALID)
continue;
cpufreq_for_each_valid_entry(pos, table)
count++;
}
alloc_size = count * sizeof(int) + count * sizeof(u64);
......@@ -228,15 +224,11 @@ static int __cpufreq_stats_create_table(struct cpufreq_policy *policy)
#ifdef CONFIG_CPU_FREQ_STAT_DETAILS
stat->trans_table = stat->freq_table + count;
#endif
j = 0;
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
unsigned int freq = table[i].frequency;
if (freq == CPUFREQ_ENTRY_INVALID)
continue;
if (freq_table_get_index(stat, freq) == -1)
stat->freq_table[j++] = freq;
}
stat->state_num = j;
i = 0;
cpufreq_for_each_valid_entry(pos, table)
if (freq_table_get_index(stat, pos->frequency) == -1)
stat->freq_table[i++] = pos->frequency;
stat->state_num = i;
spin_lock(&cpufreq_stats_lock);
stat->last_time = get_jiffies_64();
stat->last_index = freq_table_get_index(stat, policy->cur);
......
......@@ -45,7 +45,7 @@ static struct cpufreq_driver dbx500_cpufreq_driver = {
static int dbx500_cpufreq_probe(struct platform_device *pdev)
{
int i = 0;
struct cpufreq_frequency_table *pos;
freq_table = dev_get_platdata(&pdev->dev);
if (!freq_table) {
......@@ -60,10 +60,8 @@ static int dbx500_cpufreq_probe(struct platform_device *pdev)
}
pr_info("dbx500-cpufreq: Available frequencies:\n");
while (freq_table[i].frequency != CPUFREQ_TABLE_END) {
pr_info(" %d Mhz\n", freq_table[i].frequency/1000);
i++;
}
cpufreq_for_each_entry(pos, freq_table)
pr_info(" %d Mhz\n", pos->frequency / 1000);
return cpufreq_register_driver(&dbx500_cpufreq_driver);
}
......
......@@ -147,7 +147,7 @@ static int elanfreq_target(struct cpufreq_policy *policy,
static int elanfreq_cpu_init(struct cpufreq_policy *policy)
{
struct cpuinfo_x86 *c = &cpu_data(0);
unsigned int i;
struct cpufreq_frequency_table *pos;
/* capability check */
if ((c->x86_vendor != X86_VENDOR_AMD) ||
......@@ -159,10 +159,9 @@ static int elanfreq_cpu_init(struct cpufreq_policy *policy)
max_freq = elanfreq_get_cpu_frequency(0);
/* table init */
for (i = 0; (elanfreq_table[i].frequency != CPUFREQ_TABLE_END); i++) {
if (elanfreq_table[i].frequency > max_freq)
elanfreq_table[i].frequency = CPUFREQ_ENTRY_INVALID;
}
cpufreq_for_each_entry(pos, elanfreq_table)
if (pos->frequency > max_freq)
pos->frequency = CPUFREQ_ENTRY_INVALID;
/* cpuinfo and default policy values */
policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
......
......@@ -29,17 +29,16 @@ static unsigned int locking_frequency;
static int exynos_cpufreq_get_index(unsigned int freq)
{
struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
int index;
struct cpufreq_frequency_table *pos;
for (index = 0;
freq_table[index].frequency != CPUFREQ_TABLE_END; index++)
if (freq_table[index].frequency == freq)
cpufreq_for_each_entry(pos, freq_table)
if (pos->frequency == freq)
break;
if (freq_table[index].frequency == CPUFREQ_TABLE_END)
if (pos->frequency == CPUFREQ_TABLE_END)
return -EINVAL;
return index;
return pos - freq_table;
}
static int exynos_cpufreq_scale(unsigned int target_freq)
......@@ -49,6 +48,7 @@ static int exynos_cpufreq_scale(unsigned int target_freq)
struct cpufreq_policy *policy = cpufreq_cpu_get(0);
unsigned int arm_volt, safe_arm_volt = 0;
unsigned int mpll_freq_khz = exynos_info->mpll_freq_khz;
struct device *dev = exynos_info->dev;
unsigned int old_freq;
int index, old_index;
int ret = 0;
......@@ -90,8 +90,8 @@ static int exynos_cpufreq_scale(unsigned int target_freq)
/* Firstly, voltage up to increase frequency */
ret = regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
if (ret) {
pr_err("%s: failed to set cpu voltage to %d\n",
__func__, arm_volt);
dev_err(dev, "failed to set cpu voltage to %d\n",
arm_volt);
return ret;
}
}
......@@ -100,8 +100,8 @@ static int exynos_cpufreq_scale(unsigned int target_freq)
ret = regulator_set_voltage(arm_regulator, safe_arm_volt,
safe_arm_volt);
if (ret) {
pr_err("%s: failed to set cpu voltage to %d\n",
__func__, safe_arm_volt);
dev_err(dev, "failed to set cpu voltage to %d\n",
safe_arm_volt);
return ret;
}
}
......@@ -115,8 +115,8 @@ static int exynos_cpufreq_scale(unsigned int target_freq)
ret = regulator_set_voltage(arm_regulator, arm_volt,
arm_volt);
if (ret) {
pr_err("%s: failed to set cpu voltage to %d\n",
__func__, arm_volt);
dev_err(dev, "failed to set cpu voltage to %d\n",
arm_volt);
goto out;
}
}
......@@ -163,6 +163,8 @@ static int exynos_cpufreq_probe(struct platform_device *pdev)
if (!exynos_info)
return -ENOMEM;
exynos_info->dev = &pdev->dev;
if (soc_is_exynos4210())
ret = exynos4210_cpufreq_init(exynos_info);
else if (soc_is_exynos4212() || soc_is_exynos4412())
......@@ -176,13 +178,13 @@ static int exynos_cpufreq_probe(struct platform_device *pdev)
goto err_vdd_arm;
if (exynos_info->set_freq == NULL) {
pr_err("%s: No set_freq function (ERR)\n", __func__);
dev_err(&pdev->dev, "No set_freq function (ERR)\n");
goto err_vdd_arm;
}
arm_regulator = regulator_get(NULL, "vdd_arm");
if (IS_ERR(arm_regulator)) {
pr_err("%s: failed to get resource vdd_arm\n", __func__);
dev_err(&pdev->dev, "failed to get resource vdd_arm\n");
goto err_vdd_arm;
}
......@@ -192,7 +194,7 @@ static int exynos_cpufreq_probe(struct platform_device *pdev)
if (!cpufreq_register_driver(&exynos_driver))
return 0;
pr_err("%s: failed to register cpufreq driver\n", __func__);
dev_err(&pdev->dev, "failed to register cpufreq driver\n");
regulator_put(arm_regulator);
err_vdd_arm:
kfree(exynos_info);
......
......@@ -34,6 +34,7 @@ struct apll_freq {
};
struct exynos_dvfs_info {
struct device *dev;
unsigned long mpll_freq_khz;
unsigned int pll_safe_idx;
struct clk *cpu_clk;
......
......@@ -114,25 +114,23 @@ static struct cpufreq_freqs freqs;
static int init_div_table(void)
{
struct cpufreq_frequency_table *freq_tbl = dvfs_info->freq_table;
struct cpufreq_frequency_table *pos, *freq_tbl = dvfs_info->freq_table;
unsigned int tmp, clk_div, ema_div, freq, volt_id;
int i = 0;
struct dev_pm_opp *opp;
rcu_read_lock();
for (i = 0; freq_tbl[i].frequency != CPUFREQ_TABLE_END; i++) {
cpufreq_for_each_entry(pos, freq_tbl) {
opp = dev_pm_opp_find_freq_exact(dvfs_info->dev,
freq_tbl[i].frequency * 1000, true);
pos->frequency * 1000, true);
if (IS_ERR(opp)) {
rcu_read_unlock();
dev_err(dvfs_info->dev,
"failed to find valid OPP for %u KHZ\n",
freq_tbl[i].frequency);
pos->frequency);
return PTR_ERR(opp);
}
freq = freq_tbl[i].frequency / 1000; /* In MHZ */
freq = pos->frequency / 1000; /* In MHZ */
clk_div = ((freq / CPU_DIV_FREQ_MAX) & P0_7_CPUCLKDEV_MASK)
<< P0_7_CPUCLKDEV_SHIFT;
clk_div |= ((freq / CPU_ATB_FREQ_MAX) & P0_7_ATBCLKDEV_MASK)
......@@ -157,7 +155,8 @@ static int init_div_table(void)
tmp = (clk_div | ema_div | (volt_id << P0_7_VDD_SHIFT)
| ((freq / FREQ_UNIT) << P0_7_FREQ_SHIFT));
__raw_writel(tmp, dvfs_info->base + XMU_PMU_P0_7 + 4 * i);
__raw_writel(tmp, dvfs_info->base + XMU_PMU_P0_7 + 4 *
(pos - freq_tbl));
}
rcu_read_unlock();
......@@ -166,8 +165,9 @@ static int init_div_table(void)
static void exynos_enable_dvfs(unsigned int cur_frequency)
{
unsigned int tmp, i, cpu;
unsigned int tmp, cpu;
struct cpufreq_frequency_table *freq_table = dvfs_info->freq_table;
struct cpufreq_frequency_table *pos;
/* Disable DVFS */
__raw_writel(0, dvfs_info->base + XMU_DVFS_CTRL);
......@@ -182,15 +182,15 @@ static void exynos_enable_dvfs(unsigned int cur_frequency)
__raw_writel(tmp, dvfs_info->base + XMU_PMUIRQEN);
/* Set initial performance index */
for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++)
if (freq_table[i].frequency == cur_frequency)
cpufreq_for_each_entry(pos, freq_table)
if (pos->frequency == cur_frequency)
break;
if (freq_table[i].frequency == CPUFREQ_TABLE_END) {
if (pos->frequency == CPUFREQ_TABLE_END) {
dev_crit(dvfs_info->dev, "Boot up frequency not supported\n");
/* Assign the highest frequency */
i = 0;
cur_frequency = freq_table[i].frequency;
pos = freq_table;
cur_frequency = pos->frequency;
}
dev_info(dvfs_info->dev, "Setting dvfs initial frequency = %uKHZ",
......@@ -199,7 +199,7 @@ static void exynos_enable_dvfs(unsigned int cur_frequency)
for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) {
tmp = __raw_readl(dvfs_info->base + XMU_C0_3_PSTATE + cpu * 4);
tmp &= ~(P_VALUE_MASK << C0_3_PSTATE_NEW_SHIFT);
tmp |= (i << C0_3_PSTATE_NEW_SHIFT);
tmp |= ((pos - freq_table) << C0_3_PSTATE_NEW_SHIFT);
__raw_writel(tmp, dvfs_info->base + XMU_C0_3_PSTATE + cpu * 4);
}
......
......@@ -21,22 +21,19 @@
int cpufreq_frequency_table_cpuinfo(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *table)
{
struct cpufreq_frequency_table *pos;
unsigned int min_freq = ~0;
unsigned int max_freq = 0;
unsigned int i;
unsigned int freq;
for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++) {
unsigned int freq = table[i].frequency;
if (freq == CPUFREQ_ENTRY_INVALID) {
pr_debug("table entry %u is invalid, skipping\n", i);
cpufreq_for_each_valid_entry(pos, table) {
freq = pos->frequency;
continue;
}
if (!cpufreq_boost_enabled()
&& (table[i].flags & CPUFREQ_BOOST_FREQ))
&& (pos->flags & CPUFREQ_BOOST_FREQ))
continue;
pr_debug("table entry %u: %u kHz\n", i, freq);
pr_debug("table entry %u: %u kHz\n", (int)(pos - table), freq);
if (freq < min_freq)
min_freq = freq;
if (freq > max_freq)
......@@ -57,7 +54,8 @@ EXPORT_SYMBOL_GPL(cpufreq_frequency_table_cpuinfo);
int cpufreq_frequency_table_verify(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *table)
{
unsigned int next_larger = ~0, freq, i = 0;
struct cpufreq_frequency_table *pos;
unsigned int freq, next_larger = ~0;
bool found = false;
pr_debug("request for verification of policy (%u - %u kHz) for cpu %u\n",
......@@ -65,9 +63,9 @@ int cpufreq_frequency_table_verify(struct cpufreq_policy *policy,
cpufreq_verify_within_cpu_limits(policy);
for (; freq = table[i].frequency, freq != CPUFREQ_TABLE_END; i++) {
if (freq == CPUFREQ_ENTRY_INVALID)
continue;
cpufreq_for_each_valid_entry(pos, table) {
freq = pos->frequency;
if ((freq >= policy->min) && (freq <= policy->max)) {
found = true;
break;
......@@ -118,7 +116,8 @@ int cpufreq_frequency_table_target(struct cpufreq_policy *policy,
.driver_data = ~0,
.frequency = 0,
};
unsigned int i;
struct cpufreq_frequency_table *pos;
unsigned int freq, i = 0;
pr_debug("request for target %u kHz (relation: %u) for cpu %u\n",
target_freq, relation, policy->cpu);
......@@ -132,10 +131,10 @@ int cpufreq_frequency_table_target(struct cpufreq_policy *policy,
break;
}
for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++) {
unsigned int freq = table[i].frequency;
if (freq == CPUFREQ_ENTRY_INVALID)
continue;
cpufreq_for_each_valid_entry(pos, table) {
freq = pos->frequency;
i = pos - table;
if ((freq < policy->min) || (freq > policy->max))
continue;
switch (relation) {
......@@ -184,8 +183,7 @@ EXPORT_SYMBOL_GPL(cpufreq_frequency_table_target);
int cpufreq_frequency_table_get_index(struct cpufreq_policy *policy,
unsigned int freq)
{
struct cpufreq_frequency_table *table;
int i;
struct cpufreq_frequency_table *pos, *table;
table = cpufreq_frequency_get_table(policy->cpu);
if (unlikely(!table)) {
......@@ -193,10 +191,9 @@ int cpufreq_frequency_table_get_index(struct cpufreq_policy *policy,
return -ENOENT;
}
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
if (table[i].frequency == freq)
return i;
}
cpufreq_for_each_valid_entry(pos, table)
if (pos->frequency == freq)
return pos - table;
return -EINVAL;
}
......@@ -208,16 +205,13 @@ EXPORT_SYMBOL_GPL(cpufreq_frequency_table_get_index);
static ssize_t show_available_freqs(struct cpufreq_policy *policy, char *buf,
bool show_boost)
{
unsigned int i = 0;
ssize_t count = 0;
struct cpufreq_frequency_table *table = policy->freq_table;
struct cpufreq_frequency_table *pos, *table = policy->freq_table;
if (!table)
return -ENODEV;
for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++) {
if (table[i].frequency == CPUFREQ_ENTRY_INVALID)
continue;
cpufreq_for_each_valid_entry(pos, table) {
/*
* show_boost = true and driver_data = BOOST freq
* display BOOST freqs
......@@ -229,10 +223,10 @@ static ssize_t show_available_freqs(struct cpufreq_policy *policy, char *buf,
* show_boost = false and driver_data != BOOST freq
* display NON BOOST freqs
*/
if (show_boost ^ (table[i].flags & CPUFREQ_BOOST_FREQ))
if (show_boost ^ (pos->flags & CPUFREQ_BOOST_FREQ))
continue;
count += sprintf(&buf[count], "%d ", table[i].frequency);
count += sprintf(&buf[count], "%d ", pos->frequency);
}
count += sprintf(&buf[count], "\n");
......
......@@ -32,8 +32,6 @@
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
#define SAMPLE_COUNT 3
#define BYT_RATIOS 0x66a
#define BYT_VIDS 0x66b
#define BYT_TURBO_RATIOS 0x66c
......@@ -553,14 +551,13 @@ static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
}
static inline void intel_pstate_calc_busy(struct cpudata *cpu,
struct sample *sample)
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
{
struct sample *sample = &cpu->sample;
int32_t core_pct;
int32_t c0_pct;
core_pct = div_fp(int_tofp((sample->aperf)),
int_tofp((sample->mperf)));
core_pct = div_fp(int_tofp(sample->aperf), int_tofp(sample->mperf));
core_pct = mul_fp(core_pct, int_tofp(100));
FP_ROUNDUP(core_pct);
......@@ -592,7 +589,7 @@ static inline void intel_pstate_sample(struct cpudata *cpu)
cpu->sample.mperf -= cpu->prev_mperf;
cpu->sample.tsc -= cpu->prev_tsc;
intel_pstate_calc_busy(cpu, &cpu->sample);
intel_pstate_calc_busy(cpu);
cpu->prev_aperf = aperf;
cpu->prev_mperf = mperf;
......
......@@ -530,6 +530,7 @@ static int longhaul_get_ranges(void)
static void longhaul_setup_voltagescaling(void)
{
struct cpufreq_frequency_table *freq_pos;
union msr_longhaul longhaul;
struct mV_pos minvid, maxvid, vid;
unsigned int j, speed, pos, kHz_step, numvscales;
......@@ -608,18 +609,16 @@ static void longhaul_setup_voltagescaling(void)
/* Calculate kHz for one voltage step */
kHz_step = (highest_speed - min_vid_speed) / numvscales;
j = 0;
while (longhaul_table[j].frequency != CPUFREQ_TABLE_END) {
speed = longhaul_table[j].frequency;
cpufreq_for_each_entry(freq_pos, longhaul_table) {
speed = freq_pos->frequency;
if (speed > min_vid_speed)
pos = (speed - min_vid_speed) / kHz_step + minvid.pos;
else
pos = minvid.pos;
longhaul_table[j].driver_data |= mV_vrm_table[pos] << 8;
freq_pos->driver_data |= mV_vrm_table[pos] << 8;
vid = vrm_mV_table[mV_vrm_table[pos]];
printk(KERN_INFO PFX "f: %d kHz, index: %d, vid: %d mV\n",
speed, j, vid.mV);
j++;
speed, (int)(freq_pos - longhaul_table), vid.mV);
}
can_scale_voltage = 1;
......
......@@ -136,9 +136,10 @@ void restore_astate(int cpu)
static int pas_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
struct cpufreq_frequency_table *pos;
const u32 *max_freqp;
u32 max_freq;
int i, cur_astate;
int cur_astate;
struct resource res;
struct device_node *cpu, *dn;
int err = -ENODEV;
......@@ -197,10 +198,9 @@ static int pas_cpufreq_cpu_init(struct cpufreq_policy *policy)
pr_debug("initializing frequency table\n");
/* initialize frequency table */
for (i=0; pas_freqs[i].frequency!=CPUFREQ_TABLE_END; i++) {
pas_freqs[i].frequency =
get_astate_freq(pas_freqs[i].driver_data) * 100000;
pr_debug("%d: %d\n", i, pas_freqs[i].frequency);
cpufreq_for_each_entry(pos, pas_freqs) {
pos->frequency = get_astate_freq(pos->driver_data) * 100000;
pr_debug("%d: %d\n", (int)(pos - pas_freqs), pos->frequency);
}
cur_astate = get_cur_astate(policy->cpu);
......
......@@ -151,6 +151,7 @@ static int powernow_k6_target(struct cpufreq_policy *policy,
static int powernow_k6_cpu_init(struct cpufreq_policy *policy)
{
struct cpufreq_frequency_table *pos;
unsigned int i, f;
unsigned khz;
......@@ -168,12 +169,11 @@ static int powernow_k6_cpu_init(struct cpufreq_policy *policy)
}
}
if (param_max_multiplier) {
for (i = 0; (clock_ratio[i].frequency != CPUFREQ_TABLE_END); i++) {
if (clock_ratio[i].driver_data == param_max_multiplier) {
cpufreq_for_each_entry(pos, clock_ratio)
if (pos->driver_data == param_max_multiplier) {
max_multiplier = param_max_multiplier;
goto have_max_multiplier;
}
}
printk(KERN_ERR "powernow-k6: invalid max_multiplier parameter, valid parameters 20, 30, 35, 40, 45, 50, 55, 60\n");
return -EINVAL;
}
......@@ -201,12 +201,12 @@ static int powernow_k6_cpu_init(struct cpufreq_policy *policy)
param_busfreq = busfreq * 10;
/* table init */
for (i = 0; (clock_ratio[i].frequency != CPUFREQ_TABLE_END); i++) {
f = clock_ratio[i].driver_data;
cpufreq_for_each_entry(pos, clock_ratio) {
f = pos->driver_data;
if (f > max_multiplier)
clock_ratio[i].frequency = CPUFREQ_ENTRY_INVALID;
pos->frequency = CPUFREQ_ENTRY_INVALID;
else
clock_ratio[i].frequency = busfreq * f;
pos->frequency = busfreq * f;
}
/* cpuinfo and default policy values */
......
......@@ -67,9 +67,10 @@ static int set_pmode(unsigned int cpu, unsigned int slow_mode)
static int cbe_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
struct cpufreq_frequency_table *pos;
const u32 *max_freqp;
u32 max_freq;
int i, cur_pmode;
int cur_pmode;
struct device_node *cpu;
cpu = of_get_cpu_node(policy->cpu, NULL);
......@@ -102,9 +103,9 @@ static int cbe_cpufreq_cpu_init(struct cpufreq_policy *policy)
pr_debug("initializing frequency table\n");
/* initialize frequency table */
for (i=0; cbe_freqs[i].frequency!=CPUFREQ_TABLE_END; i++) {
cbe_freqs[i].frequency = max_freq / cbe_freqs[i].driver_data;
pr_debug("%d: %d\n", i, cbe_freqs[i].frequency);
cpufreq_for_each_entry(pos, cbe_freqs) {
pos->frequency = max_freq / pos->driver_data;
pr_debug("%d: %d\n", (int)(pos - cbe_freqs), pos->frequency);
}
/* if DEBUG is enabled set_pmode() measures the latency
......
......@@ -266,7 +266,7 @@ static int s3c2416_cpufreq_set_target(struct cpufreq_policy *policy,
static void __init s3c2416_cpufreq_cfg_regulator(struct s3c2416_data *s3c_freq)
{
int count, v, i, found;
struct cpufreq_frequency_table *freq;
struct cpufreq_frequency_table *pos;
struct s3c2416_dvfs *dvfs;
count = regulator_count_voltages(s3c_freq->vddarm);
......@@ -275,12 +275,11 @@ static void __init s3c2416_cpufreq_cfg_regulator(struct s3c2416_data *s3c_freq)
return;
}
freq = s3c_freq->freq_table;
while (count > 0 && freq->frequency != CPUFREQ_TABLE_END) {
if (freq->frequency == CPUFREQ_ENTRY_INVALID)
continue;
if (!count)
goto out;
dvfs = &s3c2416_dvfs_table[freq->driver_data];
cpufreq_for_each_valid_entry(pos, s3c_freq->freq_table) {
dvfs = &s3c2416_dvfs_table[pos->driver_data];
found = 0;
/* Check only the min-voltage, more is always ok on S3C2416 */
......@@ -292,13 +291,12 @@ static void __init s3c2416_cpufreq_cfg_regulator(struct s3c2416_data *s3c_freq)
if (!found) {
pr_debug("cpufreq: %dkHz unsupported by regulator\n",
freq->frequency);
freq->frequency = CPUFREQ_ENTRY_INVALID;
pos->frequency);
pos->frequency = CPUFREQ_ENTRY_INVALID;
}
freq++;
}
out:
/* Guessed */
s3c_freq->regulator_latency = 1 * 1000 * 1000;
}
......@@ -338,7 +336,7 @@ static struct notifier_block s3c2416_cpufreq_reboot_notifier = {
static int __init s3c2416_cpufreq_driver_init(struct cpufreq_policy *policy)
{
struct s3c2416_data *s3c_freq = &s3c2416_cpufreq;
struct cpufreq_frequency_table *freq;
struct cpufreq_frequency_table *pos;
struct clk *msysclk;
unsigned long rate;
int ret;
......@@ -427,31 +425,27 @@ static int __init s3c2416_cpufreq_driver_init(struct cpufreq_policy *policy)
s3c_freq->regulator_latency = 0;
#endif
freq = s3c_freq->freq_table;
while (freq->frequency != CPUFREQ_TABLE_END) {
cpufreq_for_each_entry(pos, s3c_freq->freq_table) {
/* special handling for dvs mode */
if (freq->driver_data == 0) {
if (pos->driver_data == 0) {
if (!s3c_freq->hclk) {
pr_debug("cpufreq: %dkHz unsupported as it would need unavailable dvs mode\n",
freq->frequency);
freq->frequency = CPUFREQ_ENTRY_INVALID;
pos->frequency);
pos->frequency = CPUFREQ_ENTRY_INVALID;
} else {
freq++;
continue;
}
}
/* Check for frequencies we can generate */
rate = clk_round_rate(s3c_freq->armdiv,
freq->frequency * 1000);
pos->frequency * 1000);
rate /= 1000;
if (rate != freq->frequency) {
if (rate != pos->frequency) {
pr_debug("cpufreq: %dkHz unsupported by clock (clk_round_rate return %lu)\n",
freq->frequency, rate);
freq->frequency = CPUFREQ_ENTRY_INVALID;
pos->frequency, rate);
pos->frequency = CPUFREQ_ENTRY_INVALID;
}
freq++;
}
/* Datasheet says PLL stabalisation time must be at least 300us,
......
......@@ -118,11 +118,10 @@ static void __init s3c64xx_cpufreq_config_regulator(void)
pr_err("Unable to check supported voltages\n");
}
freq = s3c64xx_freq_table;
while (count > 0 && freq->frequency != CPUFREQ_TABLE_END) {
if (freq->frequency == CPUFREQ_ENTRY_INVALID)
continue;
if (!count)
goto out;
cpufreq_for_each_valid_entry(freq, s3c64xx_freq_table) {
dvfs = &s3c64xx_dvfs_table[freq->driver_data];
found = 0;
......@@ -137,10 +136,9 @@ static void __init s3c64xx_cpufreq_config_regulator(void)
freq->frequency);
freq->frequency = CPUFREQ_ENTRY_INVALID;
}
freq++;
}
out:
/* Guess based on having to do an I2C/SPI write; in future we
* will be able to query the regulator performance here. */
regulator_latency = 1 * 1000 * 1000;
......@@ -179,8 +177,7 @@ static int s3c64xx_cpufreq_driver_init(struct cpufreq_policy *policy)
}
#endif
freq = s3c64xx_freq_table;
while (freq->frequency != CPUFREQ_TABLE_END) {
cpufreq_for_each_entry(freq, s3c64xx_freq_table) {
unsigned long r;
/* Check for frequencies we can generate */
......@@ -196,8 +193,6 @@ static int s3c64xx_cpufreq_driver_init(struct cpufreq_policy *policy)
* frequency is the maximum we can support. */
if (!vddarm && freq->frequency > clk_get_rate(policy->clk) / 1000)
freq->frequency = CPUFREQ_ENTRY_INVALID;
freq++;
}
/* Datasheet says PLL stabalisation time (if we were to use
......
......@@ -28,7 +28,7 @@
#include <asm/cpu_device_id.h>
#define PFX "speedstep-centrino: "
#define MAINTAINER "cpufreq@vger.kernel.org"
#define MAINTAINER "linux-pm@vger.kernel.org"
#define INTEL_MSR_RANGE (0xffff)
......
......@@ -1734,18 +1734,17 @@ static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
static long round_armss_rate(unsigned long rate)
{
struct cpufreq_frequency_table *pos;
long freq = 0;
int i = 0;
/* cpufreq table frequencies is in KHz. */
rate = rate / 1000;
/* Find the corresponding arm opp from the cpufreq table. */
while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
freq = db8500_cpufreq_table[i].frequency;
cpufreq_for_each_entry(pos, db8500_cpufreq_table) {
freq = pos->frequency;
if (freq == rate)
break;
i++;
}
/* Return the last valid value, even if a match was not found. */
......@@ -1886,23 +1885,21 @@ static void set_clock_rate(u8 clock, unsigned long rate)
static int set_armss_rate(unsigned long rate)
{
int i = 0;
struct cpufreq_frequency_table *pos;
/* cpufreq table frequencies is in KHz. */
rate = rate / 1000;
/* Find the corresponding arm opp from the cpufreq table. */
while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
if (db8500_cpufreq_table[i].frequency == rate)
cpufreq_for_each_entry(pos, db8500_cpufreq_table)
if (pos->frequency == rate)
break;
i++;
}
if (db8500_cpufreq_table[i].frequency != rate)
if (pos->frequency != rate)
return -EINVAL;
/* Set the new arm opp. */
return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].driver_data);
return db8500_prcmu_set_arm_opp(pos->driver_data);
}
static int set_plldsi_rate(unsigned long rate)
......
......@@ -217,21 +217,17 @@ static int sh_sir_crc_init(struct sh_sir_self *self)
static u32 sh_sir_find_sclk(struct clk *irda_clk)
{
struct cpufreq_frequency_table *freq_table = irda_clk->freq_table;
struct cpufreq_frequency_table *pos;
struct clk *pclk = clk_get(NULL, "peripheral_clk");
u32 limit, min = 0xffffffff, tmp;
int i, index = 0;
int index = 0;
limit = clk_get_rate(pclk);
clk_put(pclk);
/* IrDA can not set over peripheral_clk */
for (i = 0;
freq_table[i].frequency != CPUFREQ_TABLE_END;
i++) {
u32 freq = freq_table[i].frequency;
if (freq == CPUFREQ_ENTRY_INVALID)
continue;
cpufreq_for_each_valid_entry(pos, freq_table) {
u32 freq = pos->frequency;
/* IrDA should not over peripheral_clk */
if (freq > limit)
......@@ -240,7 +236,7 @@ static u32 sh_sir_find_sclk(struct clk *irda_clk)
tmp = freq % SCLK_BASE;
if (tmp < min) {
min = tmp;
index = i;
index = pos - freq_table;
}
}
......
......@@ -196,17 +196,11 @@ int clk_rate_table_find(struct clk *clk,
struct cpufreq_frequency_table *freq_table,
unsigned long rate)
{
int i;
for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
unsigned long freq = freq_table[i].frequency;
struct cpufreq_frequency_table *pos;
if (freq == CPUFREQ_ENTRY_INVALID)
continue;
if (freq == rate)
return i;
}
cpufreq_for_each_valid_entry(pos, freq_table)
if (pos->frequency == rate)
return pos - freq_table;
return -ENOENT;
}
......@@ -575,11 +569,7 @@ long clk_round_parent(struct clk *clk, unsigned long target,
return abs(target - *best_freq);
}
for (freq = parent->freq_table; freq->frequency != CPUFREQ_TABLE_END;
freq++) {
if (freq->frequency == CPUFREQ_ENTRY_INVALID)
continue;
cpufreq_for_each_valid_entry(freq, parent->freq_table) {
if (unlikely(freq->frequency / target <= div_min - 1)) {
unsigned long freq_max;
......
......@@ -144,11 +144,11 @@ static int get_property(unsigned int cpu, unsigned long input,
unsigned int *output,
enum cpufreq_cooling_property property)
{
int i, j;
int i;
unsigned long max_level = 0, level = 0;
unsigned int freq = CPUFREQ_ENTRY_INVALID;
int descend = -1;
struct cpufreq_frequency_table *table =
struct cpufreq_frequency_table *pos, *table =
cpufreq_frequency_get_table(cpu);
if (!output)
......@@ -157,20 +157,16 @@ static int get_property(unsigned int cpu, unsigned long input,
if (!table)
return -EINVAL;
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
/* ignore invalid entries */
if (table[i].frequency == CPUFREQ_ENTRY_INVALID)
continue;
cpufreq_for_each_valid_entry(pos, table) {
/* ignore duplicate entry */
if (freq == table[i].frequency)
if (freq == pos->frequency)
continue;
/* get the frequency order */
if (freq != CPUFREQ_ENTRY_INVALID && descend == -1)
descend = !!(freq > table[i].frequency);
descend = freq > pos->frequency;
freq = table[i].frequency;
freq = pos->frequency;
max_level++;
}
......@@ -190,29 +186,26 @@ static int get_property(unsigned int cpu, unsigned long input,
if (property == GET_FREQ)
level = descend ? input : (max_level - input);
for (i = 0, j = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
/* ignore invalid entry */
if (table[i].frequency == CPUFREQ_ENTRY_INVALID)
continue;
i = 0;
cpufreq_for_each_valid_entry(pos, table) {
/* ignore duplicate entry */
if (freq == table[i].frequency)
if (freq == pos->frequency)
continue;
/* now we have a valid frequency entry */
freq = table[i].frequency;
freq = pos->frequency;
if (property == GET_LEVEL && (unsigned int)input == freq) {
/* get level by frequency */
*output = descend ? j : (max_level - j);
*output = descend ? i : (max_level - i);
return 0;
}
if (property == GET_FREQ && level == j) {
if (property == GET_FREQ && level == i) {
/* get frequency by level */
*output = freq;
return 0;
}
j++;
i++;
}
return -EINVAL;
......
......@@ -110,6 +110,7 @@ struct cpufreq_policy {
bool transition_ongoing; /* Tracks transition status */
spinlock_t transition_lock;
wait_queue_head_t transition_wait;
struct task_struct *transition_task; /* Task which is doing the transition */
};
/* Only for ACPI */
......@@ -468,6 +469,48 @@ struct cpufreq_frequency_table {
* order */
};
#if defined(CONFIG_CPU_FREQ) && defined(CONFIG_PM_OPP)
int dev_pm_opp_init_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table);
void dev_pm_opp_free_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table);
#else
static inline int dev_pm_opp_init_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table
**table)
{
return -EINVAL;
}
static inline void dev_pm_opp_free_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table
**table)
{
}
#endif
bool cpufreq_next_valid(struct cpufreq_frequency_table **pos);
/*
* cpufreq_for_each_entry - iterate over a cpufreq_frequency_table
* @pos: the cpufreq_frequency_table * to use as a loop cursor.
* @table: the cpufreq_frequency_table * to iterate over.
*/
#define cpufreq_for_each_entry(pos, table) \
for (pos = table; pos->frequency != CPUFREQ_TABLE_END; pos++)
/*
* cpufreq_for_each_valid_entry - iterate over a cpufreq_frequency_table
* excluding CPUFREQ_ENTRY_INVALID frequencies.
* @pos: the cpufreq_frequency_table * to use as a loop cursor.
* @table: the cpufreq_frequency_table * to iterate over.
*/
#define cpufreq_for_each_valid_entry(pos, table) \
for (pos = table; cpufreq_next_valid(&pos); pos++)
int cpufreq_frequency_table_cpuinfo(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *table);
......
......@@ -15,7 +15,6 @@
#define __LINUX_OPP_H__
#include <linux/err.h>
#include <linux/cpufreq.h>
#include <linux/notifier.h>
struct dev_pm_opp;
......@@ -117,23 +116,4 @@ static inline int of_init_opp_table(struct device *dev)
}
#endif
#if defined(CONFIG_CPU_FREQ) && defined(CONFIG_PM_OPP)
int dev_pm_opp_init_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table);
void dev_pm_opp_free_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table);
#else
static inline int dev_pm_opp_init_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table)
{
return -EINVAL;
}
static inline
void dev_pm_opp_free_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table)
{
}
#endif /* CONFIG_CPU_FREQ */
#endif /* __LINUX_OPP_H__ */
......@@ -62,7 +62,7 @@ LIB_MAJ= 0.0.0
LIB_MIN= 0
PACKAGE = cpupower
PACKAGE_BUGREPORT = cpufreq@vger.kernel.org
PACKAGE_BUGREPORT = linux-pm@vger.kernel.org
LANGUAGES = de fr it cs pt
......
......@@ -18,7 +18,7 @@
* 5.) if the third value, "diff_pmtmr", changes between 2. and 4., the
* TSC-based delay routine on the Linux kernel does not correctly
* handle the cpufreq transition. Please report this to
* cpufreq@vger.kernel.org
* linux-pm@vger.kernel.org
*/
#include <linux/kernel.h>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册